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We introduce the concepts of smooth x-closure and smooth «-interior of a fuzzy
set which are generalizations of smooth closure and smooth interior of a fuzzy
set defined by Demirci (1997) and obtain some of their structural properties.
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1. Introduction. Badard [1] introduced the concept of a smooth topological
space which is a generalization of Chang’s fuzzy topological space [2]. Many
mathematical structures in smooth topological spaces were introduced and
studied. In particular, Gayyar et al. [5] and Demirci [3, 4] introduced the con-
cepts of smooth closure and smooth interior of a fuzzy set and several types
of compactness in smooth topological spaces and obtained some properties
of them.

In this paper, we define the smooth «-closure and smooth «-interior of a
fuzzy set and investigate some of their properties. In fact, the smooth «-
closure and smooth « -interior of a fuzzy set coincide with the smooth closure
and smooth interior of a fuzzy set defined in [3] when « = 0. We also introduce
the concepts of several types of x-compactness using smooth «-closure and
smooth «-interior of a fuzzy set and investigate some of their properties.

2. Preliminaries. In this section, we give some notations and definitions
which are to be used in the sequel. Let X be a set and let I = [0, 1] be the unit
interval of the real line. Let IX denote the set of all fuzzy sets of X. Let Oy and
1x denote the characteristic functions of ¢ and X, respectively.

A smooth topological space (s.t.s.) [6] is an ordered pair (X, T), where X is a
nonempty set and T : I¥ — I is a mapping satisfying the following conditions:

(1) T(0x) =71(1x)=1;

(2) forall A,BeIX, T(AnB) = T(A) AT(B);

(3) for every subfamily {A;:i e J} < I¥, T(UjcjAi) = AiejT(Ap).
Then the mapping T : IX — I is called a smooth topology on X. The number
T(A) is called the degree of openness of A.

A mapping T* : I¥ — I is called a smooth cotopology [6] if and only if the
following three conditions are satisfied:

(1) *(0x) =T*(1x) =1;

(2) forall A,BeIX, T*(AUB) = T*(A) AT*(B);
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(3) for every subfamily {A;:i€ J} < IX, T*(NiejAi) = Aieg T (A)).

If T is a smooth topology on X, then the mapping T* : I¥ — I, defined by
T*(A) = T(A°) where A¢ denotes the complement of A, is a smooth cotopology
on X. Conversely, if T* is a smooth cotopology on X, then the mapping 7 : IX —
I, defined by T(A) = T*(A°), is a smooth topology on X [6].

For the s.t.s. (X,7) and « € [0,1], the family T4 = {A € I* : T(A) = &}
defines a Chang’s fuzzy topology (CFT) on X [2]. The family of all closed fuzzy
sets withrespect to T, is denoted by T and we have 7% = {A € IX : T (A) > «}.
For A € I* and « € [0,1], the T4-closure (resp., Tq-interior) of A, denoted
by clx(A) (resp., inty(A)), is defined by cly(A) = N{K € 7% : A < K} (resp.,
inty(A) = U{K € T4 :K € A}).

Demirci [3] introduced the concepts of smooth closure and smooth interior
in smooth topological spaces as follows.

Let (X, T)beans.t.s.and A € IX. Then the T-smooth closure (resp., T-smooth
interior) of A, denoted by A (resp., A°), is defined by A = n{K € IX : T*(K) >
0, Ac K} (resp., A =U{K€IX:T(K) >0, K< A}).

Let (X,T) and (Y,0) be two smooth topological spaces. A function f: X —
Y is called smooth continuous with respect to T and o [6] if and only if
T(f1(A)) = 0(A) for every A € IY. A function f : X — Y is called weakly
smooth continuous with respect to T and o [6] if and only if o(A) > 0 =
T(f1(A)) >0 forevery AcI”.

A function f : X — Y is smooth continuous with respect to T and o if
and only if T*(f1(A)) = o*(A) for every A € I'. A function f : X — Y is
weakly smooth continuous with respect to T and o if and only if 0*(A) >0 =
T*(f1(A)) > 0 for every A € IY [6].

A function f : X — Y is called smooth open (resp., smooth closed) with
respect to T and o [6] if and only if T(A) < o (f(A)) (resp., T*(A) < g*(f(A)))
for every A € IX.

A function f : X — Y is called smooth preserving (resp., strict smooth pre-
serving) with respect to T and o [5]if and only if 0 (A) = 0(B) & T(f1(A)) =
T(f~1(B)) (resp., 0 (A) > o (B) & T(f1(A)) > T(f1(B))) for every A,Bc I".

If f:X — Y is a smooth preserving function (resp., a strict smooth preserv-
ing function) with respect to T and o, then 0*(A) = 0*(B) & T*(f1(A)) =
T*(f~1(B)) (resp., 0*(A) > o*(B) & T*(f1(A)) > T*(f1(B))) for every
A,BelI” [5].

A function f: X — Y is called smooth open preserving (resp., strict smooth
open preserving) with respect to T and o [5] if and only if T(A) > T(B) =
o(f(A)) = o(f(B)) (resp., T(A) > T(B) = o(f(A)) > o(f(B))) for every
A,B e I,

3. Smooth «x-closure and smooth «-interior. In this section, we introduce
the concepts of smooth «x-closure and smooth «-interior of a fuzzy set in
smooth topological spaces and investigate some properties of them.
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DEFINITION 3.1. Let (X,T) beans.t.s., x €[0,1),and A € I*. The T-smooth
«-closure (resp., T-smooth «-interior) of A, denoted by A, (resp., A%), is de-
fined by Ay = N{K € I* : T*(K) > &xT*(A), A € K} (resp., A% = U{K € IX :
T(K) > xT(A), K = A}).

THEOREM 3.2. Let (X,T) be an s.t.s., x € [0,1), and A,B € IX. Then
@) T*(Ax) = &T*(A),

() T(AY) = xT(A),

(©) AcBandTt*(A) <T*(B) > Ay S By,

(d) AcBandT(B) <T(A) > AY < BS.

PROOF. (a) and (b) follow directly from Definition 3.1.

(cIff AcBand 7*(A) < T*(B),then K € {K € I : T*(K) > «T*(B), B ©
K}=>Ke{KelX:7*(K) > at*(A), AcK}. Hence Ay € By.

(d) The proof is similar to the proof of (c). O

THEOREM 3.3. Let (X,T) be an s.t.s., x € [0,1), and A € IX. Then
@) (Aq)€ = (A9,
(b) Ay = ((A9)%)C,
(©) (AQ)€ = (A%,
(d) A% = ((A%)q)C.

PROOF. (a) From Definition 3.1, we have

(A0) = (N{K e I*: T*(K) > aT*(A), A< K})¢

=U{K:K eI, T(K) = T*(K) > aT*(A) = «T(A°), K° € A°}

(3.1)
=u{U el*:T(U) > aT(A%), U c A°}
= (A%
(b), (c), and (d) are easily obtained from (a). O

THEOREM 3.4. Let (X,T) be an s.t.s., x € [0,1), and A,B € IX. Then
(@ (0x)q=0x,

(b) Ac Ay,

(©) Ax S (Ad)as

(d) AxNBy S (AUB),.

PROOF. (a) and (b) are easily obtained from Definition 3.1. (c) follows di-
rectly from (b).
(d) For every A,B € IX, we have

(AUB)y=n{KeI*: T*(K) > xT*(AUB), AUB K}
2n{KelX:*(K) > «T*(A) AaT*(B), AUB €K}
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=n{KeIX:T*(K) > xT*(A)
or T*(K) > xt*(B), AcK, BS K}
=n{Kel:(T*(K) > aT*(A), AcK, BSK)
or (T*(K) > at*(B), AcK, BSK)}
2n[{Kel*:7*(K) > xT*(A), AcK}
Uik eI*:7%(K) > at*(B), B< K}]
=[n{Kel*:T*(K) > aT*(A), AcK}]
N[n{KerX:t*(K) > «1*(B), B<K}]
= AyNBg.

THEOREM 3.5. Let (X,T) be an s.t.s., x € [0,1), and A,B € IX. Then
(@) (1x)% =1x,

(b) A% <A,

() (A%)% < A9,

(d (ANB)% < A% UBC.

PROOF. The proof is similar to the proof of Theorem 3.4.

THEOREM 3.6. Let (X,T) be an s.t.s., x € [0,1), and A € IX. Then
(@ TF(A)>0=> Ay =A,
(b) T(A)>0= A% =A.

(3.2)

PROOF. (a)Let T*(A) >0.Then A € {K € I*¥: T*(K) > axT*(A), A< K}. By

Definition 3.1, Ay € A. By Theorem 3.4, A € Ay. Hence Ay = A.

(b)Let T(A) > 0.Then A € {K € I*: T(K) > a7 (A), K < A}. By Definition 3.1,

A < AY. By Theorem 3.5, A% < A. Hence A% = A.

d

REMARK 3.7. Let (X,T) be an s.t.s., &y, € [0,1) with &; < &>, and A € IX.

Then Ay, € Ay, and Af, < A9, .

THEOREM 3.8. Let (X,T) be an s.t.s., x € [0,1), and A € IX. Then
(a) Z(x = NB>axT*(A) ClB(A),
(b) A% = Ugsar(a)intg(A).

PROOF. (a) For each x € X, we have

Ax(x) =[n{K e X :T7*(K) > aT*(A), A K}](x)
=inf {K(x):K eI*, T*(K) > aT*(A), A< K}
= inf(A)inf{K(x) Kel*, T"(K) =B, AcK}
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_ X . % -
—ﬁ>ol(rTl£(A)[m{KeI (T*(K) = B, A< K}](x)

= inf clg(A)(x)
B>aT*(A)

= [ Npsar*(a) clg(A) [ (x).
(3.3)

Hence, Ay = Ngsar+(a) Clg(A).
(b) The proof is similar to that of (a). O

REMARK 3.9. Let (X,T) be an s.t.s., x € [0,1), and A € IX. From Theorems
3.4, 3.5, and 3.8, we easily obtain the following:
(a) if there exists a B € (xT*(A),1] such that A = clg(A), then A = Ay;
(b) if there exists a f € (xT(A),1] such that A =intg(A), then A = A%.

DEFINITION 3.10. Let (X,T) and (Y, o) be two smooth topological spaces
and let x € [0,1). A function f : X — Y is called smooth x-preserving (resp.,
strict smooth «-preserving) with respect to T and o if and only if o(A) >
xo(B) & T(f1(A)) = at(f~1(B)) (resp., 0(A) > xo(B) & T(f~1(A)) >
xT(f1(B))) for every A,B e IY.

A function f : X — Y is called smooth open x-preserving (resp., strict smooth
open «x-preserving) with respect to T and o if and only if T(A) > x7T(B) =
o(f(A)) = xo(f(B)) (resp., T(A) > xT(B) = o (f(A)) > xo (f(B))) for every
A,B eIX.

THEOREM 3.11. Let (X,T) and (Y,o) be two smooth topological spaces and
let x € [0,1). If f : X — Y is a smooth «-preserving function (resp., a strict
smooth «-preserving function) with respect to T and o, then o*(A) > xo* (B)
e TH(f1(A) = «t*(f1(B)) (resp., 0*(A) > xo*(B) & T*(f1(A)) >
«xT*(f~1(B))) for every A,B 1"

PROOF. If f:X — Y is a smooth x-preserving function with respect to T
and o, then

0*(A) = x0*(B) = 0(A°) = xo (B)
= T(f1(A9)) = at (f1(B))
(3.4)
= T((f 1)) =t ((f1(B))
= T(f1(A) = at*(f1(B))
for every A,B e IY.

The proof is similar when f : X — Y is a strict smooth x-preserving function
with respect to T and o. ]
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THEOREM 3.12. Let (X,T) and (Y,o) be two smooth topological spaces and
let x € [0,1). If a function f : X — Y is injective and strict smooth x-preserving

with respect to T and o, then f(Ay) € (f(A)), for every A € IX,

PROOF. For every A € I¥, we have

FHUA)) =f n{Uel:a"(U) > ao*(f(A)), f(A) cUL]
2fn{uelY :v*(f~1(U)) > a1*(A), Ac fFHU)}]
=n{f'U) et (fHU)) > at*(A), A< fHU)} (3.5)
on{Kel*:7*(K)> at*(A), AcK}

= Aq.

Hence, f(Aq) < (f(A)) . -

THEOREM 3.13. Let (X,T) and (Y,o) be two smooth topological spaces and
let x € [0,1). If a function f : X — Y is strict smooth x-preserving with respect
to T and o, then

@) (f1(A)y<s f 1 (Ax) forevery AcIY,
(b) f1(A%) < (f1(A))Y forevery Ac .

PROOF. (a) For every A € IY, we have
YA =fHn{uelY:0*(U) > ac*(A), AcU}]
2 f U el T (f7H) > e (f7H(A), f7H(A) < fHD)Y]
=n{f ) et (W) > et (FTHA), fTHA) < U]
on{Kel*: %K) > at*(f1(A), fF 1 (A) <K}

= (f71 (A))o('
(3.6)

(b) For every A € IY, we have

FHAL) = fHulU el oU) > ao(A), U c Al]
cf M uUer:t(f71 W) > at(f1(A), fF1U) = T (A}]
=u{f O er:T(f1 ) > ar(f1(A), FHU) = (A}
culKel*: 1K) > at(f1(A), K f (A}
= (f 1A%
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THEOREM 3.14. Let (X,T) and (Y,o) be two smooth topological spaces and
let x € [0,1). If a function f : X — Y is strict smooth open x-preserving with
respect to T and o, then f(A%) < (f(A))S for every A € IX.

PROOF. For every A € I¥, we have

f(A%) = flu{U el*:T(U) > aT(A), U < A}]
cfluUuer*:o(f(U)) > ao(f(A), fFU) < f(A}]
=u{f(U) el :0(f(U)) > xa(f(A), fU) < f(A} (3.8)

=u{Kel":0(K)> xo(f(A)), K< f(A)}

0 O
= (f(A))

4. Types of smooth x-compactness. In this section, we introduce the con-
cepts of several types of smooth «x-compactness in smooth topological spaces
and investigate some properties of them.

DEFINITION 4.1 [5]. An s.t.s. (X, T) is called smooth compact if and only if
for every family {A;:i € J} in {A € IX : T(A) > 0} covering X, there exists a
finite subset Jo of J such that U;cj,A; = 1x.

THEOREM 4.2 [4]. Let (X,T) and (Y,o0) be two smooth topological spaces
and f : X — Y a surjective weakly smooth continuous function with respect to T
and o. If (X, 1) is smooth compact, then so is (Y,o).

DEFINITION 4.3. Let x € [0,1). An s.t.s. (X, T) is called smooth nearly «-
compact if and only if for every family {A; :i € J} in {A € I : T(A) > 0}
covering X, there exists a finite subset Jy of J such that Ujej, ((Ai) )% = 1x.

DEFINITION 4.4. Let x € [0,1). An s.t.s. (X, T) is called smooth almost «-
compact if and only if for every family {A; :i € J} in {A € I¥ : T(A) > 0}
covering X, there exists a finite subset Jo of J such that Ujej,(A;)y = 1x.

DEFINITION 4.5. Let x € [0,1). An s.t.s. (X, T) is called smooth «-regular
if and only if each fuzzy set A € IX satisfying T(A) > 0 can be written as
A=U{KeI*:T(K)=T(A), Ky S A}.

DEFINITION 4.6. A smooth topology T : IX — I on X is called monotonic
increasing (resp., monotonic decreasing) if and only if A < B = T(A) < T(B)
(resp., A< B= T(A) = T(B)) for every A,B € IX.

THEOREM 4.7. Let (X,T) be an s.t.s., x € [0,1), and T a monotonic decreas-
ing smooth topology. If (X,T) is smooth compact, then (X, T) is smooth nearly
x-compact.

PROOF. Let (X,T) be a smooth compact s.t.s. Then for every family {A;:i €
J}in {A € I*: T(A) > 0} covering X, there exists a finite subset Jy of J such
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that U;ej,A; = 1x. Since T(A;) > 0 for each i € J, we have A; = (A;) for each
i € J by Theorem 3.6. Since T is monotonic decreasing and A; < (A;) 4 for each
i€ J,we have T(A;) = T((A;)) for each i € J. Hence from Theorem 3.2, we
have A; = (Aj)% < ((Aj) )% for each i € J. Thus 1x = Ujcj,Ai € Uiey, (ma)g,

thatis, Uiy, ((Ai)«)& = 1x. Hence (X, T) is smooth nearly «-compact. O

THEOREM 4.8. Let x € [0,1). Then a smooth nearly «x-compact s.t.s. (X,T)
is smooth almost «x-compact.

PROOF. Let (X, T) be asmoothnearly x-compact s.t.s. Then for every family
{A;:i€ J}in {A €I¥:T(A) > 0} covering X, there exists a finite subset
Jo of J such that Ujej, ((Ai)o)% = 1x. Since ((A;)a)% S (Aj)y for each i € J
by Theorem 3.5, 1x = Uiej, (A1) )% S Uieg, (A1)« SO Uiesy (Ai) o = 1x. Hence
(X, T) is smooth almost x-compact. O

THEOREM 4.9. Let (X,T) and (Y,0) be two smooth topological spaces, x €
[0,1), and f : X — Y a surjective, weakly smooth continuous, and strict smooth
x-preserving function with respect to T and o. If (X,T) is smooth almost -
compact, then sois (Y,0).

PROOF. Let {A;:i€ J} be afamilyin {A €I :0(A) > 0} covering Y, that
is, UiejA; = 1y. Then 1x = f~1(1y) = Ujesf "1 (A;). Since f is weakly smooth
continuous, T(f1(4;)) > 0 for each i € J. Since (X,T) is smooth almost
«-compact, there exists a finite subset Jo of J such that U;cj, (f~1(A{))y =
1x. From the surjectivity of f we have 1y = f(lx) = f(Uics, (f 1 (A)) ) =
Uieso f ((f71(A{)) o). Since f : X — Y is strict smooth «-preserving with re-
spect to T and o, from Theorem 3.13 we have (f~1(A;)), < f*l(ma) for
each i € J. Hence we have 1y = Ujej, f((f~1(A4;))4) S Uiejof(ffl((A—i)a)) =
Uie]oma, thatis, Ujej, (Ai)x = 1y. Thus (Y, 0) is smooth almost x-compact.

O

We obtain the following corollary from Theorems 4.8 and 4.9.

COROLLARY 4.10. Let (X,T) and (Y,0) be two smooth topological spaces,
x € [0,1), and f : X — Y a surjective, weakly smooth continuous, and strict
smooth x-preserving function with respect to T and o . If (X, T) is smooth nearly
x-compact, then (Y, o) is smooth almost x-compact.

THEOREM 4.11. Let (X,T) and (Y,0) be two smooth topological spaces, x €
[0,1), and f : X — Y a surjective, weakly smooth continuous, strict smooth -
preserving, and strict smooth open x-preserving function with respect to T and
o. If (X, T) is smooth nearly x-compact, then so is (Y, o).

PROOF. Let {A;:i € J} be a family in {A € I : 0(A) > 0} covering Y, that
is, UiejA; = 1y. Then 1x = f~'(1y) = Uje; f 1 (A;). Since f is weakly smooth
continuous, T(f~1(A;)) > 0 for each i € J. Since (X,T) is smooth nearly «-
compact, there exists a finite subset Jy of J such that Ujej, ((f~1(A4i))o)% = 1x.
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From the surjectivity of f we have 1y = f(1x) = f(Uicj, (f"1(A:))%) =
Uieso f (((F71(Ai)) &) %)- Since f: X — Y is strict smooth open «-preserving
with respect to T and o, from Theorem 3.14 we have f(((f~1(A;))4)%) <
(fU(f1(AD)) )G foreach i € J. Since f: X — Y is strict smooth « -preserving
with respect to T and o, from Theorem 3.13 we have (f~1(A;)), < f 1 ((A) )

for each i € J. Hence, we have

Ly = Uieso f (F1(A)) o) a)
< Uieso (F (F1(AD)) )%

(4.1)
< Uieso (F (F 71 ((A) o))
= Uieso ((Ai) o) -
Hence, U;cj, ((Ai)x)% = 1y. Thus (Y,0) is smooth nearly «x-compact. O

THEOREM 4.12. Let x € [0,1). Then a smooth almost x-compact smooth
x-regular s.t.s. (X, T) is smooth compact.

PROOF. Let {A;:i € J} be a family in {A € I¥: 0(A) > 0} covering X,
that is, UjcjA; = 1x. Since (X, T) is smooth «-regular, A; = Uj.c; {K;, € IX:
T(Kji) > T(A)), @0‘ c Al for each i € J. Since Uie]Ai = UieJ[UjieJini]
= 1x and (X, T) is smooth almost x-compact, there exists a finite subfamily
{K;eIX:T(K;) >0, L e L} such that Uje; (K;) o = 1x. Since for each I € L there
exists i € J such that (K;), S A;, we have UiejoAi = 1x, where Jy is a finite
subset of J. Hence (X, T) is smooth compact. O

We obtain the following corollary from Theorems 4.8 and 4.12.

COROLLARY 4.13. Let x € [0,1). Then a smooth nearly x-compact smooth
x-regular s.t.s. (X, T) is smooth compact.
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