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Some variants of one-dimensional and two-dimensional integral inequalities of the
Volterra type are applied to study the behaviour properties of the solutions to var-
ious boundary value problems for partial differential equations of the hyperbolic
type. Moreover, new types of integral inequalities for one and two variables, being
a generalization of the Gronwall inequality, are presented and used in the theory
of nonlinear hyperbolic differential equations.
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1. Introduction. In this paper, the inequalities of the Volterra type are used
to study the behaviour properties of the solutions to boundary value prob-
lems for various types of hyperbolic equations. Section 2 is concerned with
fundamental remarks for one-dimensional Volterra integral equations based
on the theory integral equations. The presented estimates given under weaker
assumptions are applied in Section 3 to study a boundedness of solutions for
linear hyperbolic equations. In Section 4, new integral inequalities of the spe-
cial type are considered and applied in Section 5 to boundary value problems
for nonlinear partial differential equations of the hyperbolic type.

2. Note on one-dimensional integral inequalities. Consider the following
integral inequality of the Volterra type:

u(x) sf(x)+J:k(x,s)u(s)d5. (2.1)

The purpose of this section is to estimate various variants to the considered
inequality if the continuous functions f and u are assumed arbitrary (generally
they are supposed to be nonnegative [1, 3, 5]).

Using theory of Volterra integral equations (see [2, 5]), we can get the fol-
lowing known results. We denote R, = [0,00) and T = {(x,5) :0 < s <x < o0},

LEMMA 2.1. Let f and k be continuous functions on R, and T, respectively.
If k is a nonnegative function in T, then for a continuous function u in R,
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satisfying inequality (2.1), one of the estimates

u(x) sf(x)+f0 r(x,s)f(s)ds,

X

u(x) sf(x)[l +J

. r(x,s)ds],

follows, where

f(x) = sup f(s)

O=s=<x

and v is a resolvent kernel of the form

r(x,8) = > kmn(x,s),

n=1

where k) are iterated kernels constructed by the formulas

Ko (x,5) = j ki (6, E) ko) (8, 5)dE

= J k(n,l)(x,‘g”)k(l)(ﬁ,s)dﬁ, n= 2,3,...,

kay(x,s) = k(x,s).

If f is a nondecreasing function, then

u(x) < f(x)[l +J:r(x,s)ds].

LEMMA 2.2. If a is continuous in R ., then

1+ J: a(s)exp [LX (l(T)dT]dS = exp [JX a(s)ds].

0

PROOEF. Let

X

F(s) :exp[J

N

we notice that

X

F(x) =1, F(O)zexp[L

i—i = exp [Jja(-r)ah] % [an('r)d'r]

=F(s)[a(s)(-1)+a(x)0] = —a(s)F(s).

a(’r)d‘r],

a(T)dT] for arbitrary x € R,

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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Integrating equality (2.9) over the interval [0, x ], we obtain

) d—Fds = fJ‘xa(s)F(s)ds,

0 ds ’ (2.10)
F(x)-F(0) = —Jja(s)exp [an(T)dT]ds.
Hence,
1—-exp [J:a(T)dT] =- J:a(s) exp [an(T)dT]ds,
1+ J:a(s)exp [Jxa('r)d'r]ds = exp [J:a('r)d'r]. e
$ O

THEOREM 2.3. Let b, f, and u be continuous in R.. If b is nonnegative and
u satisfies the inequality

u) < f0+ [ b, (2.12)
then
we) < f00+ [ bisrexp| [ benar | fisias (2.13)
or
u(x) < Fx)exp :J:b(s)ds]. (2.14)
Moreover, if f is nondecreasing, then
w(x) < fx)exp :J:b(s)ds]. (2.15)
PROOF. It follows from Lemma 2.1 that if k(x,s) = b(s), we get (see [3, 5])
7(x,5) = b(s) exp 7be('r)d'r]. (2.16)
Using Lemma 2.2, the proof is finished. O

THEOREM 2.4. Let a, b be continuous and nonnegative functions in T. If a
continuous function u in R, satisfies the inequality

P
u(x) < f(x) +J a(x)b(s)u(s)ds, (2.17)
0
then for a continuous function f in R., one of the following estimates hold:

u(x) < f(x) +JO a(x)b(s)exp [J a(‘r)lo(‘r)d‘r]f(s)ds, (2.18)

s

ulx) < f(x) [1 + J: a(x)b(s)exp [JX (l(T)b(T)dT]dS]. (2.19)

s
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PROOF. Putting k(x,s) = a(x)b(s) =0 in (2.1), we obtain (see [3, 5])
r(x,s) =a(x)b(s)exp[J:a(T)b(T)dT]. (2.20)

Then by virtue of Lemma 2.1, we get estimates (2.18) or (2.19). O

PROPOSITION 2.5. If additionally f is nonnegative and a is nonincreasing,
then the Gronwall inequality

u(x) < f(x)exp [IO a(s)b(s)ds] (2.21)

follows. If f is nondecreasing, then

u(x) Sf(x)exp[J0 a(s)lo(s)ds]. (2.22)

PROOF. If, moreover, f is nonnegative and a is nonincreasing, then

1+ Jxa(x)lo(s) exp [Jxa('r)b('r)d'r]ds

0 s

< 1+J:a(s)b(s)exp[Jxa(T)b(T)dT]ds (2.23)

s

= exp [I: a(s)b(s)ds].

From here we can write estimates (2.18) and (2.19) in the forms (2.21) and
(2.22), respectively. O

THEOREM 2.6. Let the assumptions of Theorem 2.4 be satisfied. If a is posi-
tive, then inequality (2.17) implies

u(x) sa(x)(i:)(x)exp[Jja(s)b(s)ds]. (2.24)

If additionally f |a is nondecreasing, then inequality (2.22) holds.

PROOF. From (2.17), we have

ulx) _fx) (¥ u(s)
200 = 200 +L a(s)b(s) rds. (2.25)

By Theorem 2.3, we obtain (2.24) and the estimate

a(x) —

ux) < (g)(x)J:a(s)b(s)ds. (2.26)
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If f/a is nondecreasing, then

(5)(9() - <£>(x) 2.27)

and estimate (2.22) follow. O

CONCLUSION 2.7. Theorems 2.3, 2.4, and 2.6 are obtained for negative val-
ues of f and u too, but are not allowed in literature (see [1, 5]). In the two-
dimensional case, the presented theorems are true only for nonnegative values
of f (see[1, 2, 4]).

3. Applications of one-dimensional Volterra integral equations. The esti-
mates (2.22) and (2.24) can be used to study the boundedness of solutions for
boundary value problems of special types to hyperbolic equations.

3.1. Consider the following equation:
Uxy (X,¥) = (alx,y)ulx,»)), +g(x,»), 3.1)
with boundary value conditions
u(x,0) =a(x), u0,y) =), (3.2)
which is equivalent to the integral equation
wGey) = fite ) + [ ats,yuisyds, (3.3)

where

X X ry
filx,y) = (>((X)+B(y)—u(O,O)—J0 a(s,O)(x(s)ds+L) Jo g(s,t)dtds,

(3.4)
with continuous functions «, f and a, g in R, and R2, respectively.
To estimate a solution to (3.3), we get
X
w2 e |+ lasw usylas. G

Treating it as a one-dimensional integral inequality with respect to the vari-
able x and using Theorem 2.3 for every y € R., we obtain

[u(x,y)| sfl(x,y)exp[J |a(s,y)|ds], (3.6)
0
where

fHx,y) =0sup {1 A, |} foryeR,. (3.7)

COROLLARY 3.1. If f! is bounded in R% and |y |a(s,y)lds < c for every
vy € R,, then a solution of boundary value problem (3.1), (3.2) is bounded.
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3.2. Similarly, the equation
Uxy (X, ) = (alx,2)u(x, ), +9(x,¥), (3.8)
with
u(x,0) = a(x),  u(0,y) =B, (3.9)
is reduced to the following integral equation:
u(x,y) =fz(x,y)+J0ya(x,t)u(x,t)dt, (3.10)
where

y X ry
fo6,7) = @)+ B0 -u(0,0) - [T a,0pwar+ [ [ g nasar,
0 0 Jo
(3.11)

with continuous functions «, f and a, g in R, and R2, respectively. For esti-
mation of solution of (3.10), we obtain the following inequality:

y
lulx,»)| < | f20x,)] +JO la(x,t)| |ulx,t)]|dt. (3.12)

Treating it as a one-dimensional Volterra inequality with respect to the variable
v and using Theorem 2.3 for every x € R, we get the estimate

lu(x, )| sz(x,y)epo Ia(s,y)IdS], (3.13)
0
where
f2x,y) = sup {|f2(x,t)|} forx €R,. (3.14)
O<t=<y

If | f>| is nondecreasing with respect to v, then we have
F2e,p) = [ folx, ). (3.15)

COROLLARY 3.2. If f? is bounded in R2 and |y |a(x,t)|dt < c for every
x € R4, then a solution of boundary value problem (3.8), (3.9) is bounded.

4. New types of integral inequalities for one and two variables. Consider
the following integral inequalities:

X X ry
u(x,y) sg(x,y)+a(x,y)fo p(s,y)u(s,y)ds+J0 JO q(s,t)yu(s,t)dtds,
4.1)

y X ry
u(x,y) sg(x,y)+a(x,y)J0 p(x,t)u(x,t)dt+J0 JO q(s,t)yu(s,t)dtds,
(4.2)
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for x,y € R, with D = {(x,y) : x,» > 0} and the following assumptions:
(A;) the functions g, p, and g are nonnegative and continuous in D,
(A2) a is nonincreasing, nonnegative, and continuous in D.

THEOREM 4.1. Let assumptions (A,) and (Az) be satisfied. If a nonnegative
and continuous function u satisfies inequality (4.1), then the inequality of the
Gronwall type

— X ry
u(x,y) Sg(X,y)Ap(x,y)eXp(‘[0 JO q(s,t)Ap(s,t)dsdt) (4.3)
holds, where
gx,v)=supf{g(s,t):0<s<x,0<t <y}, (4.4)
Ap(x,y) =epr0 a(s,y)p(s,y)ds]. (4.5)
PROOF. Denote a function
X ¥
r(x,y) = IO Jo q(s,t)yu(s,t)dsdt, (4.6)

which, by assumptions, is nonnegative, nondecreasing, and continuous in D.
Then inequality (4.1) can be written in the form

u(x,y)<g(x,y)+r(x,y)+ax,y) JO p(s,y)u(s,y)ds. 4.7)

Treating (4.7) as a one-dimensional integral inequality for any fixed y € R,
and using a suitable inequality, (2.21), yield

ulx,y) < [gx,y)+r(x,»)]Ap(x,»). (4.8)

Hence, we get the following two-dimensional Volterra integral inequality:

u(s,t)
AP(S, t)

u(x,y)
Ap(x,y)

X (¥
sy(x,y)+J0 Jo q(s,t)Ap(s,t) dsdt. 4.9

Using classical Gronwall inequality (see [1, 2, 4]), we obtain

ulx,y) __ Ux JJ’ u(s,t) ]
Agp(x,y) <g(x,y)exp o o q(S’t)AP(S't)AP(S,t)det (4.10)
and next we obtain inequality (4.3). |

Similarly, the following theorem can be proved.

THEOREM 4.2. If the assumptions of Theorem 4.1 are fulfilled, then inequal-
ity (4.2) implies

X
u(x,y) Sy(x,y)PA(X,y)eXp(JO JO q(s,t)PA(s,t)dsdt), (4.11)
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where g is defined by (4.4) and

¥
Pi(x,y) :eXp[JO a(x,t)p(x,t)dt]. 4.12)

PROOF. Introducing a function 7, similarly as in the proof of Theorem 4.1,
inequality (4.2) can be replaced by

¥
ulx,y) <glx,v)+rix,y)+alx,y) Jo p(x,t)u(x,t)dt. (4.13)

Treating it as a one-dimensional integral inequality for any fixed x € R, and
using Proposition 2.5, we get

u(x,y) <[gx,y)+r(x,3)]Pa(x,y), (4.14)

which can be reduced to the following two-dimensional inequality of the Volt-
erra type

ulx,y) __ J"r’ u(s,t)

— == <g(x,y)+ s, t)Pa(s,t dsdt. 4.15

Pa(x,) g(x,y) o Jo q(s,t)Pa( )PA(s,t) ( )
By Gronwall inequality (see [1, 2, 4]), we obtain inequality (4.2). O

5. Applications. Particular cases of the considered inequalities will be ap-
plied to study the behaviour properties of the solutions for the boundary val-
ues problems to nonlinear differential equations of the hyperbolic type.

Consider the following differential equations of the hyperbolic type:

Uy (X, ) = f(, ) + (P, »)u(x,»)), +F[x,y,ulx,y)],  (5.1)
Uy (X,7) = f(x, ) + (P, 0)u(x, ) +Flx,y,ulx,»)], (5.2

with boundary conditions
u(x,0) =a(x),  u(0,y) =), (5.3)

under the assumptions
(Hy) f and p are continuous in D;
(Hp) F is continuous in © = {(x,y,u):x,y >0, |u| < o} and satisfying one
of the following conditions:

|F(x,y, ) -F(x,y,1)| <@(x,y)|a-u| in®, (5.4)
|F(x,y,u)| <@(x,y)lul in®, (5.5)

for nonnegative and continuous function @ in D;
(H3) the functions & and B are continuous in D.
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Boundary value problem (5.1), (5.3) is equivalent to the integral equation

X X ry
u(x,y) =g(x,y)+J0 p(s,y)u(s,y)d5+L JO F(s,t,u(s,t)]dsdt, (5.6)
where

By x oy
gx,y) = 0((X)+B(y)—u(0,0)—Jo p(s,o)a(s)ds+f0 L f(s,t)dsdt.
(5.7)

From (5.7), we get

X X ry
l[u(x,y)| < |g(X,y)|+JO [p(s,2) ]| |u(s,y) |ds+J0 JO |F[s,t,u(s,t)]|dsdt.
(5.8)

Using (5.5), we obtain

X X ry
[ux,y) | < lg(x,y)|+JO [p(s,»)| \u(s,y)|d5+J0 JO @ (s,t) |u(s,t)|dsdt.

(5.9)
Applying Theorem 4.1, we have
X ¥
lu(x,y)| < G(x,y)P(x,y)eprO JO cp(s,t)P(s,t)dsdt], (5.10)
where
P = a
(x,») exp(J0 lp(s,2) | S), (5.11)

G(x,y)=sup{|g(s,t)|:0<s<x,0<t =<y}

In this way the following theorem is proved.

THEOREM 5.1. Suppose (Hy), (H>)(5.5), and (H3) are true. If G and P are
bounded in D and

Jw quo(s,t)P(s,t)dsdt < 00, (5.12)
o Jo

then a solution of problem (5.1), (5.3) is bounded in D and estimated by (5.10).
Similarly, we can prove the following theorem.

THEOREM 5.2. Suppose assumptions (Hy), (H2)(5.5), and (Hs) are true. If H
and Q are bounded in D and

Jw qua(s,t)Q(s,t)dsdt < 00, (5.13)
0o Jo

then a solution of problems (5.2) and (5.3) are bounded in D and it satisfies the
inequality

X ry
|u(x,y)| sH(x,y)Q(x,y)eprO JO cp(s,t)Q(s,t)dsdt], (5.14)
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where

»
o) —exn ([ Ipeanlat),
H(x,y)=sup{|h(s,t)|:0<s<x,0<t<y}

(5.15)

with
X X ry
hix,y) = c><(x)+B(y)—u(0,0)—J0 p(O,t)B(t)dt+J0 JO f(s,t)dsdt.
(5.16)

PROOF. We notice that problem (5.1), (5.3) is equivalent to the integral equa-
tion

¥ X (¥

u(x,y) =h(x,y) +I p(x,t)u(x,t)dtJrJ J F(s,t,u(s,t)]dsdt. (5.17)
0 0 Jo

To estimate a solution of this equation, we get the following inequality:

¥ x (v
[ulx,»)| <|h(x,»)| +J |p(x,t) ] ulx,t) |dt+J J |F[s,t,u(s,t)]|dsdt,
0 0 Jo 5.18)

which by (5.5) reduces to the integral inequality of one and two variables
¥ X ry
[ulx,y)| < |h(x,y)|+J0 |p(x,t) ] |ulx,t) |dt+J0 JO @(s,t)|uls,t)|dsdt.
(5.19)

Then Theorem 5.1 yields (5.14). |

COROLLARY 5.3. Existence and uniqueness of value boundary conditions (5.3)
for differential equations (5.1) and (5.2) follow from assumptions (Hy ), (H»)(5.4),
and (Hz).

PROOF. Let u; and u, be solutions of the presented problems. Then from
(5.6) and (5.17), the following integral inequalities hold:

[ w1 (x,2) —u2(x,5) | SJO lp(s,»)| |ui(s,y) —uz(s,»)|ds
X ry
+J J @(s,t) | uy(s,t) —ua(s,t) |dsdt,
070 (5.20)

y
[y (6, ) — 2 (3, 7) | sjo 1, )| w1 (x,8) — w2 (x, 1) | dt

Xy
+J J @(s,t) | uy(s,t) —ua(s,t)|dsdt.
o Jo
Using Theorems 4.1 and 4.2, respectively, we get uniqueness

u(x,y) =ux(x,y). (5.21D)
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COROLLARY 5.4 (stability of solutions). Suppose that (H; ), (H>)(5.4), and (H3)
are true. Then solutions of value boundary problems (5.1), (5.3) and (5.2), (5.3)
are stable.

PROOF. Let g; and g, be continuous functions of the form (5.7) which are
depended on the boundary conditions (5.3) for solutions u; and u; to (5.6),
respectively, such that |g,(x,y) —g2(x,y)| < € in D for every € > 0. Then, we
get

X

[ui (x, ) —u2(x,»)| < £+Jo [p(s, )| |ui(s,») —uz(s,»)|ds

X [y
+J f @ (s, 0) | ur (s, t) —ua(s,t) |dsdt, (5.22)
0 Jo

Xy
[uy (x,y) —u2(x,y) | seexp[L JO (p(s,t)P(s,t)dsdt].

Similarly, for the functions h; and h; corresponding to different boundary
conditions of problems (5.2) and (5.3), the following estimate holds:

Xy
[uy (x,y) —u2(x,v)| < eexp [L Jo (p(s,t)P(s,t)dsdt]. (5.23)
O
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