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A homogeneous-mixing population model for HIV transmission, which incorpo-
rates an anti-HIV preventive vaccine, is studied qualitatively. The local and global
stability analysis of the associated equilibria of the model reveals that the model
can have multiple stable equilibria simultaneously. The epidemiological conse-
quence of this (bistability) phenomenon is that the disease may still persist in the
community even when the classical requirement of the basic reproductive number
of infection (�0) being less than unity is satisfied. It is shown that under specific
conditions, the community-wide eradication of HIV is feasible if �0 < �∗, where
�∗ is some threshold quantity less than unity. Furthermore, for the bistability case
(which occurs when �∗ < �0 < 1), it is shown that HIV eradication is dependent
on the initial sizes of the subpopulations of the model.

2000 Mathematics Subject Classification: 92B05, 37C75.

1. Introduction. It is well known that the basic reproductive number of in-

fection (�0) being less than unity provides a necessary condition for communi-

ty-wide eradication of an epidemic [1]. However, a number of studies have

shown that this condition is not sufficient [3, 4, 6, 7, 8, 11, 12, 13, 14]. These

studies have verified this fact by exploring the phenomenon of bistability,

where multiple stable equilibria coexist, in some epidemic models. These mod-

els, in general, undergo backward bifurcations which are sufficient for the ex-

istence of stable endemic equilibria when �0 < 1 (see [4, 6, 7, 8, 11, 13]). In

other words, these studies have shown that a stable endemic equilibrium can

coexist with a stable disease-free equilibrium. Thus, unlike in many classical

disease transmission models (see, for instance, [1, 2, 5, 15, 16]), reducing �0 to

values less than unity does not guarantee the community-wide eradication of

an epidemic. This fact has important public health implications in the control

or eradication of an epidemic.

The phenomenon of bistability has been observed in various types of epi-

demic models (see [13] for a general reference). For instance, Hadeler and

Castillo-Chavez [10] studied the impact of the core group (the group of in-

dividuals who are sexually very active) on the existence of multiple infective

steady-states in an epidemic model for some curable STDs. Feng et al. [6] con-

sidered an SEIT model for the transmission dynamics of TB with reinfection.
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They proved that a backward bifurcation occurs at �0 = 1 and that two en-

demic equilibria of the model coexist as long as �c < �0 < 1, where �c is

a positive constant threshold. Kribs-Zaleta and Velasco-Hernández [14] pre-

sented an SVI vaccination model which exhibits a backward bifurcation un-

der certain conditions. Gumel and Moghadas [9] proposed an SVIS vaccination

model for the transmission dynamics of some curable diseases. Their study

shows that although the model has no endemic equilibria under some con-

ditions, changing the model parameters causes multiple endemic equilibria

to occur when �0 < 1. Greenhalgh et al. [8] examined the impact of condom

use on the dynamics of a multigroup SIR-type model of HIV/AIDS transmis-

sion amongst a male homosexual population. They showed, using numerical

simulations, that their model has two endemic equilibria even when �0 < 1.

To the authors’ knowledge, no rigorous qualitative study has been carried

out to explore the effect of bistability on the transmission dynamics of HIV in-

fection. Consequently, this study focuses on investigating the role of bistability

in the spread and control of HIV within a homogeneous-mixing population. To

achieve this objective, we consider a deterministic model of HIV transmission

that incorporates anti-HIV preventive vaccine. Although there are numerous

modes of HIV transmission (such as mother-to-child, needle-sharing by IV drug

users, blood transfusion, etc.), our study focuses on HIV transmission via sex-

ual means.

Our study leads to the determination of a certain threshold quantity �∗
such that if �0 < �∗, then HIV will be eradicated from the community. This

threshold quantity (�∗) gives a subthreshold domain of bistable equilibria of

the model �∗ <�0 < 1, where the model has a stable endemic equilibrium co-

existing with a stable disease-free equilibrium. Thus, the use of anti-HIV con-

trol measures that can reduce �0 below this threshold quantity (which leads

to community-wide eradication of HIV) is of enormous public health impor-

tance.

The other feature of this study is the numerical estimation of the basins

of attraction of the associated bistable equilibria of the model. These basins

are separated by a stable manifold of an endemic equilibrium. Such estimate

enables us to predict, for the bistability case, the persistence or eradication

of HIV based on the initial sizes of the subpopulations of the model. Thus,

controlling the initial sizes of the subpopulations can lead to the elimination

of HIV infection in place of persistence.

This paper is organized as follows. The model is formulated in Section 2. In

Section 3, the existence of the model equilibria is established under some spe-

cific conditions. Furthermore, by normalizing the model, the local and global

stability of the associated equilibria are investigated. It is also shown that the

model has no periodic orbits, homoclinic orbits, or polygons. The role of �0

on disease eradication are detailed in Section 4. The threshold quantity �∗ is

also determined. Numerical simulations are reported in Section 5.
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2. Model formulation. The model monitors the temporal dynamics of three

subpopulations, namely, the susceptible population (S), the vaccinated popu-

lation (V ), and the population of HIV-infected individuals (I). The total pop-

ulation is N = S +V + I. It should be mentioned that since the model under

consideration monitors populations, it is henceforth assumed that all the as-

sociated model variables and parameters are nonnegative.

2.1. Susceptible population (S). This population is generated following the

recruitment of individuals at a rate of Π per unit time. Recruitment is the in-

flow of people (either by birth or immigration) into a community. Since this

study considers only sexual mode of HIV transmission, recruitment is defined

in terms of the number of sexually active individuals admitted into the com-

munity per unit time. Furthermore, our model categorizes all individuals re-

cruited into the community as susceptible. The population of susceptible in-

dividuals diminishes, following the acquisition of HIV infection which arises

following contacts between a susceptible (S) and the infectious fraction (I/N)

with a transmission probability β1. The parameter c represents the number of

contact partners per unit time. This population is further diminished by the

administration of anti-HIV preventive vaccine at a rate ξ and by natural death

at a rate µ. This gives

dS
dt

=Π− cβ1SI
N

−ξS−µS. (2.1)

2.2. Vaccinated population (V ). This population is generated by the vac-

cination of susceptibles at a rate ξ. It is diminished by HIV infection with

a transmission probability β2 and natural death at a rate µ. It is assumed

that the anti-HIV preventive vaccine reduces (but does not eliminate) the risk

of HIV infection. Thus β2 ≤ β1. This can be summarized in the following

equation:

dV
dt

= ξS− cβ2VI
N

−µV. (2.2)

2.3. HIV-infected population (I). This population is generated following the

HIV infection of susceptible and vaccinated individuals. It diminishes by nat-

ural death at a rate µ and by progression to full-blown AIDS at a rate τ . It is

assumed that individuals with full-blown AIDS do not contribute to the spread

of HIV infection. This gives

dI
dt
= cβ1SI

N
+ cβ2VI

N
−(µ+τ)I. (2.3)
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3. Stability analysis

3.1. Disease-free equilibrium. In the absence of HIV infection (i.e., I = 0),

the model, given by (2.1), (2.2), and (2.3), has a unique disease-free equilibrium

E0 =
(

Π
µ+ξ ,

ξΠ
µ(µ+ξ) ,0

)
. (3.1)

To establish the local stability of E0, the associated Jacobian of the model is

evaluated at E0. This gives




−(µ+ξ) 0 −cβ1µ
µ+ξ

ξ −µ − cβ2

µ+ξ

0 0
cβ1µ
µ+ξ +

cβ2ξ
µ+ξ −(µ+τ)



, (3.2)

with eigenvalues

λ1 =−(µ+ξ), λ2 =−µ, λ3 = c
(
β1µ+β2ξ

)
µ+ξ −(µ+τ). (3.3)

Since all the model parameters are assumed to be nonnegative, it follows that

λ1 and λ2 are both negative. Thus, the stability of E0 solely depends on the

sign of λ3. By defining

�0 = c
(
β1µ+β2ξ

)
(µ+ξ)(µ+τ) , (3.4)

it can be seen that λ3 < 0 if and only if �0 < 1. Hence, we have established the

following lemma.

Lemma 3.1. The disease-free equilibrium (E0) is locally asymptotically stable

if �0 < 1 and unstable if �0 > 1.

The quantity �0, defined in (3.4), is the basic reproductive number of infec-

tion [1]. Lemma 3.1 shows that community-wide eradication of HIV is feasible

provided that the initial sizes of the model subpopulations, namely, S, V , and

I, are in the basin of attraction of E0. However, if E0 is globally asymptotically

stable (see [2, 5, 15, 16]), then HIV will be eradicated from the community ir-

respective of the initial sizes of the subpopulations. The global stability of E0

will be discussed in Section 3.3.

3.2. Endemic equilibrium

3.2.1. Existence of endemic equilibria. The endemic equilibria of the model

(if they exist) correspond to the case where HIV infection persists (I ≠ 0). Since
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these equilibria cannot be clearly expressed in a closed form, we will investi-

gate their existence under some specific conditions. To do this, we first define

G(t)= cβ1I(t)
N(t)

(3.5)

to be the force of infection (the rate of acquisition of new infected individuals

per year [17]). It then follows that, at a steady state, (2.1) and (2.2) can be

rewritten as

S∗ = Π
µ+ξ+G∗ , V∗ = ξΠ(

µ+ξ+G∗)(µ+(β2/β1
)
G∗
) . (3.6)

Furthermore, using (3.5) in (2.3) gives (at equilibrium)

I∗ =
(

1
µ+τ

)(
ΠG∗

µ+ξ+G∗ +
ξβ2ΠG∗

β1
(
µ+ξ+G∗)(µ+(β2/β1

)
G∗
)
)
. (3.7)

Substituting I∗ from (3.7) into (3.5) and noting N∗ = S∗+V∗+I∗ gives

G∗ = c
(
µβ1+β2G∗+ξβ2

)
G∗

(µ+τ)(µ+(β2/β1
)
G∗
)+ξ(µ+τ)+(µ+(β2/β1

)
G∗+ξ(β2/β1

))
G∗
.

(3.8)

By solving (3.8), the positive (endemic) equilibria of the model can be ob-

tained using the expressions in (3.5) and (3.6). Clearly, G∗ = 0 is a fixed point

of (3.8). Furthermore, this fixed point gives the disease-free equilibrium E0 of

the model (since (3.6) and (3.7) reduce to S∗ = Π/(µ+ξ), V∗ = ξΠ/µ(µ+ξ),
and I∗ = 0 when G∗ = 0).

Suppose now that G∗ ≠ 0. In this case, (3.8) becomes

β2
(
G∗
)2+[µβ1+ξβ2+β2(µ+τ+d)−cβ1β2

]
G∗

+β1
[
(µ+ξ)(µ+τ)−c(µβ1+ξβ2

)]= 0.
(3.9)

The endemic equilibria of the model can then be obtained by substituting the

solutions of (3.9) into (3.6) and (3.7). In order to discuss the possible solutions

of (3.9), we define

A= (µ+ξ)(µ+τ)−c(µβ1+ξβ2
)
, (3.10)

and consider the following cases.

Case 1 (A< 0). In this case, (3.9) has real roots with opposite signs. Let G∗+
denote the positive real root of (3.9). Thus, a unique positive endemic equilib-

rium of the model can then be obtained by substitutingG∗+ into the expressions

of (3.6) and (3.7).
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Case 2 (A= 0). This assumption reduces (3.9) to

[
β2G∗+µβ1+ξβ2+β2(µ+τ)−cβ1β2

]
G∗ = 0. (3.11)

It is clear, in this case, that the root G∗ = 0 of (3.11) gives the disease-free

equilibrium E0. Let

B = µβ1+ξβ2+β2(µ+τ)−cβ1β2. (3.12)

If B < 0, thenG∗ = −B/β2 is the unique positive root of (3.9) which corresponds

to a unique endemic equilibrium of the model (obtained by substituting G∗

into the expressions of (3.6) and (3.7)). If B ≥ 0, then (3.11) has no positive

root. Hence, the model has no endemic equilibrium if B ≥ 0.

Case 3 (A> 0). Here, we consider the following three possibilities.

(a) Suppose B2−4β1β2A> 0.

(i) If B > 0, then the roots of (3.9) are both real and negative. Hence, the

model has no endemic equilibrium.

(ii) If B < 0, then (3.9) has two positive real roots. Thus, the model has two

endemic equilibrium.

(iii) If B = 0, then (3.9) has two complex roots and, in this case, no endemic

equilibrium of the model exists.

(b) Suppose B2−4β1β2A< 0. Under this assumption, (3.9) has no real roots.

Thus, the model has no endemic equilibrium.

(c) Suppose B2−4β1β2A = 0. This implies that (3.9) has a unique positive

real root given by G∗ = −B/2β2 if B < 0 and no positive root if B ≥ 0. Thus, for

B2−4β1β2A= 0, the model has a unique endemic equilibrium if B < 0 and no

endemic equilibrium if B ≥ 0.

Noting that A= (µ+ξ)(µ+τ)(1−�0), the above results can be summarized

in Theorem 3.2.

Theorem 3.2. (i) If �0 > 1, then the model has a unique endemic equilib-

rium.

(ii) If �0 = 1, then the model has a unique endemic equilibrium if B < 0 and

no endemic equilibrium if B ≥ 0.

(iii) If �0 < 1 and B2−4β1β2A> 0, then the model has two endemic equilibria

if B < 0 and no endemic equilibrium if B ≥ 0.

(iv) If �0 < 1 and B2−4β1β2A< 0, then no endemic equilibrium of the model

exists.

(v) If �0 < 1 and B2 − 4β1β2A = 0, then the model has a unique endemic

equilibrium if B < 0 and no endemic equilibrium if B ≥ 0.

3.2.2. Nonexistence of periodic orbits. Using the results of the existence of

the endemic equilibria, we will discuss their stability based on some qualitative

properties of the model. To do this, the model represented by (2.1), (2.2), and
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(2.3) is normalized using the following change of variables and parameters:

S1 = µ
Π
S, V1 = µ

Π
V, I1 = µ

Π
I, (3.13)

t̃ = µt, β̃1 = cβ1

µ
, β̃2 = cβ2

µ
, ξ̃ = ξ

µ
, τ̃ = τ

µ
. (3.14)

Thus, the normalized model has the form

dS1

dt̃
= 1− β̃1S1I1

N1
− ξ̃S1−S1, (3.15)

dV1

dt̃
= ξ̃S1− β̃2V1I1

N1
−V1, (3.16)

dI1
dt̃

= β̃1S1I1
N1

+ β̃2V1I1
N1

−(1+ τ̃)I1, (3.17)

where N1 = S1 + V1 + I1. Clearly, this normalized model has an equilibrium

solution e0 = (1/(1+ ξ̃), ξ̃/(1+ ξ̃),0) which corresponds to the disease-free

equilibrium E0 of the original model. It can be seen, by adding (3.15), (3.16),

and (3.17), that

dN1

dt̃
= 1−N1− τ̃I1. (3.18)

Consequently, in the absence of HIV infection (I1 = 0), the total population size

of the normalized model is N1 = 1 (as t→∞). Since the spread of HIV infection

within the community is expected to reduceN1 (due to disease-induced death),

we study the normalized model in the following feasible region:

�= {(S1,V1, I1
)

: S1,V1, I1 ≥ 0, S1+V1+I1 ≤ 1
}
. (3.19)

It follows from (3.18) that if N1 > 1, then dN1/dt̃ < 0. Hence, � is a positively

invariant region for the normalized model. Furthermore, since dN1/dt̃ < 0

when S1+V1+(1+ τ̃)I1 > 1 and dN1/dt̃ > 0 when S1+V1+(1+ τ̃)I1 < 1, then

�∗ = {(S1,V1, I1
)∈� : S1+V1+(1+ τ̃)I1 = 1

}
(3.20)

is also a positively invariant region for the normalized model. This implies

that every solution of (3.15), (3.16), and (3.17) with an initial condition in �

tends toward �∗ as t →∞ and every solution with an initial condition in �∗

remains there for t̃ > 0. Therefore, the ω-limit sets of (3.15), (3.16), and (3.17)

are contained in �∗.

Here we will show, using [2, Lemma 3.1], the nonexistence of certain types

of solutions such as periodic orbits, homoclinic orbits, or polygons associated

with the normalized model.

Theorem 3.3. The normalized model (3.15), (3.16), and (3.17) has no peri-

odic orbits, homoclinic orbits, or polygons in the interior of �∗.
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Proof. Let f1, f2, and f3 denote the right-hand sides of (3.15), (3.16), and

(3.17), respectively. The relation S1+V1+(1+τ̃)I1=1 is used to obtain fj(V1, I1),
fk(S1, I1), and fl(S1,V1) for j = 2,3, k= 1,3, and l= 1,2. Define G= g1+g2+g3

as a vector field with

g1
(
V1, I1

)=
[

0,
−f3

(
V1, I1

)
V1I1

,
f2
(
V1, I1

)
V1I1

]
,

g2
(
S1, I1

)=
[
f3
(
S1, I1

)
S1I1

,0,
−f1

(
S1, I1

)
S1I1

]
,

g3
(
S1,V1

)=
[
−f2

(
S1,V1

)
S1V1

,
f1
(
S1,V1

)
S1V1

,0
]
.

(3.21)

Clearly, G·F= 0 in the interior of �∗, where F= (f1,f2,f3). Using the normal

vector n= (1,1,1+τ̃) to �∗, it can be shown, after some tedious manipulations,

that

(CurlG)·(1,1,1+ τ̃)=−
(

1−S1

S2
1V1I1

+ ξ̃
V 2

1 I1

)
< 0. (3.22)

Thus, it follows from [2, Lemma 3.1] that the normalized model (3.15), (3.16),

and (3.17) has no periodic orbits, homoclinic orbits, or polygons.

As an immediate consequence of the above theorem, it can be seen that

since �∗ is a bounded-invariant set, it follows from the Poincaré-Bendixson

theorem in two-dimensional simplex �∗ that the ω-limit set of every solution

of the normalized model is an equilibrium point (see also [18]).

3.3. Stability analysis of the normalized model. It should be mentioned

that since the infected population I(t) is changing in time (except at equilibria),

(3.18) shows that the size of the total population is not constant. Thus, the

normalized model (3.15), (3.16), and (3.17) (and, consequently, the original

model) cannot be reduced to a two-dimensional model (by eliminating one of

the model variables). Here, we will discuss the stability of the equilibria of

the normalized model in �∗ by taking advantage of Theorems 3.2 and 3.3 as

follows.

First of all, note that the expressions A and B (defined in (3.10) and (3.12))

can be rewritten in terms of the new parameters defined in (3.14). This gives

Ã= [(1+ ξ̃)(1+ τ̃)−(β̃1+ ξ̃β̃2
)]
µ2,

B̃ = [β̃1+ ξ̃β̃2+ β̃2(1+ τ̃)− β̃1β̃2
]µ2

c
.

(3.23)

Thus, we have the following result on the existence of the equilibria of the

normalized model.

Corollary 3.4. (i) If Ã < 0, then the normalized model has a unique en-

demic equilibrium in the interior of �∗.
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(ii) If Ã= 0, then the normalized model has a unique endemic equilibrium if

B̃ < 0 and no endemic equilibrium if B̃ ≥ 0 in the interior of �∗.

(iii) If Ã > 0 and B̃2−4(µ2/c2)β̃1β̃2Ã > 0, then the normalized model has two

endemic equilibria if B̃ < 0 and no endemic equilibrium if B̃ ≥ 0 in the interior

of �∗.

(iv) If Ã > 0 and B̃2−4(µ2/c2)β̃1β̃2Ã < 0, then no endemic equilibrium of the

normalized model exists in the interior of �∗.

(v) If Ã > 0 and B̃2−4(µ2/c2)β̃1β̃2Ã = 0, then the normalized model has a

unique endemic equilibrium if B̃ < 0 and no endemic equilibrium if B̃ ≥ 0 in the

interior of �∗.

It should be noted that, for the normalized model, the basic reproductive

number �0 reduces to

�̃0 = β̃1+ ξ̃β̃2(
1+ ξ̃)(1+ τ̃) . (3.24)

It is easy to check that the disease-free equilibrium of the normalized model e0

is locally asymptotically stable if �̃0 < 1 and unstable if �̃0 > 1. Furthermore,

we have the following result.

Theorem 3.5. The equilibrium e0 of the normalized model is globally asymp-

totically stable if one of the following statements holds:

(i) �̃0 ≤ 1 and B̃ ≥ 0;

(ii) �̃0 < 1 and B̃2−4(µ2/c2)β̃1β̃2Ã < 0.

Proof. We first note that �̃0 ≤ 1 if and only if Ã ≥ 0. It follows from

Corollary 3.4 that, in either of cases (i) and (ii), the normalized model has no en-

demic equilibrium in the interior of �∗. Thus, e0 is the only equilibrium point

of the normalized model in �∗. Since �∗ is a bounded-positively invariant set

and the model has no periodic orbit in the interior of �∗ (by Theorem 3.3),

the Poincaré-Bendixson theorem implies that the ω-limit set of every solution

must be the equilibrium point e0. Consequently, e0 is globally asymptotically

stable.

For the stability of the unique endemic equilibrium of the normalized model,

we offer the following theorem.

Theorem 3.6. The normalized model has a unique endemic equilibrium in

�∗ which is globally asymptotically stable if one of the following statements

holds: (i) �̃0 > 1; (ii) �̃0 = 1 and B̃ < 0.

Proof. It follows from Corollary 3.4 that the normalized model has a

unique endemic equilibrium in the interior of �∗ if one of the above cases ((i) or

(ii)) holds. Since �̃0 ≥ 1, the equilibrium e0 is unstable with a two-dimensional

stable manifold and a one-dimensional unstable manifold. The stable man-

ifold of e0 is located in the (S1,V1)-plane. Thus, e0 only attracts the region
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�0 = {(S1,V1,0) : S1 +V1 = 1} ⊂ �∗. Since the model has no periodic orbits

in the interior of �∗, it follows from Theorem 3.3 and the Poincaré-Bendixson

theorem that the ω-limit set of every solution in the interior of �∗ must be

the unique endemic equilibrium. Thus, this endemic equilibrium is globally

asymptotically stable in �∗ \�0.

Remark 3.7. It is clear that e0 is locally asymptotically stable if Ã > 0 (�̃0 <
1). The authors have tried to establish the stability of the endemic equilibrium

whenever Ã > 0 and B̃2−4(µ2/c2)β̃1β̃2Ã= 0 (see Corollary 3.4(v)) but without

any success.

We now continue our analysis for the case where the normalized model has

two endemic equilibria (namely, e1 and e2) where the following three conditions

are satisfied (see Corollary 3.4(iii)):

Ã > 0, B̃2−4
µ2

c2
β̃1β̃2Ã > 0, B̃ < 0. (3.25)

Here, we will show that these two endemic equilibria cannot be repellers

(in �∗) simultaneously. In other words, it is shown that one of the endemic

equilibria must have a stable manifold in �∗.

It is clear that since Ã > 0 (�̃0 < 1), the equilibrium e0 is locally asymptot-

ically stable. Let ∆ be the basin of attraction of e0 and Ω = ∆∩�∗. Since e0

attracts �0, it follows that �0 ⊂Ω. Furthermore, since ∆ is an open set, it can

be seen that ∂Ω∩ int(�∗)≠∅, where ∂Ω is the boundary of Ω and int(�∗) is

�∗ \�0. Suppose X0 = (S0
1 ,V

0
1 , I

0
1) is an arbitrary point in ∂Ω∩ int(�∗), which

is not in the basin attraction of e0. Let Φ(t,X0) be a solution of the normal-

ized model with Φ(0,X0)=X0. Noting that e1 and e2 are located in the interior

of �∗, we can pick X0 such that X0 ∉ {e1,e2}. Since X0 is not in the basin of

attraction of e0, it follows that Φ(t,X0) cannot converge to e0. Since X0 ∈ �∗

and �∗ is positively invariant, it follows that the ω-limit set of the solution

Φ(t,X0) must be in �∗ \Ω. Furthermore, since the model has no periodic or-

bits in �∗ (Theorem 3.3), the solution Φ(t,X0)must converge to one of the two

endemic equilibria. This implies that these equilibria cannot be both repellers

in �∗ simultaneously. Thus, although e0 is locally asymptotically stable (since

�̃0 < 1), this equilibrium point is not globally asymptotically stable. Thus, we

have established the following theorem.

Theorem 3.8. If Ã > 0, B̃2−4(µ2/c2)β̃1β̃2Ã > 0, and B̃ < 0, then the endemic

equilibria of the normalized model cannot be repellers in �∗ simultaneously.

Furthermore, the equilibrium e0 is not globally asymptotically stable.

The above result shows that one of the endemic equilibria has at least a one-

dimensional stable manifold. Without loss of generality, suppose this equilib-

rium is e1. Further, suppose e1 is in the interior of �∗ \ ∂Ω∩ int(�∗). Then,

since the basin of attraction of e0 is an open set (which does not include
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∂Ω∩ int(�∗)), discontinuity occurs in the direction field of the model in ∂Ω∩
int(�∗). This is because solutions with initiating points very close to X0, but

in the basin of attraction of e0, approach e0. Consequently, e1 must be located

on ∂Ω∩ int(�∗) in the interior of �∗. Therefore, the stable manifold of e1 sep-

arates �∗ into two basins of attraction. Furthermore, the unstable manifold

of e1 in the interior of �∗ \∂Ω∩ int(�∗) approaches e2. This shows that the

endemic equilibrium e2 is stable. In summary, in this case, the model has two

stable equilibria, namely, e0 and e2, and a saddle endemic equilibrium e1 (where

the stable manifold of e1 separates the basins of attraction of e0 and e2).

4. The role of �̃0 on disease eradication. Since, for this model, the require-

ment �̃0 < 1 does not guarantee community-wide eradication of HIV, it is of

public health interest to specifically determine the range of �̃0 that can ensure

the global stability of e0 (and, consequently, the community-wide eradication

of HIV). In this section, the role of �̃0 in the global dynamics of e0 is investi-

gated. Consider �̃0 as a function of ξ̃ and let

R̃1 = β̃1

1+ τ̃ , R̃2 = β̃2

1+ τ̃ . (4.1)

Notice that since R̃1 ≥ R̃2 if R̃2 ≥ 1, then

�̃0
(
ξ̃
)= R̃2+ R̃1− R̃2

1+ ξ̃ ≥ 1+ R̃1− R̃2

1+ ξ̃ ≥ 1. (4.2)

In this case, no amount of vaccination is sufficient to bring �̃0 below 1 (which

is a necessary condition for disease eradication). Therefore, from now on, we

consider the case R̃2 < 1. Suppose R̃1 > 1. Differentiating �̃0(ξ̃) gives

�̃′
0

(
ξ̃
)= β̃2− β̃1(

1+ ξ̃)2(1+ τ̃)
. (4.3)

Since β1 ≥ β2 in the original model, it follows that β̃1 ≥ β̃2 in the normalized

model. Thus, �̃0(ξ̃) is a decreasing function of ξ̃. It is easy to see that there is a

unique critical vaccination rate ξ̃c = (1−R̃1)/(R̃2−1) such that �̃0(ξ̃)≤ 1 if ξ̃ ≥
ξ̃c (with equality at ξ̃ = ξ̃c ). We also note that �̃0(0) = R̃1 and limξ̃→∞ �̃0(ξ̃) =
R2. This implies that R̃2 ≤ �̃0 ≤ R̃1.

We now determine the range of �̃0 that guarantees disease eradication using

Theorem 3.6. Note that B̃ ≥ 0 if and only if

ξ̃ ≥ β̃2
(
R̃1−1

)− R̃1

R̃2
= ξ̃0. (4.4)
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It follows, using Theorem 3.6 (i), that e0 is globally asymptotically stable when-

ever

ξ̃ ≥max
{
ξ̃c , ξ̃0

}= ξ̃∗. (4.5)

Thus, HIV will be eradicated from the community whenever R̃2 ≤ �̃0 ≤ �̃0(ξ̃∗).
We will extend our discussion by considering the quantity B̃2 − 4(µ2/

c2)β̃1β̃2Ã. Using the expressions for Ã and B̃ (defined in (3.23)) gives

B̃2−4
µ2

c2
β̃1β̃2Ã=

{(
β̃2ξ̃

)2+2β̃2
[
β̃1+

(
β̃2−2β̃1

)
(1+ τ̃)+ β̃1β̃2

]
ξ̃

+[β̃1+ β̃2
(
1+ τ̃+ d̃)− β̃1β̃2

]2

−4β̃1β̃2
[
(1+ τ̃)− β̃1

]}µ4

c2

≡ P(ξ̃).

(4.6)

Since R̃1 > 1, it follows that

[
β̃1+ β̃2(1+ τ̃)− β̃1β̃2

]2−4β̃1β̃2
[
(1+ τ̃)− β̃1

]
> 0. (4.7)

Thus, the quadratic P(ξ̃) either has no real root or has two real roots. If

P(ξ̃) has real roots, then they must have the same sign (both negative or both

positive). Notice that P(0) > 0 and limξ̃→∞P(ξ̃) =∞. This implies that if P(ξ̃)
has no real roots, then P(ξ̃) > 0 for ξ̃ > 0. Similarly, if P(ξ̃) has two negative

real roots, then P(ξ̃) > 0 for ξ̃ > 0. Therefore, in order to establish the global

stability of e0 when B̃2−4(µ2/c2)β̃1β̃2Ã ≥ 0, we require that �̃0 < 1 and B̃ ≥
0. Thus, a similar argument to that of Theorem 3.6 (i) now shows that the

conditions in Theorem 3.6 (ii) are always satisfied whenever ξ̃ > ξ̃∗. This also

implies that HIV will be eradicated from the community whenever R̃2 ≤ �̃0 ≤
�̃0(ξ̃∗).

Finally, suppose P(ξ̃) has two positive real roots, namely, ξ̃1 and ξ̃2 with

ξ̃1 < ξ̃2. In this case, B̃2−4(µ2/c2)β̃1β̃2Ã > 0 for ξ̃ ∈ [0, ξ̃1)∪(ξ̃2,∞) and B̃2−
4(µ2/c2)β̃1β̃2Ã≤ 0 for ξ̃ ∈ [ξ̃1, ξ̃2]. However, as long as ξ̃ > ξ̃∗, the conditions

(i) and (ii) of Theorem 3.5 are satisfied. It should be noted that if R̃1 < 1, then

�̃0 = R̃1+ ξ̃R̃2

1+ ξ̃ ≤ R̃1 < 1, (4.8)

for any amount of vaccination (even ξ̃ = 0). It is easy to see that, in this case, the

above discussion is valid. Hence, we have established the following theorem.

Theorem 4.1. If R̃2 < 1, then the equilibrium e0 is globally asymptotically

stable if ξ̃ > ξ̃∗. If R̃2 ≥ 1, then the unique endemic equilibrium is globally

asymptotically stable and it attracts �∗ \�0.

Remark 4.2. It is easy to see that the same result can be obtained when

P(ξ̃) has a real root of multiplicity 2 (ξ̃1 = ξ̃2).
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In summary, the epidemiological implication of the above theorem is that

HIV will be eradicated from the community whenever �̃0 ≤ �̃0(ξ̃∗) = �̃∗. It

should be mentioned that ξ̃∗ (and consequently �̃∗) exists as long as R̃2 < 1.

In other words, if R̃2 > 1, no level of vaccination contributes to HIV eradica-

tion. It is clear that �̃∗ ≤ 1 (when R̃2 < 1) since ξ̃∗ ≥ ξ̃c . If �̃∗ < 1, then two

endemic equilibria of the model exist as long as �̃∗ < �̃0 < 1. In this case,

HIV eradication depends on the initial sizes of the three subpopulations of the

model (in this scenario, HIV can only be eradicated if the initial sizes of the

subpopulations are in the basin of attraction of e0).

Remark 4.3. The theoretical results of this paper confirm the possibility of

bistability for some values of the vaccination parameter ξ under some specific

conditions. Here, we seek to explore the reason for the phenomenon of bista-

bility in our model. To do so, we consider the case where ξ = 0. In this case, the

model reduces to the following two-dimensional vaccination-free (VF) model:

dS
dt

=Π− cβ1SI
N

−µS, dI
dt
= cβ1SI

N
−(µ+τ)I. (4.9)

Theoretical analysis of the above VF model reveals the following results.

(i) The VF model has a disease-free equilibrium x0 = (Π/µ,0) which is lo-

cally asymptotically stable if r0 < 1, where

r0 = cβ1

µ+τ . (4.10)

(ii) The model has a unique stable endemic equilibrium given by

x1 =
(

Π
cβ1−τ ,

Π
(
r0−1

)
cβ1−τ

)
(4.11)

whenever r0 > 1.

(iv) The positive quadrant Γ = {(S,I) : S ≥ 0, I ≥ 0} is a positively invariant

region for the VF model.

(v) Using the Dulac function D = 1/I, it can be seen that the VF model has

no periodic orbits in Γ .
(vi) The disease-free equilibrium x0 is globally asymptotically stable if r0 ≤

1 and unstable if r0 > 1.

(vii) The endemic equilibrium x1 is globally asymptotically stable if r0 > 1.

Therefore, in the absence of vaccination (ξ = 0), the above results show that

if r0 < 1, HIV will be eradicated from the community. Thus, the VF model can-

not exhibit bistability since no endemic equilibrium exists for r0 < 1. We also

note that in the presence of a perfect vaccine which offers 100% protection

(i.e., β2 = 0), the quadratic equation (3.9) reduces to a linear equation with

at most one positive solution (corresponding to the unique endemic equilib-

rium). This implies that, if the vaccine is 100% effective, the model (2.1), (2.2),
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and (2.3) cannot exhibit multiple endemic equilibria. These results strongly

suggest that the low efficacy of vaccines (leading to β2 > 0) is the reason for

the bistability phenomenon in our three-dimensional-model (2.1), (2.2), and

(2.3). The public health implication of this is that the use of vaccines with

low efficacy will not guarantee community-wide eradication of HIV even when

�0 < 1.

5. Numerical simulations. In order to illustrate the theoretical results of

the paper, the model was simulated under various scenarios (using Matlab

software). In particular, we will monitor the effect of varying vaccination rates

ξ on the dynamical behaviour of the model. For simulation purposes, the fol-

lowing set of parameter values were used: Π = 50000 per year, β1 = 0.06 per

contact, β2 = 0.006 per contact, µ = 0.02 per year, τ = 0.125 per year and

c = 10 contact per year. The values of µ = 0.02 and τ = 0.125 represent a life

expectancy of 50 years and a period of (approximately) 8 years, respectively, to

progress to full-blown AIDS. With this choice of parameter values, the critical

vaccination rate is ξc � 0.1025 and R2 = 0.41 < 1. Simulations were then run

with varying values of ξ (the vaccination rate) as follows.

5.1. Experiment 1: disease persistence. In this experiment, we chose ξ =
0.09 < ξc and initial condition X0 ≡ (S(0),V(0),I(0)) = (1000000,50000,
1000). With this value of ξ, the basic reproductive number is �0 = 1.07 > 1.

Simulation results obtained, tabulated in Table 5.1, show that the model has

two equilibria: the disease-free equilibrium and a unique endemic equilibrium.

The profile of I(t), depicted in Figure 5.1, reveals that the solution with ini-

tial condition X0 converges to the unique endemic equilibrium. This implies

that the rate of vaccination (ξ = 0.09) is insufficient to eradicate HIV. Conse-

quently, the disease persists within the community. These simulation results

are consistent with the theoretical results given in Theorems 3.5 and 3.8.

5.2. Experiment 2: bistability. The goal of this experiment is to illustrate

the coexistence of bistable equilibria of the model for some values of ξ. Here,

we chose ξ = 0.105 sufficiently small, but greater than ξc = 0.1025. In this case,

�0 = 0.989 < 1. Using an initial condition X1 = (100000,5000,40), the profile

of I(t), depicted in Figure 5.2, shows that the solution with initial condition

X1 approaches the disease-free equilibrium e0. On the other hand, the solution

with initial condition X2 = (100000,5000,100) approaches the stable endemic

equilibrium e2 (see Figure 5.2 and Table 5.1). These simulations reveal that the

model exhibits bistability for this choice of ξ. In this case, community-wide

eradication of HIV depends on the initial sizes of the subpopulations of the

model.

It is easy to see, in this case, that ξ0 
 0.1086 and consequently, ξ∗ = ξ0.

Therefore, as predicted in Section 4, the model has bistable equilibria whenever

ξc < ξ < ξ∗. It is worth mentioning that �0(ξ∗)
 0.973<�0 = 0.989< 1.
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Figure 5.1. Profile of infected individuals (I) for ξ = 0.09 with initial
condition X0.
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Figure 5.2. Profile of infected individuals (I) for ξ = 0.105 with two
initial conditions X1 and X2. Solid line shows the profile of 10× I
with initial condition X1. Dashed line shows the profile of I with
initial condition X2.
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Figure 5.3. Phase diagram for ξ = 0.105 with different initial condi-
tions. This figure shows the coexistence of stable disease-free equi-
librium (e0) with the stable endemic equilibrium (e2). The stable
manifold of the saddle point e1 separates the basins of attraction of
(e0) and (e2).

The above simulations demonstrate that the disease-free equilibrium and

one of the two endemic equilibria (namely, e2) are locally asymptotically sta-

ble whenever ξc < ξ < ξ∗ (see Figure 5.3 and Table 5.1). Noting that �∗ is a

positively invariant region for the normalized model, we may restrict our at-

tention to the basins of attraction of the stable equilibria in �∗. Since the basin

of attraction of an attractor is an open set (by definition), it follows that �∗

is separated by the stable manifold of the saddle point (e1) into the basins

of attraction of these two attractors (e0 and e2). These basins can be numer-

ically specified by finding the points where the stable manifold of the saddle

point intersects the boundary of two-dimensional simplex �∗. This intersec-

tion consists of exactly two points at which the ω-limit set of the solutions of

the model, with initial conditions on the boundary of �∗, changes from one

attractor to another.

For example, in the case where ξ = 0.105, this intersection consists of two

points P1 and P2 where P1 is located on line L1 = {(S,0, I) : 0.02S+0.148I =
50000} and P2 is located on line L2 = {(0,V ,I) : 0.02V+0.148I = 50000} in the

original model coordinates. Numerical results indicate that every solution of

the model with the initial condition on the line L1 approaches e0 if I ≤ 2695

and it approaches e2 if I ≥ 2696. Further simulations also reveal that every

solution with the initial condition on the line L2 approaches e0 if I ≤ 79383

and approaches e2 if I ≥ 79384.



3696 B. D. CORBETT ET AL.

0 100 200 300 400 500

Time (years)

In
fe

ct
ed

in
d

iv
id

u
al

s
(I

)

0

5000

10000

15000

Figure 5.4. Profile of infected individuals (I) for ξ = 0.12 with initial
condition X3.

5.3. Experiment 3: disease eradication. In this experiment, we chose ξ =
0.12 > ξ∗ = 0.1085 and initial condition X3 = (1000000,50000,3000). With

this vaccination rate, the basic reproductive number is �0 = 0.927 < �∗ =
0.973. Notice that this vaccination rate is slightly greater than ξ∗. In this case,

the model has only the disease-free equilibrium e0 (see Table 5.1). Simulation

results, depicted in Figure 5.4, show that HIV will be eradicated from the com-

munity. This experiment is also consistent with Theorem 4.1.

6. Discussion. In this paper, we proposed and qualitatively analyzed a de-

terministic model for HIV epidemiology that incorporates an anti-HIV preven-

tive vaccine. The local stability of the disease-free equilibrium was established,

based on a certain threshold quantity known as the basic reproductive number.

Although the endemic equilibria of the model cannot be clearly expressed

in a closed form, the existence of endemic equilibria was established under

some specific conditions by finding the fixed point of the equation for the

force of infection [17]. Using the technique proposed in [2], we proved the

nonexistence of certain types of solutions such as periodic orbits, homoclinic

orbits, or polygons for the normalized model. This enabled us to establish the

local and global stability of the model. The results of the global analysis of the

model allowed the determination of a threshold vaccination rate ξ∗, leading to

disease eradication if ξ > ξ∗. This threshold quantity (ξ∗) gives a subthreshold

domain of bistable equilibria of the model, namely, �∗ =�0(ξ∗) <�0 < 1.

Our study shows that, like models of some curable diseases (see [9, 13]

and the references therein), our HIV model can also exhibit bistable equilibria

(involving the disease-free equilibrium and an endemic equilibrium) whenever
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�∗ < �0 < 1. In this case, the initial sizes of the subpopulations determine

which of the two stable equilibria is reached. Thus, controlling the sizes of the

model subpopulations can lead to HIV eradication in place of persistence. By

analyzing the VF model, it was also shown that the low efficacy of vaccine is

the reason for the bistability in our model.

In summary, the results of this study show that if the efficacy of vaccine is

not high enough (leading to R2 > 1), no amount of vaccination rate could lead

to HIV eradication. However, if the vaccine efficacy can reduce the probability

of infection such that R2 < 1 (i.e., β2 is low enough), increasing the rate of

vaccination to ξ > ξ∗ guarantees HIV eradication.
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