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Using a gradation of openness in a (Chang fuzzy) I-topological space, we introduce
degrees of compactness that we call α-fuzzy compactness (where α belongs to
the unit interval), so extending the concept of compactness due to C. L. Chang.
We obtain a Baire category theorem for α-locally compact spaces and construct a
one-point α-fuzzy compactification of an I-topological space.
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1. Introduction. In 1968, Chang [1] introduced the concept of a fuzzy topol-

ogy on a set X. However, some authors criticized that his notion did not really

describe fuzziness with respect to the concept of openness of a fuzzy set. In

the light of this difficulty, Šostak [9, 10] began his study on fuzzy structures

of topological type. Subsequently, by means of some variant of a Šostak fuzzy

topology (compare [2]), the authors of [5] developed a theory of α-gradation

of open sets (i.e., they introduced the concept of an α-open set where α be-

longs to the unit interval) for a fuzzy topological space in the sense of Chang.

Their theory of gradation of openness makes it possible to introduce degrees

of fuzzy topological concepts, which generalize the corresponding ones in gen-

eral topology on the one hand, and allow one to work with points of X instead

of fuzzy points on the other hand. In particular, they proved that the family

of all α-neighborhoods (α-nbhds for short) has similar properties as in the

classical case; furthermore, they compared their α-Ti separation axioms with

those discussed in [3].

We would like to draw the attention of the reader to the fact that in the

present literature fuzzy topologies in Chang’s sense are called I-topologies

and gradations of openness are called I-fuzzy topologies (see, e.g., [6, 8]). On

the other hand, our study is mainly based on [5] and in the present paper the

authors see no need to extend their results to L-(fuzzy) topologies.

In our paper, we first introduce a gradation of compactness, namely, α-

fuzzy compactness, based both on the aforementioned concept of an α-open

set due to [5], as well as, on the notion of compactness due to Chang. Then we

investigate the newly defined concepts by establishing analogues of classical

topological results related to the concept of compactness.

We note that Gantner et al. [4] have introduced a concept of α-compactness

based on their notion of an α-shading.
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The structure of our paper is as follows: after the preliminary Section 2, in

Section 3, the concept of α-fuzzy compactness is defined and its basic proper-

ties are studied. In Section 4, we present a Baire category theorem for α-locally

compact α-quasiregular spaces. Finally, in Section 5, we construct a one-point

α-fuzzy compactification for I-topologies. All the results mentioned generalize

the corresponding ones from general topology.

2. Preliminaries. LetX be a nonempty set and I the closed real unit interval.

A fuzzy set of X is a map M :X → I. Here M(x) is interpreted as the degree of

membership of a point x ∈X in the fuzzy set M .

We then define the union, intersection, and complement of fuzzy sets as

follows: for any x ∈X,

(i) (
⋃
i Ai)(x)=

∨
i Ai(x),

(ii) (
⋂
Ai)(x)=

∧
i Ai(x),

(iii) Ac(x)= 1−A(x).
As usual, for A,B ∈ IX , we write A⊆ B if A(x)≤ B(x) whenever x ∈X.

Šostak [9] defined a fuzzy topology on X as a function τ : IX → I satisfying

the following axioms:

(i) τ(0)= τ(1)= 1;

(ii) µ,ν ∈ IX implies that τ(µ∩ν)≥ τ(µ)∧τ(ν);
(iii) µi ∈ IX whenever i∈ I implies that τ(

⋃
i µi)≥∧iτ(µi);

where 0,1 are the constant functions with values 0 and 1, respectively.

Chattopadhyay et al. [2] rediscovered the concept of fuzzy topology intro-

duced by Šostak and called the function τ gradation of openness. Similarly, by

interchanging intersection with union and vice versa in the aforementioned ax-

ioms and applying the modified axioms to a function F : IX → I, these authors

defined the concept of a gradation of closedness on X.

In the following, a fuzzy topology in Šostak’s sense (or a gradation of open-

ness) will be called an I-fuzzy topology, and we define an I-topological space

as a pair (X,�) where � is an I-topology (topology in Chang’s sense) on X, that

is, � is a collection of fuzzy sets of X containing 0,1 and closed under arbi-

trary unions and finite intersections. A set is called open if it belongs to � and

closed if its complement belongs to �. The closure of A, clA, is the smallest

closed set containing A.

The crisp subsets of X are the characteristic functions of the (ordinary) sub-

sets of X, and we will identify a subset of X with its associated crisp subset of

X.

Recall that the support of a fuzzy set A is defined by suppA = {x ∈ X :

A(x) > 0}. We will write x ∈̂A if x ∈ suppA, and then say that A contains the

point x or that x is in A.

The following results and definitions can be found in [5].

Proposition 2.1. Let X be a nonempty set. The map σ : IX → I given by

σ(0) = 1 and σ(A) = inf{A(x) : x ∈ suppA} if A ≠ 0 is an I-fuzzy topology
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on X; it satisfies both the axioms of gradation of openness and the axioms of

gradation of closedness.

The real number σ(A) is the degree of openness [9] of the fuzzy set A;

clearly σ(A) = α implies that the degree of membership of each point in the

support of A, that is, in the fuzzy set A, is at least α. We observe that σ(A)= 1

if and only if A is a crisp subset of X, and σ(A) = 0 if and only if there is a

sequence {xn} in X such that A(xn) > 0, n ∈ N and limnA(xn) = 0. (Here N
denotes the set of positive integers.)

Definition 2.2. The fuzzy set A of X is an α-set (where α∈ [0,1]) of X if

σ(A)≥α. If the α-set A is open (closed), then A is said to be α-open (α-closed,

resp.).

Clearly, each A ∈ IX is a 0-set, and the 1-sets are exactly the crisp subsets

of X. Observe also that the union and intersection of α-sets is an α-set.

Remark 2.3. Let K be an ordinary subset of X. If A ∈ IX is an α-set of X,

then the restriction A|K of A to K is an α-set of K, but the converse does not

hold in general.

Definition 2.4 [2]. Let (X,�) be an I-topological space and α∈ [0,1]. The

family �α = {A ∈ � : σ(A) ≥ α} is an I-topology on X, called the α-level I-
topology of X. Clearly �0 =� and �1 is an ordinary topology on X.

Definition 2.5. Let (X,�) be an I-topological space. The fuzzy set A of X
is called an α-neighborhood (α-nbhd for short) of p ∈X if there exists C ∈�α
such that p ∈̂C ⊆ A. (The family �α(p) of all α-nbhds of p satisfies similar

properties as the set of neighborhoods at a point in general topology.)

Definition 2.6. The I-topological space (X,�) is called α-fuzzy Hausdorff

if forx,y ∈X,x ≠y , there areG,H ∈�α such thatx ∈̂G,y ∈̂H, andG∩H = 0.

Recall that the empty set is identified with 0. The following definitions and

result are due to [1].

A family � of fuzzy sets of X is a cover of a fuzzy set B ∈ IX provided that

B ⊆ ⋃{A : A ∈ �}. It is an open cover if each member of � is an open fuzzy

set. A subcover of � is a subfamily of � which is also a cover.

An I-topological space (X,�) is compact if each open cover of X has a finite

subcover. A family � of fuzzy sets has the finite intersection property if the

intersection of the members of each finite subfamily of � is nonempty. An

I-topological space is compact if and only if each family of closed sets which

has the finite intersection property has a nonempty intersection.

3. Gradation of compactness in I-topological spaces. Next we introduce

the following new concepts.

Definition 3.1. Let (X,�) be an I-topological space and α∈ [0,1]. A cover

� of a fuzzy set is an α-cover if each member of � is an α-set. It is called an
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α-open cover provided that each member of � is an α-open set. Moreover, X
is said to be α-fuzzy compact if each α-open cover of X has a finite subcover

of X, that is, (X,�α) is compact (in Chang’s sense).

Observations. An I-topological space X is compact if and only if X is 0-

fuzzy compact. For α<β, α-fuzzy compactness implies β-fuzzy compactness.

IfX is a topological space, thenX is compact if and only ifX is 1-fuzzy compact

(or 0-fuzzy compact, because the open sets are all 1-sets).

Definition 3.2. Let K be a crisp subset of the I-topological space (X,�).
Then K is called α-fuzzy compact if the subspace (K,�|K ) of X is α-fuzzy

compact, that is, (K,(�|K )α) is compact.

Remark 3.3. For α ≠ 0, note that the α-level I-topology (�|K )α of K does

not agree, in general, with the family (�α)|K of the restrictions of �α to K (see

Remark 2.3). However, observe that the inclusion (�α)|K ⊆ (�|K )α is always

satisfied.

Indeed, if A ∈ �α|K , then there is an α-open C of X such that A = C|K ; thus

A ∈ �|K and obviously A ∈ (�|K )α. But the other inclusion only holds, in gen-

eral, for α = 0 (since �0 = � and (�|K )0 = �|K ). Therefore, it is easy to verify

that if K is α-fuzzy compact, then each α-open cover of K formed by α-open

sets of X has a finite subcover of K. The converse, however, (which is true for

α= 0) is, in general, false as the following example shows.

Example 3.4. Let X be the real interval [−1,1] and take K = [0,1]. For each

a∈ [0,1] consider the fuzzy setMa ofX given byMa(x)= ax+a if x ∈ [−1,0]
and Ma(x) = a if x ∈ K. Then, � = {Ma : a ∈ [0,1]}∪{1} is an I-topology on

X, and the family �|K of open sets of K is formed by all the constant functions

on K with values in [0,1] (i.e., �|K is the indiscrete fuzzy topology on K in

the sense of Lowen [7]). Now, for α ≠ 0, each α-open cover � of K formed by

α-open sets of X has a finite subcover of K (in fact, if 0 	∈ �, then the only

possibility is � = {1}), but clearly K is not α-fuzzy compact for α ∈ [0,1[ (in

fact, {Ma|K : a ∈ [α,1[} is an α-open cover of K, without any finite subcover

of K). Note that K and X are 1-fuzzy compact and X is α-fuzzy compact for

α≠ 0.

We omit the proof of the following proposition.

Proposition 3.5. Let B and C be two crisp subsets of the I-topological space

X. If B and C are α-fuzzy compact, then B∪C is α-fuzzy compact.

Theorem 3.6. Let F be a closed crisp subset of the I-topological space (X,�).
If X is α-fuzzy compact, then F is α-fuzzy compact as a subspace of X.

Proof. Let � be an α-open cover, in the subspace F , of F , and put � =
{V ∈ � : V|F ∈ �}. Consider �∗ = {V ∪Fc : V ∈ �}. Clearly, �∗ is an α-open
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cover of X. So �∗ has a finite subcover V1∪Fc, . . . ,Vn∪Fc (Vi ∈�, i= 1, . . . ,n)
of X. Then, (V1∪Fc)|F , . . . ,(Vn∪Fc)|F is a finite subcover of � and of F , since

(Vi∪Fc)|F = Vi, i= 1, . . . ,n.

Definition 3.7. An I-topological space (X,�) is α-strongly Hausdorff, or

α-sT2 for short, if for all points x,y ∈X with x ≠y there exist G,H ∈�α such

that x ∈̂G, y ∈̂H, G(x)=H(y)= 1, and G∩H = 0.

Theorem 3.8. Let S be a crisp subspace of an α-sT2 I-topological space

(X,�). If S is α-fuzzy compact, then S is closed in X.

Proof. Let x ∈ X \S. We will show that there exists U ∈ � with U(x) = 1

and U ⊆X \S. For each y ∈ S we can find Uy,Vy ∈�α with Uy(x)= Vy(y)= 1

and Uy ∩Vy = 0. Thus {Vy|S : y ∈ S} is an α-cover of S, in the subspace S of

X; so it has a finite subcover {Vy1|S , . . . ,Vyn|S } of S. Let U = Uy1 ∩···∩Uyn .

Then U(x) = 1 and U ∩ (Vy1 ∪···∪Vyn) = 0. For each z ∈ S, there exists a

k∈ {1, . . . ,n} with Vyk(z)= 1, so U(z)= 0. Hence U ⊆X \S.

4. A Baire category theorem. Letα∈ [0,1]. We introduce the following new

concepts.

Definition 4.1. The I-topological space (X,�) is said to be α-locally com-

pact if each x ∈ X has a crisp set K of X which is an α-nbhd of x, in X, and

α-fuzzy compact as a subspace of X. Moreover X is called locally compact if

it is 0-locally compact.

Clearly, if X is α-fuzzy compact, then it is α-locally compact.

Example 4.2 (an α-locally compact space which is not α-fuzzy Hausdorff).

For each n ∈ N define the fuzzy set An on N as follows: An(x) = 1 if x < n,

An(x) = 1/2 if x = n and An(x) = 0 if x > n, where x ∈N. Put � = {An : n ∈
N}. Now � = �∪{0} is an I-topology on N, and clearly (N,�) is not α-fuzzy

Hausdorff, for α∈ [0,1].
On the other hand, the family � is an α-open cover of N which has not

any finite subcover and then (N,�) is not an α-fuzzy compact space for α ∈
[0,1/2].

Finally, for t ∈N, the crisp setKt = {x ∈N : x ≤ t} ofN is anα-neighborhood

of t in (N,�), forα∈ [0,1/2], and obviouslyKt isα-fuzzy compact in (Kt,�|Kt ),
for α∈ [0,1].

Example 4.3 (an α-locally compact space which is α-fuzzy Hausdorff). Let

Z denote the set of integers. For each p ∈ Z consider the fuzzy set Ap on Z,

given byAp(x)= 1 if x = p,Ap(x)= 1/2 if x = p+1, andAp(x)= 0 elsewhere,

where x ∈ Z.

Then, � = {Ap : p ∈ Z} is a subbase for an I-topology � on Z, which is

clearly α-fuzzy Hausdorff, and since � is an α-open cover of Z without any

finite subcover, (Z,�) is not α-fuzzy compact; finally, for t ∈ Z, the crisp set
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Kt = {t,t+1} of Z is an α-neighborhood of t in (Z,�), for α ∈ [0,1/2]. Obvi-

ously, Kt is α-fuzzy compact in (Kt,�|Kt ) for α∈ [0,1].

Definition 4.4. Let (X,�) be an I-topological space. The fuzzy set D of X
is called α-dense in X if D∩C is nonempty for each nonempty α-open set C
of X. Then D is called dense in X if it is 0-dense in X. (Then, D is α-dense in

X if and only if D is dense in (X,�a).)

Example 4.5 (α-dense fuzzy sets). For each i∈ I define the fuzzy set Ai on

I as follows: Ai(x)= i if x ≤ i, and Ai(x)= 0 elsewhere, where x ∈ I.
It is obvious that {Ai : i ∈ I} is an I-topology on I. If B is a fuzzy set on I

such that B(x)≠ 0 for all x ∈ I, then B is α-dense for α∈ [0,1]. Now, consider

the fuzzy set D on I defined by D(x)= 0 if x ≤ 1/2 and D(x)= 1/2 if x > 1/2,

where x ∈ I. Then, D is α-dense if and only if α> 1/2.

Definition 4.6. The I-topological space (X,�) is said to be α-quasiregular

if for each nonempty C ∈ �α there exists a nonempty H ∈ �α such that H ⊆
�α−cl(H)⊆ C , where �α−cl(H) denotes the closure in �α of H. Furthermore,

X is called quasiregular if it is 0-quasiregular. (Then X is α-quasiregular if and

only if (X,�α) is quasiregular.)

Example 4.7 (an α-quasiregular space). Define the I-topology � on N as

follows: A∈� if and only if A(x)∈ {0,1/2,1} for all x ∈N. Take two elements

a,b which do not belong to N, and put X =N∪{a,b}. Consider the I-topology

� on X defined as follows: let G ∈ IX . Then G ∈� if and only if G satisfies one

of the following two conditions:

(1) G|N ∈� and G(a)=G(b)= 0;

(2) G(x)= 1 for all x ∈X except, at most, on a finite set of X where G takes

the value 1/2.

We claim that (X,�) is an α-quasiregular space for α ∈ [0,1/2]. Indeed, if

G ∈ �α with G ≠ 0, then there exists y ∈ N such that G(y) ∈ {1/2,1}. Now,

consider the fuzzy set Hy of X given by Hy(x)= 0 if x ≠y , and Hy(x)= 1/2
if x =y , where x ∈X.

It is obvious thatHy ∈�α andHy ⊆G. On the other hand, (1−Hy)(x)= 1 if

x ≠y and (1−Hy)(x)= 1/2 ifx =y , and so 1−Hy ∈�; moreover, 1−Hy ∈�α
and clearly Hy ⊆�α−cl(Hy)=Hy ⊆G and hence (X,�) is α-quasiregular, for

α∈ [0,1/2].
Definition 4.8. The I-topological space (X,�) is said to be α-Baire if the

intersection of every sequence {Gn : n ∈ N} of α-dense α-open sets of X is

α-dense in X. We say that X is Baire if it is 0-Baire. (Then X is α-Baire if and

only if (X,�α) is Baire.)

Now, if X is an ordinary topological space, then X is locally compact, quasi-

regular, and Baire orD is dense in X, if it is so in the above defined fuzzy sense

(equivalently, if and only if X is α-locally compact, α-quasiregular, and α-Baire
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or D is α-dense in X, respectively, for some α ∈ [0,1], since the open sets of

X are 1-sets).

Theorem 4.9 (Baire’s category theorem). Let (X,�) be an I-topological

space and α ∈ [0,1]. If X is α-quasiregular and α-locally compact, then X is

α-Baire.

Proof. Let {Dn :n∈N} be a sequence of α-open α-dense sets in X. Let U
be a nonempty α-open set in X. Take x ∈̂U ; then there exists an α-nbhd K of

x in X which is an α-fuzzy compact subspace of X, that is, there is H ∈ �α
such that x ∈̂H ⊆K. Furthermore, H∩U is a nonempty α-open set of X. Then,

D1 ∩ (H ∩U) is a nonempty α-open set of X. Choose a nonempty V1 ∈ Zα,

such that V1 ⊆ �α− cl(V1) ⊆ D1∩ (H∩U). Next by induction we construct a

sequence {Vn :n∈N} such that �α−cl(Vn)⊆Dn∩�α−cl(Vn−1).
It follows that for each n ∈ N, �α−cl(Vn) is a closed set in (X,�α) and by

Remark 3.3 �α−cl(Vn)|K is closed in the compact space (K,(�|K )α).
Clearly, {�α−cl(Vn) :n∈N} is a family of closed sets in (X,�α) which has

the finite intersection property. Now, �α− cl(Vn) ⊆ K, whenever n ∈ N, and

then {�α− cl(Vn)|K : n ∈ N} is a family of closed sets in the compact space

(K,(�|K )α) which also satisfies the finite intersection property and therefore

has a nonempty intersection. Clearly, (
⋂∞
n=1Dn)∩U ≠ 0.

5. One-point α-fuzzy compactifications

Definition 5.1. Let (X,�) be an I-topological space and ω a point that

does not belong to X. Set X∗ = X∪{ω}. A fuzzy set G in X∗ is called open

if either G(ω) = 0 and G|X is open in X, or Gc|X is closed in X and {x ∈ X∗ :

G(x) ≠ 1} is contained in the support of an α-fuzzy compact subspace of X.

Then, X∗ is called the one-point α-fuzzy compactification of X.

Theorem 5.2. The one-point α-fuzzy compactification X∗ of (X,�) is an

α-fuzzy compact I-topological space and X is an I-subspace of X∗.

Proof. Suppose that G and H are open in X∗. We distinguish three cases:

(1) G(ω) = H(ω) = 0. Then (G∩H)|X = G|X ∩H|X is open in X, and thus

G∩H is open in the space X∗;

(2) G(ω)= 1, H(ω)= 0. So Gc|X is closed in X; then G|X is open in X. Now,

(G∩H)(ω) = 0 and G|X , H|X are open in X. We have (G∩H)|X = G|X∩
H|X is open in X and therefore G∩H is open in X∗;

(3) G(ω) = H(ω) = 1. Suppose {x ∈ X∗ : G(x) ≠ 1} ⊆ K and {x ∈ X∗ :

H(x)≠ 1} ⊆ C , where K and C are α-fuzzy compact subspaces of X.

Now, (G ∩H)c|X = (Gc ∪Hc)|X = Gc|X ∪Hc
|X is closed in X and {x ∈ X∗ :

(G∩H)(x)≠ 1} ⊆K∪C , but K∪C is α-fuzzy compact by Proposition 3.5.

Let � be a collection of open sets in X∗. We distinguish two cases.

(1) If G(ω)= 0 whenever G ∈�, then clearly
⋃{G :G ∈�} is open in X∗.
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(2) Now, suppose that there is G ∈ � such that G(ω) = 1, and {x ∈ X∗ :

G(x) ≠ 1} ⊆ K where K is an α-fuzzy compact subspace of X. Therefore,

(
⋃
G∈�G)(ω)= 1 andGc|X is closed inX for eachG ∈�. Moreover, (

⋂
G∈�G)c|X =⋂{Gc|X : G ∈ �} is closed in X and {x ∈ X∗ : (

⋃
G∈�G)(x) ≠ 1} ⊆ K. Thus⋃{G :G ∈�} is open in X∗.

Clearly X is an I-topological subspace of X∗. (If G is open in X, then G is

the restriction of the open set G∗ in X∗, to X, where (G∗)(x) = 0 if x = ω
and (G∗)(x) = G(x) if x ≠ω. On the other hand, if G is relatively open, say

G = H|X where H is open in X∗, then G is open in X. In fact, if H(ω) = 0,

then H(x) = 0 if x =ω, and H(x) = G(x) if x ≠ω where G is open in X. If

H(ω)= 1, then Hc
|X is closed in X and G is open in X.)

Now, let � be an α-open cover of X∗. Then U(ω) = 1 for some U ∈� and

{x ∈ X∗ : U(x) ≠ 1} is contained in some α-fuzzy compact subspace K of X.

Then by Remark 3.3 K is covered by U1, . . . ,Un where Ui ∈� (i = 1, . . . ,n) and

hence U1, . . . ,Un,U is a finite subcover of �, of X∗.

Theorem 5.3. Let X∗ be the one-point α-fuzzy compactification of (X,�).
(i) If X∗ is α-fuzzy Hausdorff, then X is α-fuzzy Hausdorff and α-locally

compact.

(ii) If X is α-sT2 and α-locally compact, then X∗ is α-sT2.

(iii) Moreover, {ω} is open in X∗ if and only if X is α-fuzzy compact.

(iv) Furthermore, X is dense in X∗ if and only if X is not α-fuzzy compact.

Proof. (i) If X∗ is α-fuzzy Hausdorff, then, obviously, X is α-fuzzy Haus-

dorff. Let x ∈ X. There exist two α-open sets U and V which are nbhds of ω
and x, respectively, such that U∩V = 0. Suppose that {x ∈X∗ :U(x)≠ 1} ⊆K
where K is an α-fuzzy compact subspace of X. Then, x ∈̂V ⊆ {x ∈X∗ :U(x)=
0} ⊆K.

Now, K is α-fuzzy compact and V is α-open and therefore X is α-locally

compact.

(ii) Let x ∈ X. Then, there exists an α-open set U of X such that x ∈̂U ⊆ K
where K is an α-fuzzy compact subspace of X. By Theorem 3.8, K is closed in

X and then X∗ \K is a 1-open nbhd of ω such that (X∗ \K)∩U = 0.

(iii) If {ω} is open in X∗, then X is closed in X∗ and, by Theorem 3.6, α-

fuzzy compact. If X is α-fuzzy compact, then {ω} is open in X∗, since X is

closed in X.

(iv) The assertion is a consequence of (iii).

Remark 5.4. We say that X∗ is a one-point compactification of X if it is

the one-point 0-fuzzy compactification. Now, if X is an ordinary topological

space, then the defined (fuzzy) one-point compactification (or one-point α-

fuzzy compactification for some α∈ [0,1]) agrees with the classical one.
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