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TWO FIXED-POINT THEOREMS FOR MAPPINGS
SATISFYING A GENERAL CONTRACTIVE
CONDITION OF INTEGRAL TYPE
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We establish two fixed-point theorems for mappings satisfying a general contrac-
tive inequality of integral type. These results substantially extend the theorem of
Branciari (2002).
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In a recent paper [1], Branciari established the following theorem.

THEOREM 1. Let (X,d) be a complete metric space, c € [0,1), f: X - X a
mapping such that, for each x,y € X,

d(x,y)

@(t)dtSCJO @ (t)dt, (1)

Jd(fxyfy)
where @ : R* — R* is a Lebesgue-integrable mapping which is summable, non-
negative, and such that, for each € > 0, f(fcp(t)dt > 0. Then f has a unique
fixed point z € X such that, for each x € X, lim,, f"x = z.

In [1], it was mentioned that (1) could be extended to more general contrac-
tive conditions. It is the purpose of this paper to make such an extension to
two of the most general contractive conditions.

Define

m(x,y) =max{d(x,y),d(x,fX),d(y,fy),[d(x'fy);d(y’fm]}. (2)

Our first result is the following theorem.

THEOREM 2. Let (X,d) be a complete metric space, k € [0,1), f: X - X a
mapping such that, for each x,y € X,

@t)dt <k @(t)dt, (3)

Jd(fx,fy) m(x,y)
0
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where @ : RT — R* is a Lebesgue-integrable mapping which is summable, non-

negative, and such that

€
J @(t)dt >0 foreache > 0.
0

(4)

Then f has a unique fixed point z € X and, for each x € X, lim,, f"x = z.

PROOF. Let x € X and, for brevity, define x,, = f"x. For each integer n > 1,

from (3),

m(xn-1,Xn)

aA(xn,Xn1)
J eHdt <k @ (b)dLt.
0 0

Using (2),

d(xn—l,XnH)}_

m(xnp_1,Xn) = max <{d(xn-l,xn),al(xn,>cn+1), 5

But
d(xn—lsxn+1) < d(xn—laxn) +d(Xn,Xn+1)

2 - 2
<max {d(xn_1,Xn),d(Xn, Xn+1)}.

Therefore,
M(Xn_1,Xn) = max {d(xXn-1,Xn),d(Xn,Xn1)}.

Substituting into (5), one obtains

Jd(xnvx'rwl) max{d(xn,Xn+1),d(Xn-1,Xn)}

@t)dt <k . @(t)dt

d(xn,Xn+1) d(xn-1,Xn)
=kmaX{I (p(t)dt,J (p(t)dt}
0 0

d(xp-1,Xn) d(xg,x1)
=kJ (p(t)dts---sk"J @(t)dt.
0

0

Taking the limit of (9), as n — oo, gives

d(xn,Xn+1)
limJ @(t)dt =0,
n Jo
which, from (4), implies that

liyrlnd(xn,xml) =0.

(5)

(6)

(7)

(8)

9)

(10)

(11)



TWO FIXED-POINT THEOREMS FOR MAPPINGS ... 4009

We now show that {x,} is Cauchy. Suppose that it is not. Then there exists
an € > 0 and subsequences {m(p)} and {n(p)} such that m(p) < n(p) <
m(p +1) with

A(Xmp)Xnp) =€ A(Xm@p), Xnp)-1) <€ (12)
From (2),
N(Xm(p)-1: Xn(p)-1)

= max “Ld(xm(p)—l;Xn(p)fl)1d(xn(p)*1!xm(rl) ) ) d(xmwfhxn(p))! (13)

A(Xmp)-1,Xnp) +d(Xnp)-1, Xmp)) }
5 )

Using (11),
AXm(p)-1Xm(p)) A(Xn(p)-1:Xn(p))
lilgnj P(t)dt = lignj PW)dt=0.  (14)
0 0

Using the triangular inequality and (12),

A(Xmp)-1:Xnp)-1) < A(Xmp)-1, Xmp)) +A(Xmp)s Xnp)-1)

(15)
<d(Xm(p)-1,Xmp)) + €.
Hence,
A(Xm(p)-1:Xn(p)-1) €
limJ @ (t)dt SJ @ (t)dt. (16)
r Jo 0
Using the triangular inequality and (12),
vimin) = HEm) 1. Xn ) erd(xnw)—l,xm(m)
< d(Xm(p)—llxm(p)) + Zd(xm(n),xn(p)—l) + d(xn(n)fl,xn(v)) (17)
- 2
< d(xm(p)—lyxm(p));‘d(xn(p)flyxn(lﬂ)) re.
Therefore, using (11),
v(m,n) €
limJ p(t)dt < J @(t)dt. (18)
r Jo 0
Using (3), (12), (13), (14), (16), and (18), it then follows that
€ A(Xm(p)Xn(p))
J Wt)dtSJ @ (t)dt
0 0 (19)

<k

Jm(xm(n)fl Xn(p)-1)

p(bdt < krcp(t)dt,
0 0
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which is a contradiction. Therefore, {x,} is Cauchy, hence convergent. Call
the limit z.
From (2),

@(t)dt <k @(t)dt

J‘d(fZ,XVH-I) m(z,xn)
0

d(z,xn) d(z,fz)
=kmaX{J cp(t)dt,J @(t)dt,
0 0

(20)
d(xn,Xn+1) d(z,xn+1)
| Pyt p(ydt,
0
d(xn,fz)
J cp(t)dt}.
Taking the limit of (20) as n — o0, one obtains
a(fz,z) da(fz,z)
J @(t)dt <k @(t)dt, (21)
0 0
which implies that
d(fz,z)
| ewar-o, (22)
0
which, from (4), implies that d(z,fz) =0or z = fz.
Suppose that z and w are fixed points of f.
Then, from (2),
d(z,w) a(fz,fw) m(z,w)
J (p(t)dtzj @(t)dt <k @(t)dt
0 0 0
d(z,w) d(z,w) (23)
—kmax{] (p(t)dt,O} :kj @(t)dt,
0 0
which implies that
d(z,w)
| ewat-o, (24)
0

which, from (4), implies that d(z,w) = 0, or z = w, and the fixed point is
unique. O

One would like to be able to replace (2) with the integral form of Ciri¢’s

condition [3], that is,

@t)dt <k @(t)dt, (25)

r[(fx,fy) M(x,y)
0 0

where

M(x,y):=max{d(x,y),d(x,fx),dy,fy),dx,fy),dy,fx)}. (26)
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But this is not possible since, as the following example shows, one must
assume that the orbits are bounded.

EXAMPLE 3. Let f:N — N be defined by f(n) =n+1 and ¢,p : [0,0) —
[0,00), where ¢p(t) := (t+1)*1 —1, and @ (t) = ¢’ (t).
Then, for n > m,

Mn,m)=max{in-m,l,n-m-1,n-m-+1}

(27)
=n-m+1l=t+1,

where t :=n—m.
Note that, for any t € N,

E+2) 21 =(t+1+D"2 -1 > (t+1)H2 4112 -1
=+ E+1) = 2(t+1)H! (28)
>2(t+ D) -2 =2[(t+ 1) -1].

Since @ (t) = ¢’ (t), it follows from (28) that

t+1

t
J @(t)dt < 1 @(t)dt (29)
0 2 Jo

or, equivalently,

a(fn,fm) 1 M(n,m)
| pwar=3 [ pwat, (30)
0

and (25) is satisfied. However, the orbits are not bounded and f has no fixed
points.

Theorem 1 is clearly a special case of Theorem 2. With @ equal to the con-
stant function 1, Theorem 2 reduces to [2, Theorem 2.5]

It is possible to prove a weaker theorem involving condition (25).

Let O(x,n) = {x,fx, f°x,...,f"x}. Then O(x,n) is called the nth orbit of
x. For any set A, 6 (A) will denote the diameter of A.

THEOREM 4. Let (X,d) be a complete metric space, k € [0,1), f: X - X a
mapping such that, for each x,y € X, (25) is satisfied, where @ : Rt — R* is
a Lebesgue-integrable mapping which is summable, nonnegative, and satisfies
(4). If there exists a point x € X with bounded orbit, then f has a unique fixed
point z € X.

PROOF. From the definition of O(x,n), there exist integers i, j satisfying
0<i<j<mnsuchthat 6(0(x,n)) =d(fix,fix).

CLAIM 5. For some integer k satisfying 0 < k <mn, §(0(x,n)) = d(x, f¥x).
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PROOF OF CLAIM 5. We may assume that 6(O(x,n)) > 0 for each n, since,
if there exists an n for which 6(O(x,n)) = 0, then f has a fixed point.
Suppose that 6 (O (x,n)) = d(x;,xj), where 0 < i < j <n. Then, from (25),

6(0(x,n)) d(xi,x;) M(xi_1,Xj-1)
J m(t)dt:J cp(t)dtskj @(t)dt
0 0 31)
5(0(x,n))
< kj @(t)dt,
0
which is a contradiction since 6 (O (x,n)) > 0. Therefore i = 0. |

Pick an x € X with bounded orbit. Let m and n be integers with m > n.
Then, from (25),

d(xn,xm)
I @(t)dt

0
M(xp-1,Xm-1) 5(0(xp_1,m-n+1))
SkJ (p(t)dtSkJ @ (t)dt
0 0

A(Xp-1,Xk; +n-1)
=kj @(t)dt forsomeO<k;<m-n+1
0

6(0(xp-2,k1+n-1))
< kZJ @ (t)dt (32)
0

d(Xn—ZvXk2+'n—2)
:kzj @(t)dt forsome O <k, <m-n+2
0

5(0(x,m))
< k”J

@(t)dt.

Taking the limit as m,n — o gives, since the orbit of x is bounded,

d(xn,xm)
limj @p(t)dt =0, (33)
mmn Jo

which, from (4), implies that
limd (xy,,xm) = 0. (34)
m,n

Thus {x,} is Cauchy, hence convergent. Call the limit z. From (25),

J’d(Xn+1,f2) M(xn,z)

eM)dt <k . @(t)dt

max{d(xn,z),d(xn,xn+1),d(z,f2),d(xn,f2),d(z,xpn41)}
= kJ @(t)dt.
0

(35)
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Taking the limit of both sides, as n — oo, gives
d(z,fz) d(z,fz)
J @t)dt <k @ (t)dt, (36)
0 0

which implies that d(z, fz) = 0, which, from (4), implies that z = fz.
Suppose that z and w are fixed points of f. From (25),
d(zw) d(z,w)
J @(t)dt <k @(t)dt, (37)
0 0
which implies that z = w, and the fixed point is unique. O
The following example shows that (2) is indeed a proper extension of (1).

EXAMPLE 6. Let X ;= {1/n:n € Z, |n| = 2} U {0} endowed with the Eu-
clidean metric. Define f: X — X by

——, m>1and odd,

, n >0 and even or n < —1 and odd,
(38)

(2

1
——, mn <0 and even,
n+1

0, n = co.
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