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of Ishikawa iteration for various classes of non-Lipschitzian operators.
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1. Introduction. Let X be a real Banach space, B a nonempty, convex subset

ofX, and T : B→ B an operator. Letu1,x1 ∈ B. The following iteration is known

as Mann iteration (see [6]):

un+1 =
(
1−αn

)
un+αnTun. (1.1)

The sequence (αn)n ⊂ (0,1) is convergent such that

lim
n→∞αn = 0,

∞∑

n=1

αn =∞. (1.2)

Ishikawa iteration is given by (see [5])

xn+1 =
(
1−αn

)
xn+αnTyn,

yn =
(
1−βn

)
xn+βnTxn, n= 1,2, . . . .

(1.3)

The sequences (αn)n,(βn)n ⊂ (0,1) are convergent such that

lim
n→∞αn = 0, lim

n→∞βn = 0,
∞∑

n=1

αn =∞. (1.4)

Moreover, the sequence (αn)n from (1.3) is the same as in (1.1).

The map J :X → 2X
∗

given by Jx := {f ∈X∗ : 〈x,f 〉 = ‖x‖2, ‖f‖ = ‖x‖}, for

all x ∈X, is called the normalized duality mapping. The Hahn-Banach theorem

assures that Jx ≠∅, for all x ∈ X. It is easy to see that we have 〈j(x),y〉 ≤
‖x‖‖y‖, for all x,y ∈X and for all j(x)∈ J(x).

Definition 1.1. Let X be a real Banach space and let B be a nonempty

subset. A map T : B → B is called strongly pseudocontractive if there exist

k∈ (0,1) and a j(x−y)∈ J(x−y) such that

〈
Tx−Ty,j(x−y)〉≤ k‖x−y‖2, ∀x,y ∈ B. (1.5)
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A map S :D(S)→X is called strongly accretive if there exist k∈ (0,1) and a

j(x−y)∈ J(x−y) such that

〈
Sx−Sy,j(x−y)〉≥ k‖x−y‖2, ∀x,y ∈D(S). (1.6)

In (1.5), when k = 1, T is called pseudocontractive. In (1.6), when k = 0, S is

called accretive. We denote by I the identity map.

Remark 1.2. (i) The operator T is (strongly) pseudocontractive map if and

only if (I−T) is (strongly) accretive.

(ii) If S is accretive map, then T = f −S is strongly pseudocontractive map.

Remark 1.2(i) is obvious from (1.5) and (1.6). For Remark 1.2(ii), supposing

that x,y ∈ B and j(x−y)∈ J(x−y), one obtains

〈
Sx−Sy,j(x−y)〉≥ 0⇐⇒ 〈(f −T)x−(f −T)y,j(x−y)〉≥ 0

⇐⇒ 〈Tx−Ty,j(x−y)〉≤ 0≤ k‖x−y‖2,
(1.7)

for all k∈ (0,1).
In [10], it was shown that the Mann and Ishikawa iterations are equivalent

for various classes of Lipschitzian operators. We prove here the equivalence

for non-Lipschitzian operators. For this purpose, we need several lemmas.

Lemma 1.3 [11]. Let (an)n be a nonnegative sequence which satisfies the

following inequality:

an+1 ≤
(
1−λn

)
an+σn, (1.8)

where λn∈(0,1), for alln∈N, ∑∞
n=1λn=∞, andσn=o(λn). Then limn→∞an=0.

It is known that J(x)= ∂φ(x), whereφ(x)= (1/2)‖x‖2 and ∂φ(x) denotes

the subdifferential ofφ(x) atx, so the following inequality is satisfied, see also

[1, Lemma 2.1] or [9, Lemma 1].

Lemma 1.4 [1, 9]. If X is a real Banach space, then the following relation is

true:

‖x+y‖2 ≤ ‖x‖2+2
〈
y,j(x+y)〉, ∀x,y ∈X, ∀j(x+y)∈ J(x+y). (1.9)

2. Main result. We are now able to prove the following result.

Theorem 2.1. Let X be a real Banach space with a uniformly convex dual

and B a nonempty, closed, convex, and bounded subset of X. Let T : B→ B be a

continuous and strongly pseudocontractive operator. Then for u1 = x1 ∈ B, the

following assertions are equivalent:

(a) Mann iteration (1.1) converges to the fixed point of T ;

(b) Ishikawa iteration (1.3) converges to the fixed point of T .
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Proof. Deimling [3, Corollary 1] assures the existence of a fixed point.

The uniqueness of the fixed point comes from (1.5). Because X∗ is uniformly

convex, the duality map is single valued (see, e.g., [4]). Using (1.1), (1.3), and

Lemma 1.4, we get

∥∥xn+1−un+1

∥∥2 = ∥∥(1−αn
)(
xn−un

)+αn
(
Tyn−Tun

)∥∥2

≤ (1−αn
)2∥∥xn−un

∥∥2+2αn
〈
Tyn−Tun,J

(
xn+1−un+1

)〉

= (1−αn
)2∥∥xn−un

∥∥2

+2αn
〈
Tyn−Tun,J

(
xn+1−un+1

)−J(yn−un
)〉

+2αn
〈
Tyn−Tun,J

(
yn−un

)〉

≤ (1−αn
)2∥∥xn−un

∥∥2+2αnk
∥∥yn−un

∥∥2

+2αn
〈
Tyn−Tun,J

(
xn+1−un+1

)−J(yn−un
)〉

≤ (1−αn
)2∥∥xn−un

∥∥2+2αnk
∥∥yn−un

∥∥2

+2αn
∥∥Tyn−Tun

∥∥∥∥J
(
xn+1−un+1

)−J(yn−un
)∥∥

≤ (1−αn
)2∥∥xn−un

∥∥2+2αnk
∥∥yn−un

∥∥2

+2αnM1

∥∥J
(
xn+1−un+1

)−J(yn−un
)∥∥,

(2.1)

for some positive constant M1. Observe that (‖Tyn−Tun‖)n is bounded. We

now prove that

J
(
xn+1−un+1

)−J(yn−un
)
�→ 0 (n �→∞). (2.2)

Deimling [4, Proposition 12.3, page 115] assures that when X∗ is uniformly

convex, J is uniformly continuous on every bounded set of X. To prove (2.2),

it is sufficient to see that
∥∥(xn+1−un+1

)−(yn−un
)∥∥

= ∥∥(xn+1−yn
)−(un+1−un

)∥∥

= ∥∥−αnxn+αnTyn+βnxn−βnTxn+αnun−αnTun
∥∥

≤αn
(∥∥xn

∥∥+∥∥Tyn
∥∥+∥∥un

∥∥+∥∥Tun
∥∥)+βn

(∥∥xn
∥∥+∥∥Txn

∥∥)

≤ (αn+βn
)
M �→ 0 (n �→∞),

(2.3)

where

M = sup
n

((∥∥xn
∥∥+∥∥Tyn

∥∥+∥∥un
∥∥+∥∥Tun

∥∥),
(∥∥xn

∥∥+∥∥Txn
∥∥))<∞. (2.4)

The sequences (un)n, (xn)n, (Txn)n, (Tun)n, and (Tyn)n are bounded be-

ing in the bounded set B. Hence one can see that theM above is finite and (2.2)

holds. We define

σn := 2αnM1

∥∥J
(
xn+1−un+1

)−J(yn−un
)∥∥. (2.5)
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Again, using (1.1) and (1.3), we get

∥∥yn−un
∥∥2 = ∥∥(1−βn

)(
xn−un

)+βn
(
Txn−un

)∥∥2

≤ (1−βn
)2∥∥xn−un

∥∥2+2βn
〈
Txn−un,J

(
yn−un

)〉

≤ ∥∥xn−un
∥∥2+βnM2.

(2.6)

The last inequality is true because (〈Txn−un,J(yn−un)〉)n is bounded, with

a constant M2 > 0. Replacing (2.5) and (2.6) in (2.1), we obtain

∥∥xn+1−un+1

∥∥2 ≤ (1−αn
)2∥∥xn−un

∥∥2+2αnk
∥∥xn−un

∥∥2

+σn+αn(2k)βnM2

= (1−2(1−k)αn+α2
n
)∥∥xn−un

∥∥2+o(αn
)
.

(2.7)

The condition limn→∞αn = 0 implies the existence of an n0 such that, for all

n≥n0, we have

αn ≤ (1−k). (2.8)

Substituting (2.8) into (2.7), we get

1−2(1−k)αn+α2
n ≤ 1−2(1−k)αn+(1−k)αn = 1−(1−k)αn. (2.9)

Finally,

∥∥xn+1−un+1

∥∥2 ≤ (1−(1−k)αn
)∥∥xn−un

∥∥2+o(αn
)
. (2.10)

With an := ‖xn −un‖2, λn := (1− k)αn ∈ (0,1), and using Lemma 1.3, we

obtain limn→∞an = limn→∞‖xn−un‖2 = 0, that is,

lim
n→∞

∥∥xn−un
∥∥= 0. (2.11)

Let x∗ be the fixed point of T . Suppose that limn→∞ un = x∗. The inequality

0≤ ∥∥x∗−xn
∥∥≤ ∥∥un−x∗

∥∥+∥∥xn−un
∥∥ (2.12)

and (2.11) imply that limn→∞xn = x∗. Analogously, limn→∞xn = x∗ implies

limn→∞ un = x∗.

Remark 2.2. (i) If T has a fixed point, then Theorem 2.1 holds without the

continuity of T .

(ii) If B is not bounded, then Theorem 2.1 holds, supposing that (xn)n is

bounded. The point was to prove that if Mann iteration is convergent (thus

bounded), then Ishikawa iteration is convergent too. We remark that having

the convergence of Ishikawa iteration, one can immediately deduce the con-

vergence of Mann iteration by setting βn = 0 for all n∈N in (1.3).
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Theorem 2.1 does not completely generalize the Lipschitzian case from [10]

because the operator there is not necessarily bounded.

Theorem 2.3 [10]. Let K be a closed convex (not necessary bounded) subset

of an arbitrary Banach space X and let T be a Lipschitzian pseudocontrac-

tive selfmap of K. We consider Mann iteration and Ishikawa iteration with the

same initial point and with the conditions limn→∞αn = 0, limn→∞βn = 0, and∑∞
n=1αn =∞. Let x∗ ∈ F(T). Then the following conditions are equivalent:

(i) Mann iteration (1.1) converges to x∗ ∈ F(T);
(ii) Ishikawa iteration (1.3) converges to x∗ ∈ F(T).

3. Further equivalences. Let S be a strongly accretive operator. We consider

when the equation Sx = f has a solution for a given f ∈X. It easy to see that

Tx = x+f −Sx, ∀x ∈X, (3.1)

is a strongly pseudocontractive operator. A fixed point for T is the solution

of Sx = f , and conversely. Theorem 2.1 assures that the convergence of Mann

and Ishikawa iterations to the fixed point of T are equivalent for bounded

strongly pseudocontractive maps. A similar result holds for the convergence

of Mann and Ishikawa iterations to the solution of Sx = f . Suppose that the op-

erator S is strongly accretive. It is well known that if S is bounded, (I−S) could

be unbounded. Take, for example, S : R→ B = [−1,1] with S(x)= (1/2)cosx.

According to [2], the map (I − S)(x) = x − (1/2)cosx is strongly accretive

and (I − S)(R) = R. Thus, if B is bounded and x ∈ B does not mean that

Tx = x−Sx+f ∈ B. For the same (αn)n,(βn)n ⊂ (0,1) as in (1.4), iterations

(1.1) and (1.3) become

xn+1 =
(
1−αn

)
xn+αn

(
f +(I−S)yn

)
,

yn =
(
1−βn

)
xn+βn

(
f +(I−S)xn

)
, n= 1,2, . . . ,

(3.2)

un+1 =
(
1−αn

)
un+αn

(
f +(I−S)un

)
, n= 1,2, . . . . (3.3)

The existence of the solution for Sx = f when S is a continuous and strongly

accretive operator results from [8]. This argument and Remark 2.2(ii) lead us

to the following corollary.

Corollary 3.1. Let X be a real Banach space with a uniformly convex dual

and B a nonempty, convex, and closed subset of X. Let S : B→ B be a continuous

and strongly accretive operator and let (xn)n, given by (3.2), be bounded. Then,

for u1 = x1 ∈ B, the following assertions are equivalent:

(a) Mann iteration (3.3) converges to the solution of Sx = f ;

(b) Ishikawa iteration (3.2) converges to the solution of Sx = f .
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Let S be an accretive operator. From Remark 1.2(ii), the operator Tx = f−Sx
is strongly pseudocontractive for a given f ∈X. A solution for Tx = x becomes

a solution for x+Sx = f . For (αn)n,(βn)n ⊂ (0,1), as in (1.4), iterations (1.1)

and (1.3) become

xn+1 =
(
1−αn

)
xn+αn

(
f −Syn

)
,

yn =
(
1−βn

)
xn+βn

(
f −Sxn

)
, n= 1,2, . . . ,

(3.4)

un+1 =
(
1−αn

)
un+αn

(
f −Sun

)
, n= 1,2, . . . . (3.5)

The existence of a solution for this equation follows from [7]. We are now able

to give the following result.

Corollary 3.2. Let X be a real Banach space with a uniformly convex dual

and B a nonempty, convex, and closed subset of X. Let S : B→ B be a continuous

and accretive operator and let (xn)n, given by (3.4), be bounded. Then, for

u1 = x1 ∈ B, the following assertions are equivalent:

(a) Mann iteration (3.5) converges to the solution of x+Sx = f ;

(b) Ishikawa iteration (3.4) converges to the solution of x+Sx = f .

Observe that if S is not continuous, and the equations Sx = f , respectively,

x+Sx = f , have solutions, then Corollary 3.1, respectively, Corollary 3.2 hold.

We remark that all the results from this paper hold in the multivalued

case, provided that these multivalued maps admit appropriate single-valued

selections.
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