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Parametric and nonparametric necessary and sufficient optimality conditions are
established for a class of nonconvex variational problems with generalized frac-
tional objective functions and nonlinear inequality constraints containing arbi-
trary norms. Based on these optimality criteria, ten parametric and parameter-
free dual problems are constructed and appropriate duality theorems are proved.
These optimality and duality results contain, as special cases, similar results for
minmax fractional variational problems involving square roots of positive semidef-
inite quadratic forms as well as for variational problems with fractional, discrete
max, and conventional objective functions, which are particular cases of the main
problem considered in this paper. The duality models presented here subsume
various existing duality formulations for variational problems and include vari-
ational generalizations of a great variety of cognate dual problems investigated
previously in the area of finite-dimensional nonlinear programming by an assort-
ment of ad hoc methods.
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1. Introduction. In this paper, we establish necessary and sufficient op-

timality conditions and construct a fairly large number of parametric and

parameter-free duality models for the following unorthodox variational prob-

lem:

(P)

Minimize max
1≤i≤k

∫ b
a
[
fi
(
t,x(t), ẋ(t)

)+∥∥Ai(t)x(t)∥∥L(i)]dt∫ b
a
[
gi
(
t,x(t), ẋ(t)

)−∥∥Bi(t)x(t)∥∥M(i)]dt (1.1)

subject to

hj
(
t,x(t), ẋ(t)

)+∥∥Cj(t)x(t)∥∥N(j) ≤ 0, t ∈ [a,b], j ∈m, (1.2)

x ∈ PWSn[a,b], (1.3)

where PWSn[a,b] is the space of all piecewise smooth n-dimensional vector

functions x defined on the compact interval [a,b] of the real line R, with the
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norm ‖x‖ = ‖x‖∞+‖Dx‖∞, where the differentiation operator D is given by

y =Dx⇐⇒ x(t)= x(a)+
∫ t
a
y(s)ds; (1.4)

thus D = d/dt except at discontinuities, xa and xb are given vectors in Rn

(n-dimensional Euclidean space), ẋ(t) = dx(t)/dt; fi, gi, i ∈ k ≡ {1,2, . . . ,k},
and hj, j ∈m, are continuously differentiable real-valued functions defined on

[a,b]×Rn×Rn; Ai(t), Bi(t), i∈ k, and Cj(t), j ∈m, are, respectively, pi×n,
qi×n, and rj×nmatrices whose entries are continuous real-valued functions

defined on [a,b]; ‖ · ‖L(i), ‖ · ‖M(i), i ∈ k, and ‖ · ‖N(j), j ∈ m, are arbitrary

norms, and, for each i∈ k,

∫ b
a

[
fi
(
t,x(t), ẋ(t)

)+∥∥Ai(t)x(t)∥∥L(i)]dt ≥ 0,
∫ b
a

[
gi
(
t,x(t), ẋ(t)

)−∥∥Bi(t)x(t)∥∥M(i)]dt > 0,
(1.5)

for all x satisfying the constraints of (P).

Finite-dimensional counterparts of (P) are known as generalized fractional

programming problems in the literature of mathematical programming. These

problems have arisen in the areas of multiobjective programming [1], approx-

imation theory [2, 3, 12, 16], goal programming [5, 11], and economics [15]

among others.

The notion of duality for generalized linear fractional programming was ini-

tially considered by von Neumann [15] in his investigation of economic equi-

librium problems. More recently, various optimality criteria, duality formula-

tions, and computational algorithms for several classes of generalized linear

and nonlinear fractional programming problems have appeared in the related

literature. A fairly extensive list of references pertaining to various aspects of

these problems is given in [20].

In contrast to the finite-dimensional case, infinite-dimensional problems of

this type and, in particular, variational problems with generalized fractional

objective functions have not yet received much attention in the literature of

optimization theory and, consequently, at the present no significant results of

any kind are available for these problems.

In the present study, we will establish, under suitable convexity assump-

tions, both parametric and nonparametric necessary and sufficient optimality

conditions, construct several parametric and parameter-free duality models,

and prove appropriate duality theorems. Our approach for achieving these

goals is based on a set of necessary optimality conditions for a related prob-

lem discussed in [4] and two ancillary problems that are intimately linked to
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(P). These problems will enable us to treat (P) within the framework of convex

programming. As pointed out earlier, the optimality and duality results estab-

lished in the present study improve and extend a number of similar existing

results for variational problems and provide continuous analogues of many

cognate results previously obtained in the area of nonlinear programming. In

particular, they generalize the results of [17] and are closely related to those

given in [18, 19].

The rest of this paper is organized as follows. In Section 2 we recall a set of

necessary optimality conditions given in [4] for a special case of (P). In Section 3

we utilize these optimality conditions in conjunction with some other auxil-

iary results to establish both parametric and nonparametric necessary opti-

mality principles for (P). We begin our discussion of duality for (P) in Section 4

where we introduce two parametric duality models and prove weak, strong, and

strict converse duality theorems under appropriate convexity assumptions. In

Sections 5 and 6 we formulate a total of eight parameter-free duality models

for (P) and prove appropriate duality theorems. Finally, in Section 7 we briefly

discuss an important special case of (P) which involves square roots of positive

semidefinite quadratic forms.

It is evident that all the results obtained for (P) are also applicable, when ap-

propriately specialized, to the following classes of variational problems with

fractional, discrete max, and conventional objective functions, which are par-

ticular cases of (P):

(P1)

Minimize
x∈F

∫ b
a
[
f1
(
t,x(t), ẋ(t)

)+∥∥A1(t)x(t)
∥∥
L(1)

]
dt∫ b

a
[
g1
(
t,x(t), ẋ(t)

)−∥∥B1(t)x(t)
∥∥
M(1)

]
dt
, (1.6)

(P2)

Minimize
x∈F

max
1≤i≤k

∫ b
a

[
fi
(
t,x(t), ẋ(t)

)+∥∥Ai(t)x(t)∥∥L(i)]dt, (1.7)

(P3)

Minimize
x∈F

∫ b
a

[
f1
(
t,x(t), ẋ(t)

)+∥∥A1(t)x(t)
∥∥
L(1)

]
dt, (1.8)

where F (assumed to be nonempty) is the feasible set of (P), that is,

F= {x ∈ PWSn[a,b] : (1.1) and (1.2) hold
}
. (1.9)

Although different concepts of duality have been discussed for various types

of conventional variational (and optimal control) problems (see, e.g., [9, 13] and

the references therein), constrained variational problems like (P1) and (P2) with
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nonstandard objective functions have not received much attention in the area

of optimization theory. In contrast, their static analogues have been studied

extensively during the last three decades. Recent surveys of fractional pro-

gramming are given in [6, 14], and a fairly extensive bibliography is included

in [14]. Similarly, a detailed account of discrete (and continuous) minmax the-

ory and methods is available in [7].

Evidently, a salient feature of (P) is the presence of arbitrary norms in its

objective and constraint functions. Optimization problems involving norms

occur in many areas of the decision sciences, applied mathematics, and engi-

neering. These problems are encountered most frequently in location theory,

approximation theory, and engineering design. A number of references dealing

with various aspects of these problems are given in [17] (see also [4, 18, 19]).

2. Preliminaries. In our derivation of optimality conditions for (P) in the

next section, we will need an optimality result of [4] for the problem

(P4)

Minimize
∫ b
a

[
f
(
t,x(t), ẋ(t)

)+∥∥A(t)x(t)∥∥L]dt (2.1)

subject to (1.1), (1.2), (1.3), and

∫ b
a

[
Hs
(
t,x(t), ẋ(t)

)+∥∥Es(t)x(t)∥∥P(s)]dt ≤ 0, s ∈M, (2.2)

where f and Hs, s ∈M , are continuously differentiable real-valued functions

defined on [a,b]×Rn×Rn; A(t) and Es(t), s ∈M , are, respectively, µ×n and

νs×nmatrices whose entries are continuous real-valued functions defined on

[a,b], and ‖·‖L and ‖·‖P(s), s ∈M , are arbitrary norms.

Constraints of type (2.2) are not explicitly included in the problem treated in

[4]. However, it is easily seen from the abstract reformulation of the problem

and proof of [4, Theorem 1] that such integral inequality constraints can indeed

be incorporated in the problem under consideration without any difficulty.

The following result for (P4) can be deduced from [4, Theorem 1].

Theorem 2.1 [4]. Assume that the functions f(t,·,·), hj(t,·,·), j ∈ m,

and Hs(t,·,·), s ∈ M , are convex on Rn ×Rn throughout [a,b] and that the

constraints of (P4) satisfy Slater’s constraint qualification, that is, there exists

x̄ ∈ PWSn[a,b] such that x̄(a)= xa, x̄(b)= xb, and

hj
(
t, x̄, ˙̄x

)+∥∥Cj(t)x̄∥∥N(j) < 0, t ∈ [a,b], j ∈m,
∫ b
a

[
Hs
(
t, x̄, ˙̄x

)+∥∥Es(t)x̄∥∥P(s)]dt < 0, s ∈M.
(2.3)
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Then a feasible solution x∗ of (P4) is optimal if and only if there exist v∗ ∈
PWSm+ [a,b], w∗ ∈ RM+ , ζ ∈ PWSµ[a,b], ηj ∈ PWSrj [a,b], j ∈ m, θs ∈
PWSνs [a,b], s ∈ M , such that the following relations hold for all t ∈ [a,b]:

∇2f
(
t,x∗, ẋ∗

)+A(t)Tζ+ m∑
j=1

v∗j (t)
[
∇2hj

(
t,x∗, ẋ∗

)+Cj(t)Tηj(t)]

+
M∑
s=1

w∗
s

[
∇2Hs

(
t,x∗, ẋ∗

)+Es(t)Tθs(t)]

−D
[
∇3f

(
t,x∗, ẋ∗

)+ m∑
j=1

v∗j (t)∇3hj
(
t,x∗, ẋ∗

)

+
M∑
s=1

w∗
s ∇3Hs

(
t,x∗, ẋ∗

)]= 0,

m∑
j=1

v∗j (t)
[
hj
(
t,x∗, ẋ∗

)+∥∥Cj(t)x∗∥∥N(j)
]
= 0,

∫ b
a

M∑
s=1

w∗
s

[
Hs
(
t,x∗, ẋ∗

)+∥∥Es(t)x∗∥∥P(s)
]
dt = 0,

∥∥ζ(t)∥∥∗L ≤ 1,
∥∥ηj(t)∥∥∗N(j) ≤ 1, j ∈m, ∥∥θs(t)∥∥∗P(s) ≤ 1, s ∈M,

ζ(t)TA(t)x∗ = ∥∥A(t)x∗∥∥L,
ηj(t)TCj(t)x∗ =

∥∥Cj(t)x∗∥∥N(j), j ∈m,
θs(t)TEs(t)x∗ =

∥∥Es(t)x∗∥∥P(s), s ∈M,

(2.4)

where PWSm+ [a,b] = {v ∈ PWSm[a,b] : v(t) ≥ 0 for all t ∈ [a,b]}, RM+ = {w ∈
RM : w ≥ 0}, QT is the transpose of the matrix Q, ∇2F and ∇3F denote the

partial gradients of the function F : [a,b] × Rn × Rn → R, (t,x(t), ẋ(t)) →
F(t,x(t), ẋ(t)), with respect to its second and third arguments, respectively,

that is, ∇2F = (∂F/∂x1, . . . ,∂F/∂xn)T and ∇3F = (∂F/∂ẋ1, . . . ,∂F/∂ẋn)T , and

‖·‖∗J denotes the dual norm to ‖·‖J .
In the above theorem, the argument t of the vector-valued functions x̄, ˙̄x,

x∗, and ẋ∗ was omitted for the sake of notational simplicity. This practice will

be continued throughout the sequel.

3. Optimality conditions. In this section, we adopt a Dinkelbach-type [8]

indirect parametric approach for establishing a set of necessary optimality

conditions for (P). The intermediate auxiliary problem making this possible

has the following form:

(Pλ)

Minimize
x∈F

max
1≤i≤k

∫ b
a

{
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)−λ[gi(t,x,ẋ)−∥∥Bi(t)x∥∥M(i)]}dt,
(3.1)
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where λ ∈ R+ ≡ [0,∞) is a parameter. It is well known in the area of gener-

alized fractional programming that this problem is closely related to (P). The

relationship between (P) and (Pλ) needed for our present purposes is stated in

the following lemma whose proof is straightforward and hence omitted.

Lemma 3.1. Let λ∗ be the optimal value of (P) and let v(λ) be the optimal

value of (Pλ) for any λ∈ R+ such that (Pλ) has an optimal solution. If x∗ is an

optimal solution of (P), then x∗ is an optimal solution of (Pλ∗) and v(λ∗)= 0.

It is clear that (Pλ) is in turn equivalent to the following problem:

(EPλ) Minimizeµ subject to x ∈ F, µ ∈R, and

∫ b
a

{
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)−λ[gi(t,x,ẋ)−∥∥Bi(t)x∥∥M(i)]}dt ≤ µ, i∈ k.
(3.2)

In view of Lemma 3.1 and the equivalence of (Pλ) and (EPλ), it is evident that

if x∗ is an optimal solution of (P) with optimal value λ∗, then (x∗,µ∗) =
(x∗,0) is an optimal solution of (EPλ∗). We use this observation in the proof

of Theorem 3.2 which is the main result of this section. We first specify our

basic assumptions which will remain in force throughout the sequel.

(a) The functions fi(t,·,·),−gi(t,·,·), i∈ k, and hj(t,·,·), j ∈m, are convex

on Rn×Rn throughout [a,b].
(b) The constraints of (P) satisfy Slater’s constraint qualification (see Theorem

2.1).

Theorem 3.2. Let x∗ ∈ F be an optimal solution of (P). Then there exist

u∗ ∈ Rk+,
∑k
i=1u

∗
i = 1, λ∗ ∈ R+, v∗ ∈ PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈

PWSqi[a,b], i ∈ k, γ∗j ∈ PWSrj [a,b], j ∈m, such that the following relations

hold for all t ∈ [a,b]:

k∑
i=1

u∗i
{
∇2fi

(
t,x∗, ẋ∗

)+Ai(t)Tα∗i(t)
−λ∗[∇2gi

(
t,x∗, ẋ∗

)−Bi(t)Tβ∗i(t)]}

+
m∑
j=1

v∗j (t)
[∇2hj

(
t,x∗, ẋ∗

)+Cj(t)Tγ∗j(t)] (3.3)

−D
{ k∑
i=1

u∗i
[∇3fi

(
t,x∗, ẋ∗

)−λ∗∇3gi
(
t,x∗, ẋ∗

)]

+
m∑
j=1

v∗j (t)∇3hj
(
t,x∗, ẋ∗

)}= 0,

m∑
j=1

v∗j (t)
[
hj
(
t,x∗, ẋ∗

)+∥∥Cj(t)x∗∥∥N(j)]= 0, (3.4)
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∫ b
a

k∑
i=1

u∗i
{
fi
(
t,x∗, ẋ∗

)+∥∥Ai(t)x∗∥∥L(i)
−λ∗[gi(t,x∗, ẋ∗)−∥∥Bi(t)x∗∥∥M(i)]

}
dt = 0,

(3.5)

∥∥α∗i(t)∥∥∗L(i) ≤ 1,
∥∥β∗i(t)∥∥∗M(i) ≤ 1, i∈ k, ∥∥γ∗j(t)∥∥∗N(j) ≤ 1, j ∈m,

(3.6)

α∗i(t)TAi(t)x∗ =
∥∥Ai(t)x∗∥∥L(i), β∗i(t)TBi(t)x∗ =

∥∥Bi(t)x∗∥∥M(i), i∈ k,
(3.7)

γ∗j(t)TCj(t)x∗ =
∥∥Cj(t)x∗∥∥N(j), j ∈m. (3.8)

Proof. Since x∗ is an optimal solution of (P), by Lemma 3.1, it is an opti-

mal solution of (Pλ∗), where λ∗ is the optimal value of (P). This implies that

(x∗,µ∗)= (x∗,0) is an optimal solution of (EPλ∗). By hypothesis, there exists

x̄ ∈ PWSn[a,b] with x̄(a) = xa and x̄(b) = xb, at which Slater’s constraint

qualification is satisfied. Because of the special structure of the constraints of

(EPλ∗), it is obvious that for some µ̄ ∈R, Slater’s constraint qualification holds

for (EPλ∗) at (x̄, µ̄). Therefore, by Theorem 2.1 (applied to (EPλ∗)), there exist

u∗, v∗, α∗i, β∗i, i∈ k, and γ∗j , j ∈m, as specified above, such that (3.3), (3.4),

(3.5), (3.6), (3.7), and (3.8) hold for all t ∈ [a,b].
In order to demonstrate that the necessary optimality conditions of Theorem

3.2 are also sufficient for optimality of x∗, we need the generalized Cauchy-

Schwarz inequality [10]: for each w,z ∈Rn, one has

wTz ≤ ‖w‖‖z‖∗. (3.9)

We also need the following lemma which provides an alternative expression for

the objective function of (P); its proof is straightforward and hence omitted.

Lemma 3.3. For each x ∈ PWSn[a,b],

ϕ(x)≡ max
1≤i≤k

∫ b
a
[
fi
(
t,x(t), ẋ(t)

)+∥∥Ai(t)x(t)∥∥L(i)]dt∫ b
a
[
gi
(
t,x(t), ẋ(t)

)−∥∥Bi(t)x(t)∥∥M(i)]dt
=max
u∈U

∫ b
a
∑k
i=1ui

[
fi
(
t,x(t), ẋ(t)

)+∥∥Ai(t)x(t)∥∥L(i)]dt∫ b
a
∑k
i=1ui

[
gi
(
t,x(t), ẋ(t)

)−∥∥Bi(t)x(t)∥∥M(i)]dt ,
(3.10)

where

U =
{
u∈Rk+ :

k∑
i=1

ui = 1

}
. (3.11)
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Theorem 3.4. Let x∗ ∈ F, let λ∗ = ϕ(x∗), and assume that there exist

u∗ ∈ U, v∗ ∈ PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈ PWSqi[a,b], i ∈ k, γ∗j ∈
PWSrj [a,b], j ∈m, such that (3.3), (3.4), (3.5), (3.6), (3.7), and (3.8) hold for all

t ∈ [a,b]. Then x∗ is an optimal solution of (P).

Proof. Let x be an arbitrary feasible solution of (P). Keeping in mind that

u∗ ≥ 0, λ∗ ≥ 0, and v∗(t)≥ 0 for each t ∈ [a,b], we have

∫ b
a

k∑
i=1

u∗i
{
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)−λ∗[gi(t,x,ẋ)−∥∥Bi(t)x∥∥M(i)]
}
dt

=
∫ b
a

k∑
i=1

u∗i
{
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
−λ∗[gi(t,x,ẋ)−∥∥Bi(t)x∥∥M(i)]
−fi

(
t,x∗, ẋ∗

)−∥∥Ai(t)x∗∥∥L(i)
+λ∗[gi(t,x∗, ẋ∗)−∥∥Bi(t)x∗∥∥M(i)]

}
dt

(
by (3.5)

)

≥
∫ b
a

k∑
i=1

u∗i
{
∇2fi

(
t,x∗, ẋ∗

)T (x−x∗)+∇3fi
(
t,x∗, ẋ∗

)T (ẋ− ẋ∗)

−λ∗[∇2gi
(
t,x∗, ẋ∗

)T (x−x∗)+∇3gi
(
t,x∗, ẋ∗

)T (ẋ− ẋ∗)]
+∥∥Ai(t)x∥∥L(i)+λ∗∥∥Bi(t)x∥∥M(i)−∥∥Ai(t)x∗∥∥L(i)
−λ∗∥∥Bi(t)x∗∥∥M(i)

}
dt(

by the convexity of fi(t,·,·) and −gi(t,·,·), i∈ k
)

=
∫ b
a

{ k∑
i=1

u∗i
{[
∇3fi

(
t,x∗, ẋ∗

)T −λ∗∇3gi
(
t,x∗, ẋ∗

)T](ẋ− ẋ∗)

+∥∥Ai(t)x∥∥L(i)+λ∗∥∥Bi(t)x∥∥M(i)
−∥∥Ai(t)x∗∥∥L(i)−λ∗∥∥Bi(t)x∗∥∥M(i)

}

−
{ k∑
i=1

u∗i
[
α∗i(t)TAi(t)+λ∗β∗i(t)TBi(t)

]

+
m∑
j=1

v∗j (t)
[∇2hj

(
t,x∗, ẋ∗

)+γ∗j(t)TCj(t)]

−D
{
∇3fi

(
t,x∗, ẋ∗

)T −λ∗∇3gi
(
t,x∗, ẋ∗

)T
+
m∑
j=1

v∗j (t)∇3hj
(
t,x∗, ẋ∗

)T}}(x−x∗)
}
dt

(
by (3.3)

)

≥
∫ b
a

{ k∑
i=1

u∗i
{[
∇3fi

(
t,x∗, ẋ∗

)T −λ∗∇3gi
(
t,x∗, ẋ∗

)T](ẋ− ẋ∗)

+∥∥Ai(t)x∥∥L(i)+λ∗∥∥Bi(t)x∥∥M(i)
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−∥∥Ai(t)x∗∥∥L(i)−λ∗∥∥Bi(t)x∗∥∥M(i)
}

−
k∑
i=1

u∗i
[∥∥α∗i(t)∥∥∗L(i)∥∥Ai(t)x∥∥L(i)
+λ∗∥∥β∗i(t)∥∥∗M(i)∥∥Bi(t)x∥∥M(i)

−α∗i(t)TAi(t)x∗−λ∗β∗i(t)TBi(t)x∗
]

+
m∑
j=1

v∗j (t)
[
∇2hj

(
t,x∗, ẋ∗

)

+∥∥γ∗j(t)∥∥∗N(j)∥∥Cj(t)x∥∥N(j)−γ∗j(t)TCj(t)x∗
]

+
{ k∑
i=1

u∗i
[
∇3fi

(
t,x∗, ẋ∗

)T −λ∗∇3gi
(
t,x∗, ẋ∗

)T]

+
m∑
j=1

v∗j (t)∇3hj
(
t,x∗, ẋ∗

)T}(ẋ− ẋ∗)
}
dt

(
by (3.9) and integration by parts

)

≥−
∫ b
a

m∑
j=1

v∗j (t)
[
∇2hj

(
t,x∗, ẋ∗

)T (x−x∗)+∇3hj
(
t,x∗, ẋ∗

)T (ẋ− ẋ∗)

+∥∥Cj(t)x∥∥N(j)−γ∗j(t)TCj(t)x∗
]
dt(

by (3.6) and (3.7)
)

≥
∫ b
a

m∑
j=1

v∗j (t)
[
hj
(
t,x∗, ẋ∗

)−hj(t,x,ẋ)
−∥∥Cj(t)x∥∥N(j)+γ∗j(t)TCj(t)x∗

]
dt(

by the convexity of hj(t,·,·), j ∈m
)

=−
∫ b
a

m∑
j=1

v∗j (t)
[
hj(t,x,ẋ)−

∥∥Cj(t)x∥∥N(j)
]
dt

(
by (3.4) and (3.8)

)

≥ 0 (by the feasibility of x).

(3.12)

Now using this inequality and Lemma 3.3, we see that

ϕ(x)=max
u∈U

∫ b
a
∑k
i=1ui

[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt∫ b

a
∑k
i=1ui

[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

≥
∫ b
a
∑k
i=1u

∗
i

[
fi
(
t,x,ẋ(t)

)+∥∥Ai(t)x∥∥L(i)
]
dt∫ b

a
∑k
i=1u

∗
i

[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

≥ λ∗ =ϕ(x∗).

(3.13)
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Since x was an arbitrary feasible solution, we conclude from the above inequal-

ity that x∗ is an optimal solution of (P).

An examination of the above proof suggests the following modification of

Theorem 3.4. Its proof is almost identical to that of Theorem 3.4.

Theorem 3.5. Consider the assumptions in Theorem 3.4 except that (3.3) is

replaced by either one of the following inequalities:

{ k∑
i=1

u∗i
{
∇2fi

(
t,x∗, ẋ∗

)T +α∗i(t)TAi(t)
−λ∗

[
∇2gi

(
t,x∗, ẋ∗

)T −β∗i(t)TBi(t)]}

+
m∑
j=1

v∗j (t)
[
∇2hj

(
t,x∗, ẋ∗

)T +γ∗j(t)TCj(t)]

−D
{ k∑
i=1

u∗i
[
∇3fi

(
t,x∗, ẋ∗

)T −λ∗∇3gi
(
t,x∗, ẋ∗

)T]

+
m∑
j=1

v∗j (t)∇3hj
(
t,x∗, ẋ∗

)T}}(x−x∗)
≥ 0 ∀t ∈ [a,b], ∀x ∈ F,

(3.14)

∫ b
a

{ k∑
i=1

u∗i
{
∇2fi

(
t,x∗, ẋ∗

)T +α∗i(t)TAi(t)
−λ∗

[
∇2gi

(
t,x∗, ẋ∗

)T −β∗i(t)TBi(t)]}(x−x∗)

+
m∑
j=1

v∗j (t)
[
∇2hj

(
t,x∗, ẋ∗

)T +γ∗j(t)TCj(t)](x−x∗)

+
{ k∑
i=1

u∗i
[
∇3fi

(
t,x∗, ẋ∗

)T −λ∗∇3gi
(
t,x∗, ẋ∗

)T]

+
m∑
j=1

v∗j (t)∇3hj
(
t,x∗, ẋ∗

)T}(ẋ− ẋ∗)
}
dt

≥ 0 ∀x ∈ F.

(3.15)

Then x∗ is an optimal solution of (P).

Although Theorems 3.4 and 3.5 have almost identical proofs, it should be

stressed that (3.3), (3.14), and (3.15) are essentially different conditions. First, it

is evident that any (x,λ,u,v,α1, . . . ,αk,β1, . . . ,βk,γ1, . . . ,γm) that satisfies the

conditions specified in Theorem 3.4 also satisfies the requirements of Theorem

3.5, but the converse is not necessarily true; second, (3.14) and (3.15) are not,

in general, transformable to (3.3); and third, (3.3) is a system of n equations,

whereas (3.14) and (3.15) are single inequalities. Evidently, from a computa-

tional point of view (3.3) is preferable to (3.14) and (3.15) because of the de-

pendence of the latter two on the feasible set of (P).
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The optimality conditions stated in Theorems 3.2, 3.4, and 3.5 contain the

parameter λ∗ which was introduced as a result of our indirect approach re-

quiring an auxiliary parametric problem. However, reviewing the structure of

these optimality conditions, one can easily see that this parameter can, in fact,

be eliminated. Indeed, this can be accomplished simply by solving for λ∗ in

(3.5), substituting the result into (3.3), simplifying, and redefining the multi-

plier vector. This process leads to the following parameter-free versions of

Theorems 3.2, 3.4, and 3.5.

Theorem 3.6. A feasible solution x◦ of (P) is optimal if and only if there

exist u◦ ∈ U, v◦ ∈ PWSm+ [a,b], α◦i ∈ PWSpi[a,b], β◦i ∈ PWSqi[a,b], i ∈ k,
γ◦j ∈ PWSrj [a,b], j ∈m, such that the following relations hold for all t ∈ [a,b]:

k∑
i=1

u◦i
{
Ψ
(
x◦,u◦

)[∇2fi
(
t,x◦, ẋ◦

)+Ai(t)Tα◦i(t)]

−Φ(x◦,u◦)[∇2gi
(
t,x◦, ẋ◦

)−Bi(t)Tβ◦i(t)]}

+
m∑
j=1

v◦j (t)
[∇2hj

(
t,x◦, ẋ◦

)+Cj(t)Tγ◦j(t)]

−D
{ k∑
i=1

u◦i
[
Ψ
(
x◦,u◦

)∇3fi
(
t,x◦, ẋ◦

)

−Φ(x◦,u◦)∇3gi
(
t,x◦, ẋ◦

)]

+
m∑
j=1

v◦j (t)∇3hj
(
t,x◦, ẋ◦

)}= 0,

(3.16)

m∑
j=1

v◦j (t)
[
hj
(
t,x◦, ẋ◦

)+∥∥Cj(t)x◦∥∥N(j)
]
= 0, (3.17)

ϕ
(
x◦
)= Φ

(
x◦,u◦

)
Ψ
(
x◦,u◦

) , (3.18)

∥∥α◦i(t)∥∥∗L(i) ≤ 1,
∥∥β◦i(t)∥∥∗M(i) ≤ 1, i∈ k, ∥∥γ◦j(t)∥∥∗N(j) ≤ 1, j ∈m,

(3.19)

α◦i(t)TAi(t)x◦ =
∥∥Ai(t)x◦∥∥L(i), β◦i(t)TBi(t)x◦ =

∥∥Bi(t)x◦∥∥M(i), i∈ k,
(3.20)

γ◦i(t)TCj(t)x◦ =
∥∥Cj(t)x◦∥∥N(j), j ∈m, (3.21)

where

Φ
(
x◦,u◦

)=
∫ b
a

k∑
i=1

u◦i
[
fi
(
t,x◦, ẋ◦

)+∥∥Ai(t)x◦∥∥L(i)
]
dt,

Ψ
(
x◦,u◦

)=
∫ b
a

k∑
i=1

u◦i
[
gi
(
t,x◦, ẋ◦

)−∥∥Bi(t)x◦∥∥M(i)
]
dt.

(3.22)
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Theorem 3.7. A feasible solution x◦ of (P) is optimal if and only if there

exist u◦ ∈ U, v◦ ∈ PWSm+ [a,b], α◦i ∈ PWSpi[a,b], β◦i ∈ PWSqi[a,b], i ∈ k,
γ◦j ∈ PWSrj [a,b], j ∈m, such that (3.16), (3.17), (3.18), (3.19), (3.20), (3.21),

and either of the following inequalities hold for all t ∈ [a,b]:

{ k∑
i=1

u◦i
{
Ψ
(
x◦,u◦

)[∇2fi
(
t,x◦, ẋ◦

)T +α◦i(t)TAi(t)]

−Φ(x◦,u◦)[∇2gi
(
t,x◦, ẋ◦

)T −β◦i(t)TBi(t)]}

+
m∑
j=1

v◦j (t)
[
∇2hj

(
t,x◦, ẋ◦

)T +γ◦j(t)TCj(t)]

−D
{ k∑
i=1

u◦i
[
Ψ
(
x◦,u◦

)∇3fi
(
t,x◦, ẋ◦

)T

−Φ(x◦,u◦)∇3gi
(
t,x◦, ẋ◦

)T]

+
m∑
j=1

v◦j (t)∇3hj
(
t,x◦, ẋ◦

)T}}(x−x◦)

≥ 0 ∀x ∈ F,
∫ b
a

{ k∑
i=1

u◦i
{
Ψ
(
x◦,u◦

)[∇2fi
(
t,x◦, ẋ◦

)T +α◦i(t)TAi(t)]

−Φ(x◦,u◦)[∇2gi
(
t,x◦, ẋ◦

)T −β◦i(t)TBi(t)]}(x−x◦)

+
m∑
j=1

v◦j (t)
[
∇2hj

(
t,x◦, ẋ◦

)T +γ◦j(t)TCj(t)](x−x◦)

+
{ k∑
i=1

u◦i
[
Ψ
(
x◦,u◦

)∇3fi
(
t,x◦, ẋ◦

)T −Φ(x◦,u◦)∇3gi
(
t,x◦, ẋ◦

)T]

+
m∑
j=1

v◦j (t)∇3hj
(
t,x◦, ẋ◦

)T}(ẋ− ẋ◦)
}
dt

≥ 0 ∀x ∈ F.

(3.23)

4. Duality model I. Making use of Theorems 3.2, 3.4, and 3.5, in this section

we formulate two parametric dual problems for (P) and prove weak, strong, and

strict converse duality theorems. A number of parameter-free dual problems

will be discussed in Sections 5 and 6.

Consider the following two problems:

(DI) Maximizeλ subject to

y(a)= xa, y(b)= xb, (4.1)
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k∑
i=1

ui
{
∇2fi

(
t,y,ẏ

)+Ai(t)Tαi(t)−λ[∇2gi
(
t,y,ẏ

)−Bi(t)Tβi(t)]}

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)+Cj(t)Tγj(t)]

−D
{ k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)−λ∇3gi
(
t,y,ẏ

)]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)}= 0, t ∈ [a,b],

(4.2)

∫ b
a

{ k∑
i=1

ui
{
fi
(
t,y,ẏ

)+αi(t)TAi(t)y−λ[gi(t,y,ẏ)−βi(t)TBi(t)y]}

+
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+γj(t)TCj(t)y]
}
dt ≥ 0,

(4.3)

∥∥αi(t)∥∥∗L(i) ≤ 1,
∥∥βi(t)∥∥∗M(i) ≤ 1, t ∈ [a,b], i∈ k,∥∥γj(t)∥∥∗N(j) ≤ 1, t ∈ [a,b], j ∈m, (4.4)

y ∈ PWSn[a,b], λ∈R+, u∈U, v ∈ PWSm+ [a,b],

αi ∈ PWSpi[a,b], βi ∈ PWSqi[a,b], i∈ k, γj ∈ PWSrj [a,b], j ∈m;

(4.5)

(D̃I) Maximizeλ subject to (4.1), (4.3), (4.4), (4.5), and

{ k∑
i=1

ui
{
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)−λ[∇2gi
(
t,y,ẏ

)−βi(t)TBi(t)]}

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]

−D
{ k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T −λ∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}}(x−y)
≥ 0 ∀t ∈ [a,b], x ∈ F,

(4.6)

or

∫ b
a

{ k∑
i=1

ui
{
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)
−λ

[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]}(x−y)
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+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)](x−y)

+
{ k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T −λ∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}(ẋ−ẏ)
}
dt ≥ 0 ∀x ∈ F.

(4.7)

Evidently, the structures of (DI) and (D̃I) are motivated primarily by the na-

ture and contents of the optimality conditions established in Theorems 3.2,

3.4, and 3.5 which form the basis for the proofs of all the duality relations for

(P)-(DI) and (P)-(D̃I).
Comparing (DI) and (D̃I), we observe that (D̃I) is relatively more general than

(DI) in the sense that any feasible solution of (DI) is also feasible for (D̃I), but

the converse is not necessarily true. Moreover, we see that (4.2) is a system ofn
equations, whereas (4.6) and (4.7) are two inequalities which in general cannot

be expressed as equivalent systems of equations. Evidently, (DI) is preferable

to (D̃I) from a computational point of view because of the dependence of the

latter on the feasible set of (P). However, despite these apparent differences, it

turns out that all the duality results that can be established for (P)-(DI) are also

valid for (P)-(D̃I). Therefore, in the sequel we will consider only the pair (P)-(DI).
For the sake of simplicity of notation, we will henceforth let α= (α1, . . . ,αr ),

β= (β1, . . . ,βr ), and γ = (γ1, . . . ,γr ).
The next two theorems show that (DI) is a dual problem for (P).

Theorem 4.1 (weak duality). Let x and (y,λ,u,v,α,β,γ) be arbitrary fea-

sible solutions of (P) and (DI), respectively. Then ϕ(x)≥ λ.

Proof. Keeping in mind that λ ≥ 0, u ≥ 0, and v(t) ≥ 0 for all t ∈ [a,b],
we have

∫ b
a

{ k∑
i=1

ui
{
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)−λ
[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]}

−
k∑
i=1

ui
{
fi
(
t,y,ẏ

)+αi(t)TAi(t)y
−λ[gi(t,y,ẏ)−βi(t)TBi(t)y]}

}
dt

≥
∫ b
a

k∑
i=1

ui
{
∇2fi

(
t,y,ẏ

)T (x−y)+∇3fi
(
t,y,ẏ

)T (ẋ−ẏ)

−λ
[
∇2gi

(
t,y,ẏ

)T (x−y)+∇3gi
(
t,y,ẏ

)T (ẋ−ẏ)]
+∥∥Ai(t)x∥∥L(i)+λ∥∥Bi(t)x∥∥M(i)
−αi(t)TAi(t)y−λβi(t)TBi(t)y

}
dt
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(
by the convexity of fi(t,·,·) and −gi(t,·,·), i∈ k

)

=
∫ b
a

{ k∑
i=1

ui
{[
∇3fi

(
t,y,ẏ

)T −λ∇3gi
(
t,y,ẏ

)T](ẋ−ẏ)+∥∥Ai(t)x∥∥L(i)
+λ∥∥Bi(t)x∥∥M(i)−αi(t)TAi(t)y−λβi(t)TBi(t)y

}

−
{ k∑
i=1

ui
[
αi(t)TAi(t)+λβi(t)TBi(t)T

]

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]

−D
{ k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T −λ∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}}(x−y)
}
dt

(
by (4.2)

)

≥
∫ b
a

{ k∑
i=1

ui
{[
∇3fi

(
t,y,ẏ

)T −λ∇3gi
(
t,y,ẏ

)T](ẋ−ẏ)+∥∥Ai(t)x∥∥L(i)
+λ∥∥Bi(t)x∥∥M(i)−αi(t)TAi(t)y−λβi(t)TBi(t)y

}

−
{ k∑
i=1

ui
[∥∥αi(t)∥∥∗L(i)∥∥Ai(t)x∥∥L(i)+λ∥∥βi(t)∥∥∗M(i)∥∥Bi(t)x∥∥M(i)
−αi(t)TAi(t)y−λβi(t)TBi(t)y

]

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T (x−y)
+∥∥γj(t)∥∥∗N(j)∥∥Cj(t)x∥∥N(j)−γj(t)TCj(t)y

]

+
{ k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T −λ∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}(ẋ−ẏ)
}}
dt

(
by (3.9) and integration by parts

)
≥−

∫ b
a

m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T (x−y)+∇3hj
(
t,y,ẏ

)T (ẋ−ẏ)

+∥∥Cj(t)x∥∥N(j)−γj(t)TCj(t)y
]
dt

(
by (4.4)

)
≥
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)−hj(t,x,ẋ)−∥∥Cj(t)x∥∥N(j)
+γj(t)TCj(t)y

]
dt(

by the convexity of hj(t,·,·), j ∈m
)

≥
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+γj(t)TCj(t)y]dt
(by the primal feasibility of x).

(4.8)
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In view of (4.3), the above inequality reduces to

∫ b
a

k∑
i=1

ui
{
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
−λ

[
gi
(
t,x,ẋ

)+∥∥Bi(t)x∥∥M(i)
]}
dt ≥ 0.

(4.9)

Now using this inequality and Lemma 3.3, we see, as in the proof of Theorem

3.4, that ϕ(x)≥ λ.

Theorem 4.2 (strong duality). Let x∗ be an optimal solution of (P). Then

there exist λ∗ ∈ R+, u∗ ∈ U, v∗ ∈ PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈
PWSqi[a,b], i ∈ k, γ∗j ∈ PWSrj [a,b], j ∈m, such that z∗ ≡ (x∗,λ∗,u∗,v∗,
α∗,β∗,γ∗) is an optimal solution of (DI) and ϕ(x∗)= λ∗.

Proof. By Theorem 3.2, there exist λ∗ (=ϕ(x∗)), u∗, v∗, α∗, β∗, and γ∗,

as specified above, such that z∗ is a feasible solution of (DI). Sinceϕ(x∗)= λ∗,

optimality of z∗ for (DI) follows from Theorem 4.1.

We also have the following converse duality result for (P)-(DI).

Theorem 4.3 (strict converse duality). Let x∗ and (x̃, λ̃, ũ, ṽ, α̃, β̃, γ̃) be

optimal solutions of (P) and (DI), respectively, and assume that fi(t,·,·) or

−gi(t,·,·) is strictly convex throughout [a,b] for at least one index i ∈ k with

the corresponding component ũi of ũ positive, or hj(t,·,·) is strictly convex

throughout [a,b] for at least one j ∈ m with the corresponding component

ṽj(t) of ṽ(t) positive on [a,b]. Then x̃(t) = x∗(t) for all t ∈ [a,b], that is, x̃
is an optimal solution of (P), and ϕ(x∗)= λ̃.

Proof. Suppose to the contrary that x̃ �= x∗ on a subset of [a,b] with posi-

tive length. From Theorem 4.2 we know that there exist λ∗ ∈R+, u∗ ∈U, v∗ ∈
PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈ PWSqi[a,b], i ∈ k, γ∗j ∈ PWSrj [a,b],
j ∈m, such that (x∗,λ∗,u∗,v∗,α∗,β∗,γ∗) is an optimal solution of (DI) and

ϕ(x∗)= λ∗. Now proceeding as in the proof of Theorem 4.1 (with x replaced

by x∗ and (x,λ,u,v,α,β,γ) by (x̃, λ̃, ũ, ṽ, α̃, β̃, γ̃)), we arrive at the strict in-

equality

∫ b
a
∑k
i=1 ũi

[
fi
(
t,x∗, ẋ∗

)+∥∥Ai(t)x∗∥∥L(i)
]
dt∫ b

a
∑k
i=1 ũi

[
gi
(
t,x∗, ẋ∗

)−∥∥Bi(t)x∗∥∥M(i)
]
dt
> λ̃. (4.10)

Using this inequality and Lemma 3.3, we find, as in the proof of Theorem 4.1,

thatϕ(x∗) > λ̃, which contradicts the fact thatϕ(x∗)= λ∗ = λ̃. Therefore, we

must have x̃(t)= x∗(t), for all t ∈ [a,b], and ϕ(x∗)= λ̃.

5. Duality model II. In the remainder of this paper we will formulate and

discuss several parameter-free duality models for (P) whose forms and features
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are based on Theorems 3.6 and 3.7. We begin with the following pair of dual

problems:

(DII)

Maximize

∫ b
a
∑k
i=1ui

[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]
dt∫ b

a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt

(5.1)

subject to

y(a)= xa, y(b)= xb, (5.2)

Ψ(y,u)
k∑
i=1

ui
[∇2fi

(
t,y,ẏ

)+Ai(t)Tαi(t)]

−Φ(y,u)
k∑
i=1

ui
[∇2gi

(
t,y,ẏ

)−Bi(t)Tβi(t)]

+
m∑
j=1

vj(t)
[∇2hj

(
t,y,ẏ

)+Cj(t)Tγj(t)]

−D
{ k∑
i=1

ui
[
Ψ(y,u)∇3fi

(
t,y,ẏ

)−Φ(y,u)∇3gi
(
t,y,ẏ

)]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)}= 0, t ∈ [a,b],

(5.3)

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]
≥ 0, t ∈ [a,b], (5.4)

∥∥αi(t)∥∥∗L(i) ≤ 1,
∥∥βi(t)∥∥∗M(i) ≤ 1, t ∈ [a,b], i∈ k,∥∥γj(t)∥∥∗N(j) ≤ 1, t ∈ [a,b], j ∈m, (5.5)

αi(t)TAi(t)y=
∥∥Ai(t)y∥∥L(i), βi(t)TBi(t)y=

∥∥Bi(t)y∥∥M(i), t∈[a,b], i∈k,
(5.6)

γj(t)TCj(t)y =
∥∥Cj(t)y∥∥N(j), t ∈ [a,b], j ∈m, (5.7)

y ∈ PWSn[a,b], u∈U, v ∈ PWSm+ [a,b], αi ∈ PWSpi[a,b],

βi ∈ PWSqi[a,b], i∈ k, γj ∈ PWSrj [a,b], j ∈m, (5.8)

where Φ and Ψ are as defined in Theorem 3.6;

(D̃II)

Maximize

∫ b
a
∑k
i=1ui

[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]
dt∫ b

a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt

(5.9)
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subject to (5.2), (5.4), (5.5), (5.6), (5.7), (5.8), and

{
Ψ(y,u)

k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

−Φ(y,u)
k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]

−D
{ k∑
i=1

ui
[
Ψ(y,u)∇3fi

(
t,y,ẏ

)T −Φ(y,u)∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}}(x−y)≥ 0 ∀t ∈ [a,b], x ∈ F,

(5.10)

or

∫ b
a

{{
Ψ(y,u)

k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

−Φ(y,u)
k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]
}
(x−y)

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)](x−y)

+
{ k∑
i=1

ui
[
Ψ(y,u)∇3fi

(
t,y,ẏ

)T −Φ(y,u)∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}(ẋ−ẏ)
}
dt ≥ 0 ∀x ∈ F.

(5.11)

The remarks made earlier about the relationships between (DI) and (D̃I) are,

of course, also applicable to (DII) and (D̃II).

Throughout this section and the next one, it will be assumed thatΦ(y,u)≥ 0

and Ψ(y,u) > 0, for all (y,u) such that (y,u,v,α,β,γ) is a feasible solution

of the dual problem under consideration.

We next proceed to state and prove weak, strong, and strict converse duality

theorems for (P)-(DII).

Theorem 5.1 (weak duality). Let x and z ≡ (y,u,v,α,β,γ) be arbitrary

feasible solutions of (P) and (DII), respectively. Then ϕ(x) ≥ ψ(z), where ψ is

the objective function of (DII).
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Proof. Keeping in mind that u≥ 0, Φ(y,u)≥ 0, Ψ(y,u) > 0, and v(t)≥ 0

for all t ∈ [a,b], we have

∫ b
a

k∑
i=1

ui
[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt
∫ b
a

k∑
i=1

ui
[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt

−
∫ b
a

k∑
i=1

ui
[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]
dt

×
∫ b
a

k∑
i=1

ui
[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

= Ψ(y,u)
{∫ b

a

k∑
i=1

ui
[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt

−
∫ b
a

k∑
i=1

ui
[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]
dt
}

−Φ(y,u)
{∫ b

a

k∑
i=1

ui
[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

−
∫ b
a

k∑
i=1

ui
[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt
}

≥ Ψ(y,u)
∫ b
a

k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T (x−y)+∇3fi
(
t,y,ẏ

)T (ẋ−ẏ)

+∥∥Ai(t)x∥∥L(i)−∥∥Ai(t)y∥∥L(i)
]
dt

−Φ(y,u)
∫ b
a

k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T (x−y)+∇3gi
(
t,y,ẏ

)T (ẋ−ẏ)

−∥∥Bi(t)x∥∥M(i)+∥∥Bi(t)y∥∥M(i)
]
dt

(
by the convexity of fi(t,·,·) and −gi(t,·,·), i∈ k

)

=
∫ b
a

{
Ψ(y,u)

k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T (ẋ−ẏ)−αi(t)TAi(t)(x−y)
+∥∥Ai(t)x∥∥L(i)−∥∥Ai(t)y∥∥L(i)

]

−Φ(y,u)
k∑
i=1

ui
[
∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)+βi(t)TBi(t)(x−y)
−∥∥Bi(t)x∥∥M(i)+∥∥Bi(t)y∥∥M(i)

]

−
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)](x−y)
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+D
[
Ψ(y,u)

k∑
i=1

ui∇3fi
(
t,y,ẏ

)T

−Φ(y,u)
k∑
i=1

ui∇3gi
(
t,y,ẏ

)T

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T](x−y)
}
dt

(
by (5.3)

)

≥
∫ b
a

{
Ψ(y,u)

k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T (ẋ−ẏ)−∥∥Ai(t)x∥∥L(i)∥∥αi(t)∥∥∗L(i)
+αi(t)TAi(t)y+

∥∥Ai(t)x∥∥L(i)−∥∥Ai(t)y∥∥L(i)
]

−Φ(y,u)
k∑
i=1

ui
[
∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)+∥∥Bi(t)x∥∥M(i)∥∥βi(t)∥∥∗M(i)
−βi(t)TBi(t)y−

∥∥Bi(t)x∥∥M(i)+∥∥Bi(t)y∥∥M(i)
]

−
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +∥∥Cj(t)x∥∥N(j)∥∥γj(t)∥∥∗N(j)
−γj(t)TCj(t)y

]

−
{ k∑
i=1

ui
[
Ψ(y,u)∇3fi

(
t,y,ẏ

)T −Φ(y,u)∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}(ẋ−ẏ)
}
dt

(
by (3.9) and integration by parts

)

≥−
∫ b
a

m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T (x−y)+∇3hj
(
t,y,ẏ

)T (ẋ−ẏ)

+∥∥Cj(t)x∥∥N(j)−γj(t)TCj(t)y
]
dt

(
by (5.5) and (5.6)

)

≥
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)−hj(t,x,ẋ)−∥∥Cj(t)x∥∥N(j)+γj(t)TCj(t)y
]
dt

(
by the convexity of hj(t,·,·), j ∈m

)
≥ 0

(
by the primal feasibility of x, (5.4), and (5.7)

)
.

(5.12)
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Now it follows from Lemma 3.3 and the above inequality that

ϕ(x)=max
c∈U

∫ b
a
∑k
i=1 ci

[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt∫ b

a
∑k
i=1 ci

[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

≥
∫ b
a
∑k
i=1ui

[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt∫ b

a
∑k
i=1ui

[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

≥
∫ b
a
∑k
i=1ui

[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]
dt∫ b

a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt

=ψ(y,u,v,α,β,γ).

(5.13)

Theorem 5.2 (strong duality). Let x∗ be an optimal solution of (P). Then

there exist u∗ ∈ U, v∗ ∈ PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈ PWSqi[a,b],
i ∈ k, γ∗j ∈ PWSrj [a,b], j ∈m, such that z∗ ≡ (x∗,u∗,v∗,α∗,β∗,γ∗) is an

optimal solution of (DII) and ϕ(x∗)=ψ(z∗).
Proof. By Theorem 3.6, there exist u∗, v∗, α∗, β∗, and γ∗, as specified

above, such that z∗ is a feasible solution of (DII). Since ϕ(x∗) = Φ(x∗,
u∗)/Ψ(x∗,u∗) =ψ(z∗), optimality of z∗ for (DII) follows from Theorem 5.1.

Theorem 5.3 (strict converse duality). Let x∗ and z̃ ≡ (x̃,ũ, ṽ, α̃, β̃, γ̃) be

optimal solutions of (P) and (DII), respectively, and assume that fi(t,·,·) or

−gi(t,·,·) is strictly convex throughout [a,b] for at least one index i∈ kwith the

corresponding component ũi of ũ (and Φ(x̃,ũ)) positive, or hj(t,·,·) is strictly

convex throughout [a,b] for at least one j ∈m with the corresponding compo-

nent ṽj(t) of ṽ(t) positive on [a,b]. Then x̃(t) = x∗(t) for all t ∈ [a,b], that

is, x̃ is an optimal solution of (P) and ϕ(x∗)=ψ(z̃).
Proof. Suppose to the contrary that x̃(t) �= x∗(t) on a subset of [a,b]

with positive length. From Theorem 5.2 we know that there exist u∗ ∈U, v∗ ∈
PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈ PWSqi[a,b], i ∈ k, γ∗j ∈ PWSrj [a,b],
j ∈m, such that z∗ ≡ (x∗,u∗,v∗,α∗,β∗,γ∗) is an optimal solution of (DII)

and ϕ(x∗) =ψ(z∗). Now proceeding as in the proof of Theorem 5.1 (with x
replaced by x∗ and z by z̃), we arrive at the strict inequality

Φ
(
x∗, ũ

)
Ψ
(
x∗, ũ

) > Φ
(
x̃, ũ

)
Ψ
(
x̃, ũ

) . (5.14)

Using this inequality and Lemma 3.3, it can be shown, as in the proof of

Theorem 5.1, that ϕ(x∗) > ψ(z̃), in contradiction to the fact that ϕ(x∗) =
ψ(z∗) = ψ(z̃). Therefore, it follows that x̃(t) = x∗(t) for all t ∈ [a,b] and

ϕ(x∗)=ψ(z̃).
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Next, we turn to a brief discussion of certain variants of (DII) and (D̃II). We

show that the constraints (5.6) and (5.7) are superfluous and can be deleted

without invalidating the foregoing duality results. More precisely, we demon-

strate that the following reduced versions of (DII) and (D̃II) are also dual prob-

lems for (P):

(DIIA)

Maximize

∫ b
a
∑k
i=1ui

[
fi
(
t,y,ẏ

)+αi(t)TAi(t)y]dt∫ b
a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−βi(t)TBi(t)y]dt (5.15)

subject to

y(a)= xa, y(b)= xb, (5.16)

k∑
i=1

ui
{
Γ(y,u,β)

[∇2fi
(
t,y,ẏ

)+Ai(t)Tαi(t)]

−Π(y,u,α)[∇2gi
(
t,y,ẏ

)−Bi(t)Tβi(t)]}

+
m∑
j=1

vj(t)
[∇2hj

(
t,y,ẏ

)+Cj(t)Tγj(t)]

−D
{ k∑
i=1

ui
[
Γ(y,u,β)∇3fi

(
t,y,ẏ

)

−Π(y,u,α)∇3gi
(
t,y,ẏ

)]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)}= 0, t ∈ [a,b],

(5.17)

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+γj(t)TCj(t)y]≥ 0, t ∈ [a,b], (5.18)

∥∥αi(t)∥∥∗L(i) ≤ 1,
∥∥βi(t)∥∥∗M(i) ≤ 1, t ∈ [a,b], i∈ k,∥∥γj(t)∥∥∗N(j) ≤ 1, t ∈ [a,b], j ∈m, (5.19)

y ∈ PWSn[a,b], u∈U, v ∈ PWSm+ [a,b], αi ∈ PWSpi[a,b],

βi ∈ PWSqi[a,b], i∈ k, γj ∈ PWSrj [a,b], j ∈m, (5.20)

where

Π(y,u,α)=
∫ b
a

k∑
i=1

ui
[
fi
(
t,y,ẏ

)+αi(t)TAi(t)y]dt,

Γ(y,u,β)=
∫ b
a

k∑
i=1

ui
[
gi
(
t,y,ẏ

)−βi(t)TBi(t)y]dt;
(5.21)
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(D̃IIA)

Maximize

∫ b
a
∑k
i=1ui

[
fi
(
t,y,ẏ

)+αi(t)TAi(t)y]dt∫ b
a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−βi(t)TBi(t)y]dt (5.22)

subject to (5.16), (5.18), (5.19), (5.20), and

{ k∑
i=1

ui
{
Γ(y,u,β)

[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

−Π(y,u,α)
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]}

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]

−D
{ k∑
i=1

ui
[
Γ(y,u,β)∇3fi

(
t,y,ẏ

)T −Π(y,u,α)∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}}(x−y)≥ 0 ∀t ∈ [a,b], x ∈ F,

(5.23)

or

∫ b
a

{{ k∑
i=1

ui
{
Γ(y,u,β)

[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

−Π(y,u,α)
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]}

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]
}
(x−y)

+
{ k∑
i=1

ui
[
Γ(y,u,β)∇3fi

(
t,y,ẏ

)T −Π(y,u,α)∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}(ẋ−ẏ)
}
dt ≥ 0 ∀x ∈ F.

(5.24)

Since it may not be immediately apparent that (DIIA) and (D̃IIA) are dual

problems for (P), we provide a proof for (P)-(DIIA).

Throughout this section and the next one, we assume that Π(y,u,α) ≥ 0

and Γ(y,u,β) > 0, for all y,u,α, and β such that (y,u,α,β,γ) is a feasible

solution of the dual problem under consideration.

Theorem 5.4 (weak duality). Letx and (y,u,v,α,β,γ) be arbitrary feasible

solutions of (P) and (DIIA), respectively. Then ϕ(x)≥ω(y,u,v,α,β,γ), where

ω is the objective function of (DIIA).
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Proof. Keeping in mind that u ≥ 0, Π(y,u,α) ≥ 0, Γ(y,u,β) > 0, and

v(t)≥ 0 for all t ∈ [a,b], we have

∫ b
a

k∑
i=1

ui
[
gi
(
t,y,ẏ

)−βi(t)TBi(t)y]dt
∫ b
a

k∑
i=1

ui
[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt

−
∫ b
a

k∑
i=1

ui
[
fi
(
t,y,ẏ

)+αi(t)TAi(t)y]dt

×
∫ b
a

k∑
i=1

ui
[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

= Γ(u,y,β)
{∫ b

a

k∑
i=1

ui
[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt

−
∫ b
a

k∑
i=1

ui
[
fi
(
t,y,ẏ

)+αi(t)TAi(t)y]dt
}

−Π(y,u,α)
{∫ b

a

k∑
i=1

ui
[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

−
∫ b
a

k∑
i=1

ui
[
gi
(
t,y,ẏ

)−βi(t)TBi(t)y]dt
}

≥
∫ b
a

k∑
i=1

ui
{
Γ(y,u,β)

[
∇2fi

(
t,y,ẏ

)T (x−y)+∇3fi
(
t,y,ẏ

)T (ẋ−ẏ)

+∥∥Ai(t)x∥∥L(i)−αi(t)Ai(t)y
]

−Π(y,u,α)
[
∇2gi

(
t,y,ẏ

)T (x−y)+∇3gi
(
t,y,ẏ

)T (ẋ−ẏ)
−∥∥Bi(t)x∥∥M(i)+βi(t)TBi(t)y

]}
dt(

by the convexity of fi(t,·,·) and −gi(t,·,·), i∈ k
)

=
∫ b
a

{ k∑
i=1

ui
{
Γ(y,u,β)

[
∇3fi

(
t,y,ẏ

)T (ẋ−ẏ)−αi(t)TAi(t)(x−y)
+∥∥Ai(t)x∥∥L(i)−αi(t)TAi(t)y

]

−Π(y,u,α)
[
∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)+βi(t)TBi(t)(x−y)
−∥∥Bi(t)x∥∥M(i)+βi(t)TBi(t)y

]}

−
{ m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]

−D
{ k∑
i=1

ui
[
Γ(y,u,β)∇3fi

(
t,y,ẏ

)T −Π(y,u,α)∇3gi
(
t,y,ẏ

)T]
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+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}}(x−y)
}
dt

(
by (5.17)

)

≥
∫ b
a

{ k∑
i=1

ui
{
Γ(y,u,β)

[
∇3fi

(
t,y,ẏ

)T (ẋ−ẏ)+∥∥Ai(t)x∥∥L(i)
−∥∥Ai(t)x∥∥L(i)∥∥αi(t)∥∥∗L(i)

]

−Π(y,u,α)
[
∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)−∥∥Bi(t)x∥∥M(i)
+∥∥Bi(t)x∥∥M(i)∥∥βi(t)∥∥∗M(i)

]}

−
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T (x−y)
+∥∥Cj(t)x∥∥N(j)∥∥γj(t)∥∥∗N(j)−γj(t)TCj(t)y

]

−
{ k∑
i=1

ui
[
Γ(y,u,β)∇3fi

(
t,y,ẏ

)T

−Π(y,u,α)∇3gi
(
t,y,ẏ

)T]

+
m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T}(ẋ−ẏ)
}
dt

(
by (3.9) and integration by parts

)

≥−
∫ b
a

m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T (x−y)+∇3hj
(
t,y,ẏ

)T (ẋ−ẏ)

+∥∥Cj(t)x∥∥N(j)−γj(t)TCj(t)y
]
dt

(
by (5.19)

)

≥
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)−hj(t,x,ẋ)

−∥∥Cj(t)x∥∥N(j)+γj(t)TCj(t)y
]
dt(

by the convexity of hj(t,·,·), j ∈m
)

≥ 0
(
by the primal feasibility of x and (5.18)

)
.

(5.25)

Hence

Φ(x,u)
Ψ(x,u)

≥ Π(y,u,α)
Γ(y,u,β)

. (5.26)

Now using this inequality and Lemma 3.3, as in the proof of Theorem 5.1, we

obtain the desired inequality ϕ(x)≥ω(y,u,v,α,β,γ).
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Theorem 5.5 (strong duality). Let x∗ be an optimal solution of (P). Then

there exist u∗ ∈ U, v∗ ∈ PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈ PWSqi[a,b],
i∈ k, γ∗j ∈ PWSrj [a,b], j ∈m, such that (x∗,u∗,v∗,α∗,β∗,γ∗) is an optimal

solution of (DIIA) and ϕ(x∗)=ω(x∗,u∗,v∗,α∗,β∗,γ∗).
Proof. The proof is similar to that of Theorem 5.2.

Theorem 5.6 (strict converse duality). Let x∗ and (x̃,ũ, ṽ, α̃, β̃, γ̃) be opti-

mal solutions of (P) and (DIIA), respectively, and assume that fi(t,·,·) or−gi(t,·,
·) is strictly convex throughout [a,b] for at least one index i ∈ k with the cor-

responding component ũi of ũ (and Φ(x̃,ũ)) positive, or hj(t,·,·) is strictly

convex throughout [a,b] for at least one j ∈m with the corresponding compo-

nent ṽj(t) of ṽ(t) positive on [a,b]. Then x̃(t) = x∗(t) for all t ∈ [a,b], that

is, x̃ is an optimal solution of (P) and ϕ(x∗)=ω(x̃,ũ, ṽ, α̃, β̃, γ̃).
Proof. The proof is similar to that of Theorem 5.3.

6. Duality model III. In this section, we show that the following variants of

(DII) are also dual problems for (P):

(DIII)

Maximize

(
1∫ b

a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt

)

×
∫ b
a

{ k∑
i=1

ui
[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]

+
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

(6.1)

subject to

y(a)= xa, y(b)= xb, (6.2)

Ψ(y,u)
{ k∑
i=1

ui
[∇2fi

(
t,y,ẏ

)+Ai(t)Tαi(t)]

+
m∑
j=1

vj(t)
[∇2hj

(
t,y,ẏ

)+Cj(t)Tγj(t)]
}

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui
[∇2gi

(
t,y,ẏ

)−Bi(t)Tβi(t)]

−D
{
Ψ(y,u)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)+ m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)]

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)}= 0, t ∈ [a,b],

(6.3)
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m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]
≥ 0, t ∈ [a,b], (6.4)

∥∥αi(t)∥∥∗L(i) ≤ 1,
∥∥βi(t)∥∥∗M(i) ≤ 1, t ∈ [a,b], i∈ k,∥∥γj(t)∥∥∗N(j) ≤ 1, t ∈ [a,b], j ∈m, (6.5)

αi(t)TAi(t)y=
∥∥Ai(t)y∥∥L(i), βi(t)TBi(t)y=

∥∥Bi(t)y∥∥M(i), t∈[a,b], i∈k,
(6.6)

γj(t)TCj(t)y =
∥∥Cj(t)y∥∥N(j), t ∈ [a,b], j ∈m, (6.7)

y ∈ PWSn[a,b], u∈U, v ∈ PWSm+ [a,b], αi ∈ PWSpi[a,b],

βi ∈ PWSqi[a,b], i∈ k, γj ∈ PWSrj [a,b], j ∈m, (6.8)

where Φ and Ψ are as defined in Theorem 3.6 and

Ω(y,v)=
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]
dt; (6.9)

(D̃III)

Maximize

(
1∫ b

a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt

)

×
∫ b
a

{ k∑
i=1

ui
[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]

+
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

(6.10)

subject to (6.2), (6.4), (6.5), (6.6), (6.7), (6.8), and

{
Ψ(y,u)

{ k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]
}

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]

−D
{
Ψ(y,u)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)T + m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T]

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)T}}(x−y)
≥ 0 ∀t ∈ [a,b], x ∈ F,

(6.11)
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or

∫ b
a

{{
Ψ(y,u)

{ k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]
}

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]
}
(x−y)

+
{
Ψ(y,u)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)T + m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T]

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)T}(ẋ−ẏ)
}
dt

≥ 0 ∀x ∈ F.
(6.12)

The remarks made about the relationships between (DI) and (D̃I) are, of

course, also applicable to (DIII) and (D̃III).

We now proceed to establish weak, strong, and strict converse duality rela-

tions for (P)-(DIII).

Theorem 6.1 (weak duality). Letx and (y,u,v,α,β,γ) be arbitrary feasible

solutions of (P) and (DIII), respectively. Then ϕ(x)≥ ξ(y,u,v,α,β,γ), where ξ
is the objective function of (DIII).

Proof. Keeping in mind that u≥ 0, Φ(y,u)≥ 0, Ψ(y,u) > 0, and v(t)≥ 0

for all t ∈ [a,b], we have

∫ b
a

k∑
i=1

ui
[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt
∫ b
a

k∑
i=1

ui
[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt

−
{∫ b

a

k∑
i=1

ui
[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]

+
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

×
∫ b
a

k∑
i=1

ui
[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

= Ψ(y,u)
{∫ b

a

k∑
i=1

ui
[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
−fi

(
t,y,ẏ

)−∥∥Ai(t)y∥∥L(i)
]
dt
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−Φ(y,u)
∫ b
a

k∑
i=1

ui
[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
−gi

(
t,y,ẏ

)+∥∥Bi(t)y∥∥M(i)
]
dt

−Ψ(x,u)
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

≥ Ψ(y,u)
∫ b
a

k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T (x−y)+∇3fi
(
t,y,ẏ

)T (ẋ−ẏ)

+∥∥Ai(t)x∥∥L(i)−∥∥Ai(t)y∥∥L(i)
]
dt

−Φ(y,u)
∫ b
a

k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T (x−y)+∇3gi
(
t,y,ẏ

)T (ẋ−ẏ)

−∥∥Bi(t)x∥∥M(i)+∥∥Bi(t)y∥∥M(i)
]
dt

−Ψ(x,u)
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]
dt

(
by the convexity of fi(t,·,·) and −gi(t,·,·), i∈ k

)

=
∫ b
a

{
Ψ(y,u)

{ k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T (ẋ−ẏ)−αi(t)TAi(t)(x−y)
+∥∥Ai(t)x∥∥L(i)−∥∥Ai(t)y∥∥L(i)

]

−
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)](x−y)
}

−Φ(y,u)
k∑
i=1

ui
[
∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)+βi(t)TBi(t)(x−y)
−∥∥Bi(t)x∥∥M(i)+∥∥Bi(t)y∥∥M(i)

]

+Ω(y,v)
k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)](x−y)

+D
{
Ψ(y,u)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)T + m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T]

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)T}(x−y)

−Ψ(x,u)
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

(
by (6.3)

)

≥
∫ b
a

{
Ψ(y,u)

{ k∑
i=1

ui
[
∇3fi

(
t,y,ẏ

)T (ẋ−ẏ)−∥∥Ai(t)x∥∥L(i)∥∥αi(t)∥∥∗L(i)
+αi(t)TAi(t)y+

∥∥Ai(t)x∥∥L(i)−∥∥Ai(t)y∥∥L(i)
]
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−
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T (x−y)
+∥∥Cj(t)x∥∥N(j)∥∥γj(t)∥∥∗N(j)
−γj(t)TCj(t)y

]}

−Φ(y,u)
k∑
i=1

ui
[
∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)+∥∥Bi(t)x∥∥M(i)∥∥βi(t)∥∥∗M(i)
−βi(t)TBi(t)y−

∥∥Bi(t)x∥∥M(i)+∥∥Bi(t)y∥∥M(i)
]

+Ω(y,v)
k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)](x−y)

−
{
Ψ(y,u)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)T + m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T]

−[Φ(y,u)+Ω(y,v)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)T}(ẋ−ẏ)

−Ψ(x,u)
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

(
by (3.9) and integration by parts

)

≥
∫ b
a

{
−Ψ(y,u)

m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T (x−y)+∇3hj
(
t,y,ẏ

)T (ẋ−ẏ)

+∥∥Cj(t)x∥∥N(j)−γj(t)TCj(t)y
]

+Ω(y,v)
k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T (x−y)+∇3gi
(
t,y,ẏ

)T (ẋ−ẏ)

−βi(t)TBi(t)(x−y)
]

−Ψ(x,u)
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

(
by (6.5), (6.6), and (6.7)

)

≥
∫ b
a

{
Ψ(y,u)

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)−hj(t,x,ẋ)

−∥∥Cj(t)x∥∥N(j)+γj(t)TCj(t)y
]

+Ω(y,v)
k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T (x−y)
+∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)−βi(t)TBi(t)(x−y)]
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−Ψ(x,u)
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt

(
by the convexity of hj(t,·,·), j ∈m

)
≥Ω(y,v)Ψ(y,u)+Ω(y,v)

×
∫ b
a

k∑
i=1

ui
[
−gi

(
t,x,ẋ

)+∇2gi
(
t,y,ẏ

)T (x−y)
+∇3gi

(
t,y,ẏ

)T (ẋ−ẏ)+∥∥Bi(t)x∥∥M(i)
−∥∥Bi(t)x∥∥M(i)∥∥βi(t)∥∥∗M(i)−βi(t)TBi(t)y

]
dt(

by the primal feasibility of x,

definitions of Ψ(x,u) and Ω(y,v), (6.7), and (3.9)
)

≥Ω(y,v)Ψ(y,u)+Ω(y,v)
∫ b
a

k∑
i=1

ui
[−gi(t,y,ẏ)+βi(t)TBi(t)y]dt

(
by the convexity of −gi(t,·,·), i∈ k, (6.4), and (6.5)

)
=Ω(y,v)Ψ(y,u)−Ω(y,v)Ψ(y,u)(

by the definition of Ψ(y,u) and (6.7)
)

= 0,

(6.13)

which leads to the inequality

∫ b
a
∑k
i=1ui

[
fi
(
t,x,ẋ

)+∥∥Ai(t)x∥∥L(i)
]
dt∫ b

a
∑k
i=1ui

[
gi
(
t,x,ẋ

)−∥∥Bi(t)x∥∥M(i)
]
dt

≥
(

1∫ b
a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−∥∥Bi(t)y∥∥M(i)
]
dt

)

×
∫ b
a

{ k∑
i=1

ui
[
fi
(
t,y,ẏ

)+∥∥Ai(t)y∥∥L(i)
]

+
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+∥∥Cj(t)y∥∥N(j)
]}
dt.

(6.14)

Now invoking Lemma 3.3 and proceeding as in the proof of Theorem 5.1, we

obtain the desired inequality ϕ(x)≥ ξ(y,u,v,α,β,γ).
Theorem 6.2 (strong duality). Let x∗ be an optimal solution of (P). Then

there exist u∗ ∈ U, v∗ ∈ PWSm+ [a,b], α∗i ∈ PWSpi[a,b], β∗i ∈ PWSqi[a,b],
i ∈ k, γ∗j ∈ PWSrj [a,b], j ∈m, such that z∗ ≡ (x∗,u∗,v∗,α∗,β∗,γ∗) is an

optimal solution of (DIII) and ϕ(x∗)= ξ(z∗).
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Proof. Since x∗ is an optimal solution of (P), by Theorem 3.6, there exist

u∗, α∗, β∗, and γ∗, as specified above, and v◦ ∈ PWSm+ [a,b] such that the

following relations hold for all t ∈ [a,b]:

k∑
i=1

u∗i
{
Ψ
(
x∗,u∗

)[∇2fi
(
t,x∗, ẋ∗

)+Ai(t)Tα∗i(t)]

−Φ(x∗,u∗)[∇2gi
(
t,x∗, ẋ∗

)−Bi(t)Tβ∗i(t)]}

+
m∑
j=1

v◦j (t)
[∇2hj

(
t,x∗, ẋ∗

)+Cj(t)Tγ∗j(t)]

−D
{ k∑
i=1

u∗i
[
Ψ
(
x∗,u∗

)∇3fi
(
t,x∗, ẋ∗

)−Φ(x∗,u∗)∇3gi
(
t,x∗, ẋ∗

)]

+
m∑
j=1

v◦j (t)∇3hj
(
t,x∗, ẋ∗

)}= 0,

(6.15)

m∑
j=1

v◦j (t)
[
hj
(
t,x∗, ẋ∗

)+∥∥Cj(t)x∗∥∥N(j)
]
= 0, (6.16)

ϕ
(
x∗
)= Φ

(
x∗,u∗

)
Ψ
(
x∗,u∗

) , (6.17)

∥∥α∗i(t)∥∥∗L(i) ≤ 1,
∥∥β∗i(t)∥∥∗M(i) ≤ 1, i∈ k, ∥∥γ∗j(t)∥∥∗N(j) ≤ 1, j ∈m,

(6.18)

α∗i(t)TAi(t)x∗ =
∥∥Ai(t)x∗∥∥L(i), β∗i(t)TBi(t)x∗ =

∥∥Bi(t)x∗∥∥M(i), i∈ k,
(6.19)

γ∗j(t)TCj(t)x∗ =
∥∥Cj(t)x∗∥∥N(j), j ∈m. (6.20)

Since Ψ(x∗,u∗) > 0 and (6.16) holds, (6.15) and (6.16) can be rewritten as

follows:

Ψ
(
x∗,u∗

){ k∑
i=1

u∗i
[∇2fi

(
t,x∗, ẋ∗

)+Ai(t)Tα∗i(t)]

+
m∑
j=1

[
v◦j (t)

Ψ
(
x∗,u∗

)
][
∇2hj

(
t,x∗, ẋ∗

)+Cj(t)Tγ∗j(t)]
}

−
[
Φ
(
x∗,u∗

)+Ω
(
x∗,

v◦

Ψ
(
x∗,u∗

)
)]

×
k∑
i=1

u∗i
[∇2gi

(
t,x∗, ẋ∗

)−Bi(t)Tβ∗i(t)]
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−D
{
Ψ
(
x∗,u∗

){ k∑
i=1

u∗i ∇3fi
(
t,x∗, ẋ∗

)

+
m∑
j=1

[
v◦j (t)

Ψ
(
x∗,u∗

)
]
∇3hj

(
t,x∗, ẋ∗

)}

−
[
Φ
(
x∗,u∗

)+Ω
(
x∗,

v◦

Ψ
(
x∗,u∗

)
)] k∑

i=1

u∗i ∇3gi
(
t,x∗, ẋ∗

)}

= 0, t ∈ [a,b],
(6.21)

m∑
j=1

[
v◦j (t)

Ψ
(
x∗,u∗

)
][
hj
(
t,x∗, ẋ∗

)+∥∥Cj(t)x∗∥∥N(j)
]
= 0, t ∈ [a,b]. (6.22)

Now letting v∗ = v◦/Ψ(x∗,u∗) in (6.21) and (6.22), we see from (6.18), (6.19),

(6.20), (6.21), and (6.22) that z∗ is a feasible solution of (DIII). But in view

of (6.17) and (6.22), ϕ(x∗) = ξ(z∗) and, therefore, by Theorem 6.1, z∗ is an

optimal solution of (DIII).

Theorem 6.3 (strict converse duality). Let x∗ and z̃ ≡ (x̃,ũ, ṽ, α̃, β̃, γ̃) be

optimal solutions of (P) and (DIII), respectively, and assume that fi(t,·,·) or

−gi(t,·,·) is strictly convex throughout [a,b] for at least one index i∈ kwith the

corresponding component ũi of ũ (and Φ(x̃,ũ)) positive, or hj(t,·,·) is strictly

convex throughout [a,b] for at least one j ∈m with the corresponding compo-

nent ṽj(t) of ṽ(t) positive on [a,b]. Then x̃(t) = x∗(t) for all t ∈ [a,b], that

is, x̃ is an optimal solution of (P) and ϕ(x∗)= ξ(z̃).

Proof. The proof is similar to that of Theorem 5.3.

We next identify two reduced versions of (DIII) and (D̃III), which are the coun-

terparts of (DIIA) and (D̃IIA) introduced in the preceding section. These prob-

lems are obtained by dropping the constraints (6.6) and (6.7) and modifying

the remaining constraints and objective functions of (DIII) and (D̃III). They take

the following forms:
(DIIIA)

Maximize

(
1∫ b

a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−βi(t)TBi(t)y]dt
)

×
∫ b
a

{ k∑
i=1

ui
[
fi
(
t,y,ẏ

)+αi(t)TAi(t)y]

+
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+γj(t)TCj(t)y]
}
dt

(6.23)

subject to

y(a)= xa, y(b)= xb, (6.24)
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Γ(y,u,β)
{ k∑
i=1

ui
[∇2fi

(
t,y,ẏ

)+Ai(t)Tαi(t)]

+
m∑
j=1

vj(t)
[∇2hj

(
t,y,ẏ

)+Cj(t)Tγj(t)]
}

−[Π(y,v,α)+∆(y,v,γ)] k∑
i=1

ui
[∇2gi

(
t,y,ẏ

)−Bi(t)Tβi(t)]

−D
{
Γ(y,u,β)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)+ m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)]

−[Π(y,v,α)+∆(y,v,γ)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)}= 0, t ∈ [a,b],
(6.25)

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+γj(t)TCj(t)y]≥ 0, t ∈ [a,b], (6.26)

∥∥αi(t)∥∥∗L(i) ≤ 1,
∥∥βi(t)∥∥∗M(i) ≤ 1, t ∈ [a,b], i∈ k,∥∥γj(t)∥∥∗N(j) ≤ 1, t ∈ [a,b], j ∈m,

(6.27)

y ∈ PWSn[a,b], u∈U, v ∈ PWSm+ [a,b], αi ∈ PWSpi[a,b],

βi ∈ PWSqi[a,b], i∈ k, γj ∈ PWSrj [a,b], j ∈m,
(6.28)

where Γ and Π are as defined in the description of (DIIA) and

∆(y,v,γ)=
∫ b
a

m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+γj(t)TCj(t)y]dt; (6.29)

(D̃IIIA)

Maximize

(
1∫ b

a
∑k
i=1ui

[
gi
(
t,y,ẏ

)−βi(t)TBi(t)y]dt
)

×
∫ b
a

{ k∑
i=1

ui
[
fi
(
t,y,ẏ

)+αi(t)TAi(t)y]

+
m∑
j=1

vj(t)
[
hj
(
t,y,ẏ

)+γj(t)TCj(t)y]
}
dt

(6.30)

subject to (6.24), (6.26), (6.27), (6.28), and

{
Γ(y,u,β)

{ k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]
}
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−[Π(y,v,α)+∆(y,v,γ)] k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]

−D
{
Γ(y,u,β)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)T + m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T]

−[Π(y,v,α)+∆(y,v,γ)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)T}}(x−y)
≥ 0 ∀t ∈ [a,b], x ∈ F,

(6.31)

or

∫ b
a

{{
Γ(y,u,β)

{ k∑
i=1

ui
[
∇2fi

(
t,y,ẏ

)T +αi(t)TAi(t)]

+
m∑
j=1

vj(t)
[
∇2hj

(
t,y,ẏ

)T +γj(t)TCj(t)]
}

−[Π(y,v,α)+∆(y,v,γ)] k∑
i=1

ui
[
∇2gi

(
t,y,ẏ

)T −βi(t)TBi(t)]
}
(x−y)

+
{
Ψ(y,u)

[ k∑
i=1

ui∇3fi
(
t,y,ẏ

)T + m∑
j=1

vj(t)∇3hj
(
t,y,ẏ

)T]

−[Π(y,v,α)+∆(y,v,γ)] k∑
i=1

ui∇3gi
(
t,y,ẏ

)T}(ẋ−ẏ)
}
dt

≥ 0 ∀x ∈ F.
(6.32)

Following the patterns of Theorems 5.4, 5.5, 5.6 and Theorems 6.1, 6.2, 6.3,

one can readily state and prove similar duality results for (P)-(DIIIA) and (P)-

(D̃IIIA).

7. Problems containing square roots of positive semidefinite quadratic

forms. In this section, we briefly discuss an interesting special case of (P)

obtained by choosing all the norms to be the �2-norm.

Let ‖ · ‖L(i), ‖ · ‖M(i), i ∈ k, and ‖ · ‖N(j), j ∈m, be the �2-norm ‖ · ‖2 and

define Pi(t)=Ai(t)TAi(t), Qi(t)= Bi(t)TBi(t), i∈ k, and Rj(t)= Cj(t)TCj(t),
j ∈ m. Then it is clear that Pi(t), Qi(t), i ∈ k, and Rj(t), j ∈ m, are n×
n symmetric positive semidefinite matrices and, consequently, the functions
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x(t) → [x(t)TPi(t)x(t)]1/2, x(t) → [x(t)TQi(t)x(t)]1/2, i ∈ k, and x(t) →
[x(t)TRj(t)x(t)]1/2, j ∈m, are convex onRn. With these choices of the norms

and matrices, (P), (P1), (P2), and (P3) take the following forms:

(P∗)

Minimize max
1≤i≤k

∫ b
a

{
fi
(
t,x,ẋ

)+[xTPi(t)x]1/2
}
dt∫ b

a

{
gi
(
t,x,ẋ

)−[xTQi(t)x]1/2
}
dt

(7.1)

subject to

x(a)= xa, x(b)= xb, (7.2)

hj
(
t,x,ẋ

)+[xTRj(t)x]1/2 ≤ 0, t ∈ [a,b], j ∈m, (7.3)

x ∈ PWSn[a,b]; (7.4)

(P∗1)

Minimize
x∈F∗

∫ b
a

{
f1
(
t,x,ẋ

)+[xTP1(t)x
]1/2

}
dt∫ b

a

{
g1
(
t,x,ẋ

)−[xTQ1(t)x
]1/2

}
dt

; (7.5)

(P∗2)

Minimize
x∈F∗

max
1≤i≤k

∫ b
a

{
fi
(
t,x,ẋ

)+[xTPi(t)x]1/2
}
dt; (7.6)

(P∗3)

Minimize
x∈F∗

∫ b
a

{
f1
(
t,x,ẋ

)+[xTP1(t)x
]1/2

}
dt, (7.7)

where F∗ is the feasible set of (P∗), that is,

F∗ = {x ∈ PWSn[a,b] : (7.2) and (7.3) hold
}
. (7.8)

To see more explicitly the changes that will be required in specializing the

optimality conditions of Section 3 for (P∗), we next combine, modify, and re-

state Theorems 3.2 and 3.4 for (P∗).
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Theorem 7.1. A feasible solution x∗ of (P∗) is optimal if and only if there

exist u∗ ∈ U, λ∗ ∈ R+, v∗ ∈ PWSm+ [a,b], ρ∗i,σ∗i,θ∗j ∈ PWSn[a,b], i ∈ k,
j ∈m, such that the following relations hold for all t ∈ [a,b]:

k∑
i=1

u∗i
{
∇2fi

(
t,x∗, ẋ∗

)+Pi(t)ρ∗i(t)−λ∗[∇2gi
(
t,x∗, ẋ∗

)−Qi(t)σ∗i(t)]}

+
m∑
j=1

v∗j (t)
[∇2hj

(
t,x∗, ẋ∗

)+Rj(t)θ∗j(t)]

−D
{ k∑
i=1

u∗i
[∇3fi

(
t,x∗, ẋ∗

)−λ∗∇3gi
(
t,x∗, ẋ∗

)]

+
m∑
j=1

v∗j (t)∇3hj
(
t,x∗, ẋ∗

)}= 0,

m∑
j=1

v∗j (t)
{
hj
(
t,x∗, ẋ∗

)+[x∗TRj(t)x∗]1/2}= 0,

∫ b
a

k∑
i=1

u∗i
{
fi
(
t,x∗, ẋ∗

)+[x∗TPi(t)x∗]1/2

−λ∗
[
gi
(
t,x∗, ẋ∗

)−[x∗TQi(t)x∗]1/2
]}
dt = 0,

ρ∗i(t)T Pi(t)ρ∗i(t)≤ 1, σ∗i(t)TQi(t)σ∗i(t)≤ 1, i∈ k,
θ∗j(t)TRj(t)θ∗j(t)≤ 1, j ∈m,
ρ∗i(t)T Pi(t)x∗ =

[
x∗T Pi(t)x∗

]1/2,

σ∗i(t)TQi(t)x∗ =
[
x∗TQi(t)x∗

]1/2, i∈ k,
θ∗j(t)TRj(t)x∗ =

[
x∗TRj(t)x∗

]1/2, j ∈m.
(7.9)

In a similar manner, one can readily specialize and restate Theorems 3.5,

3.6, 3.7, (DI), (D̃I), Theorems 4.1, 4.2, 4.3, (DII), (D̃II), (DIIA), (D̃IIA), Theorems

5.1, 5.2, 5.3, 5.4, 5.5, 5.6, (DIII), (D̃III), (DIIIA), (D̃IIIA), and Theorems 6.1, 6.2,

6.3 for (P∗), (P∗1), (P∗2), and (P∗3).

Mathematical programming problems containing square roots of quadratic

forms have been the subject of numerous investigations. These problems have

arisen in stochastic programming, multifacility location problems, and portfo-

lio selection problems among others. Many optimality and duality results for

several classes of these problems have appeared in the related literature. A

fairly long list of references pertaining to various aspects of these problems is

given in [17].
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