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We establish two fixed-point theorems for mappings satisfying a general contrac-
tive inequality of integral type. These results substantially extend the theorem of
Branciari (2002).
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In a recent paper [1], Branciari established the following theorem.

Theorem 1. Let (X,d) be a complete metric space, c ∈ [0,1), f : X → X a

mapping such that, for each x,y ∈X,

∫ d(fx,fy)
0

ϕ(t)dt ≤ c
∫ d(x,y)

0
ϕ(t)dt, (1)

where ϕ :R+ →R+ is a Lebesgue-integrable mapping which is summable, non-

negative, and such that, for each ε > 0,
∫ ε
0 ϕ(t)dt > 0. Then f has a unique

fixed point z ∈X such that, for each x ∈X, limnfnx = z.

In [1], it was mentioned that (1) could be extended to more general contrac-

tive conditions. It is the purpose of this paper to make such an extension to

two of the most general contractive conditions.

Define

m(x,y)=max
{
d(x,y),d(x,fx),d(y,fy),

[
d(x,fy)+d(y,fx)

2

]}
. (2)

Our first result is the following theorem.

Theorem 2. Let (X,d) be a complete metric space, k ∈ [0,1), f : X → X a

mapping such that, for each x,y ∈X,

∫ d(fx,fy)
0

ϕ(t)dt ≤ k
∫m(x,y)

0
ϕ(t)dt, (3)
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where ϕ :R+ →R+ is a Lebesgue-integrable mapping which is summable, non-

negative, and such that

∫ ε
0
ϕ(t)dt > 0 for each ε > 0. (4)

Then f has a unique fixed point z ∈X and, for each x ∈X, limnfnx = z.

Proof. Let x ∈X and, for brevity, define xn = fnx. For each integer n≥ 1,

from (3),

∫ d(xn,xn+1)

0
ϕ(t)dt ≤ k

∫m(xn−1,xn)

0
ϕ(t)dt. (5)

Using (2),

m
(
xn−1,xn

)=max
{
d
(
xn−1,xn

)
,d
(
xn,xn+1

)
,
d
(
xn−1,xn+1

)
2

}
. (6)

But

d
(
xn−1,xn+1

)
2

≤ d
(
xn−1,xn

)+d(xn,xn+1
)

2
≤max

{
d
(
xn−1,xn

)
,d
(
xn,xn+1

)}
.

(7)

Therefore,

m
(
xn−1,xn

)=max
{
d
(
xn−1,xn

)
,d
(
xn,xn+1

)}
. (8)

Substituting into (5), one obtains

∫ d(xn,xn+1)

0
ϕ(t)dt ≤ k

∫max{d(xn,xn+1),d(xn−1,xn)}

0
ϕ(t)dt

= kmax

{∫ d(xn,xn+1)

0
ϕ(t)dt,

∫ d(xn−1,xn)

0
ϕ(t)dt

}

= k
∫ d(xn−1,xn)

0
ϕ(t)dt ≤ ··· ≤ kn

∫ d(x0,x1)

0
ϕ(t)dt.

(9)

Taking the limit of (9), as n→∞, gives

lim
n

∫ d(xn,xn+1)

0
ϕ(t)dt = 0, (10)

which, from (4), implies that

lim
n
d
(
xn,xn+1

)= 0. (11)



TWO FIXED-POINT THEOREMS FOR MAPPINGS . . . 4009

We now show that {xn} is Cauchy. Suppose that it is not. Then there exists

an ε > 0 and subsequences {m(p)} and {n(p)} such that m(p) < n(p) <
m(p+1) with

d
(
xm(p),xn(p)

)≥ ε, d
(
xm(p),xn(p)−1

)
< ε. (12)

From (2),

n
(
xm(p)−1,xn(p)−1

)
=max

{
d
(
xm(p)−1,xn(p)−1

)
,d
(
xn(p)−1,xm(p)

)
,d
(
xn(p)−1,xn(p)

)
,

d
(
xm(p)−1,xn(p)

)+d(xn(p)−1,xm(p)
)

2

}
.

(13)

Using (11),

lim
p

∫ d(xm(p)−1,xm(p))

0
ϕ(t)dt = lim

p

∫ d(xn(p)−1,xn(p))

0
ϕ(t)dt = 0. (14)

Using the triangular inequality and (12),

d
(
xm(p)−1,xn(p)−1

)≤ d(xm(p)−1,xm(p)
)+d(xm(p),xn(p)−1

)
<d

(
xm(p)−1,xm(p)

)+ε. (15)

Hence,

lim
p

∫ d(xm(p)−1,xn(p)−1)

0
ϕ(t)dt ≤

∫ ε
0
ϕ(t)dt. (16)

Using the triangular inequality and (12),

v(m,n) := d
(
xm(p)−1,xn(p)

)+d(xn(p)−1,xm(p)
)

2

≤ d
(
xm(p)−1,xm(p)

)+2d
(
xm(p),xn(p)−1

)+d(xn(p)−1,xn(p)
)

2

<
d
(
xm(p)−1,xm(p)

)+d(xn(p)−1,xn(p)
)

2
+ε.

(17)

Therefore, using (11),

lim
p

∫ v(m,n)
0

ϕ(t)dt ≤
∫ ε

0
ϕ(t)dt. (18)

Using (3), (12), (13), (14), (16), and (18), it then follows that

∫ ε
0
ϕ(t)dt ≤

∫ d(xm(p),xn(p))
0

ϕ(t)dt

≤ k
∫m(xm(p)−1,xn(p)−1)

0
ϕ(t)dt ≤ k

∫ ε
0
ϕ(t)dt,

(19)
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which is a contradiction. Therefore, {xn} is Cauchy, hence convergent. Call

the limit z.

From (2),

∫ d(fz,xn+1)

0
ϕ(t)dt ≤ k

∫m(z,xn)
0

ϕ(t)dt

= kmax
{∫ d(z,xn)

0
ϕ(t)dt,

∫ d(z,fz)
0

ϕ(t)dt,

∫ d(xn,xn+1)

0
ϕ(t)dt,

∫ d(z,xn+1)

0
ϕ(t)dt,

∫ d(xn,fz)
0

ϕ(t)dt
}
.

(20)

Taking the limit of (20) as n→∞, one obtains

∫ d(fz,z)
0

ϕ(t)dt ≤ k
∫ d(fz,z)

0
ϕ(t)dt, (21)

which implies that

∫ d(fz,z)
0

ϕ(t)dt = 0, (22)

which, from (4), implies that d(z,fz)= 0 or z = fz.

Suppose that z and w are fixed points of f .

Then, from (2),

∫ d(z,w)
0

ϕ(t)dt =
∫ d(fz,fw)

0
ϕ(t)dt ≤ k

∫m(z,w)
0

ϕ(t)dt

= kmax

{∫ d(z,w)
0

ϕ(t)dt,0
}
= k

∫ d(z,w)
0

ϕ(t)dt,
(23)

which implies that

∫ d(z,w)
0

ϕ(t)dt = 0, (24)

which, from (4), implies that d(z,w) = 0, or z = w, and the fixed point is

unique.

One would like to be able to replace (2) with the integral form of Ćirić’s

condition [3], that is,

∫ d(fx,fy)
0

ϕ(t)dt ≤ k
∫M(x,y)

0
ϕ(t)dt, (25)

where

M(x,y) :=max
{
d(x,y),d(x,fx),d(y,fy),d(x,fy),d(y,fx)

}
. (26)
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But this is not possible since, as the following example shows, one must

assume that the orbits are bounded.

Example 3. Let f : N → N be defined by f(n) = n+1 and φ,ϕ : [0,∞) →
[0,∞), where φ(t) := (t+1)t+1−1, and ϕ(t)=φ′(t).

Then, for n>m,

M(n,m)=max{n−m,1,n−m−1,n−m+1}
=n−m+1= t+1,

(27)

where t :=n−m.

Note that, for any t ∈N,

(t+2)t+2−1= (t+1+1)t+2−1≥ (t+1)t+2+1t+2−1

= (t+1)t+1(t+1)≥ 2(t+1)t+1

≥ 2(t+1)t+1−2= 2
[
(t+1)t+1−1

]
.

(28)

Since ϕ(t)=φ′(t), it follows from (28) that

∫ t
0
ϕ(t)dt ≤ 1

2

∫ t+1

0
ϕ(t)dt (29)

or, equivalently,

∫ d(fn,fm)
0

ϕ(t)dt ≤ 1
2

∫M(n,m)
0

ϕ(t)dt, (30)

and (25) is satisfied. However, the orbits are not bounded and f has no fixed

points.

Theorem 1 is clearly a special case of Theorem 2. With ϕ equal to the con-

stant function 1, Theorem 2 reduces to [2, Theorem 2.5]

It is possible to prove a weaker theorem involving condition (25).

Let O(x,n) := {x,fx,f 2x,. . . ,fnx}. Then O(x,n) is called the nth orbit of

x. For any set A, δ(A) will denote the diameter of A.

Theorem 4. Let (X,d) be a complete metric space, k ∈ [0,1), f : X → X a

mapping such that, for each x,y ∈ X, (25) is satisfied, where ϕ : R+ → R+ is

a Lebesgue-integrable mapping which is summable, nonnegative, and satisfies

(4). If there exists a point x ∈ X with bounded orbit, then f has a unique fixed

point z ∈X.

Proof. From the definition of O(x,n), there exist integers i, j satisfying

0≤ i < j ≤n such that δ(O(x,n))= d(f ix,f jx).
Claim 5. For some integer k satisfying 0< k≤n, δ(O(x,n))= d(x,f kx).
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Proof of Claim 5. We may assume that δ(O(x,n)) > 0 for each n, since,

if there exists an n for which δ(O(x,n))= 0, then f has a fixed point.

Suppose that δ(O(x,n))= d(xi,xj), where 0< i < j ≤n. Then, from (25),

∫ δ(O(x,n))
0

ϕ(t)dt =
∫ d(xi,xj)

0
ϕ(t)dt ≤ k

∫M(xi−1,xj−1)

0
ϕ(t)dt

≤ k
∫ δ(O(x,n))

0
ϕ(t)dt,

(31)

which is a contradiction since δ(O(x,n)) > 0. Therefore i= 0.

Pick an x ∈ X with bounded orbit. Let m and n be integers with m > n.

Then, from (25),

∫ d(xn,xm)
0

ϕ(t)dt

≤ k
∫M(xn−1,xm−1)

0
ϕ(t)dt ≤ k

∫ δ(O(xn−1,m−n+1))

0
ϕ(t)dt

= k
∫ d(xn−1,xk1+n−1)

0
ϕ(t)dt for some 0< k1 ≤m−n+1

≤ k2
∫ δ(O(xn−2,k1+n−1))

0
ϕ(t)dt

= k2
∫ d(xn−2,xk2+n−2)

0
ϕ(t)dt for some 0< k2 ≤m−n+2

...

≤ kn
∫ δ(O(x,m))

0
ϕ(t)dt.

(32)

Taking the limit as m,n→∞ gives, since the orbit of x is bounded,

lim
m,n

∫ d(xn,xm)
0

ϕ(t)dt = 0, (33)

which, from (4), implies that

lim
m,n

d
(
xn,xm

)= 0. (34)

Thus {xn} is Cauchy, hence convergent. Call the limit z. From (25),

∫ d(xn+1,fz)

0
ϕ(t)dt ≤ k

∫M(xn,z)
0

ϕ(t)dt

= k
∫max{d(xn,z),d(xn,xn+1),d(z,fz),d(xn,fz),d(z,xn+1)}

0
ϕ(t)dt.

(35)
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Taking the limit of both sides, as n→∞, gives

∫ d(z,fz)
0

ϕ(t)dt ≤ k
∫ d(z,fz)

0
ϕ(t)dt, (36)

which implies that d(z,fz)= 0, which, from (4), implies that z = fz.

Suppose that z and w are fixed points of f . From (25),

∫ d(z,w)
0

ϕ(t)dt ≤ k
∫ d(z,w)

0
ϕ(t)dt, (37)

which implies that z =w, and the fixed point is unique.

The following example shows that (2) is indeed a proper extension of (1).

Example 6. Let X := {1/n : n ∈ Z, |n| ≥ 2} ∪ {0} endowed with the Eu-

clidean metric. Define f :X →X by

f
(

1
n

)
:=




1
n+1

, n > 1 and odd,

1
n
, n > 0 and even or n<−1 and odd,

1
n+1

, n < 0 and even,

0, n=∞.

(38)
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