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The Yamabe problem (proved in 1984) guarantees the existence of a metric of con-
stant scalar curvature in each conformal class of Riemannian metrics on a compact
manifold of dimension n ≥ 3, which minimizes the total scalar curvature on this
conformal class. Let (M′,g′) and (M′′,g′′) be compact Riemannian n-manifolds.
We form their connected sum M′#M′′ by removing small balls of radius ε from
M′,M′′ and gluing together the �n−1 boundaries, and make a metric g onM′#M′′
by joining together g′, g′′ with a partition of unity. In this paper, we use analysis
to study metrics with constant scalar curvature on M′#M′′ in the conformal class
of g. By the Yamabe problem, we may rescale g′ and g′′ to have constant scalar
curvature 1, 0, or −1. Thus, there are nine cases, which we handle separately. We
show that the constant scalar curvature metrics either develop small “necks” sep-
arating M′ and M′′, or one of M′, M′′ is crushed small by the conformal factor.
When both sides have positive scalar curvature, we find three metrics with scalar
curvature 1 in the same conformal class.

2000 Mathematics Subject Classification: 58E11, 53C20.

1. Introduction. Let (M′,g′) and (M′′,g′′) be compact manifolds of dimen-

sion n ≥ 3. The connected sum M =M′#M′′ is the result of removing a small

ball Bn from each manifold, and joining the resulting manifolds at their com-

mon boundary �n−1. By smoothly joining g′ and g′′, we can also construct a

1-parameter family of metrics gt on M for t ∈ (0,δ), where t measures the

radius of the excised balls Bn.

In this paper, we suppose g′ and g′′ have constant scalar curvature (not

necessarily the same value), and study (some of) the metrics g̃t with constant

scalar curvature in the conformal class of gt for small t. Our method is to write

down explicit metrics whose scalar curvature is close to constant and show,

using analysis, that they can be adjusted by a small conformal change to give

metrics with constant scalar curvature.

By the proof of the Yamabe problem, every conformal class onM contains a

metric with constant scalar curvature. Our proofs are simpler than the solution

of the Yamabe problem, as our problem is much easier, and they have the

advantage of giving a good grasp of what the Yamabe metrics actually look

like as the underlying conformal manifold decays into a connected sum. We

can, for instance, say that one obvious sort of behaviour, that of developing

http://dx.doi.org/10.1155/S016117120310806X
http://dx.doi.org/10.1155/S016117120310806X
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


406 DOMINIC JOYCE

long “tubes” resembling �n−1×R, does not happen, but that small “pinched

necks” may develop instead, or else M′ or M′′ may be crushed very small by

the conformal factor.

Other authors have also considered the scalar curvature of metrics on con-

nected sums. Two important early papers on manifolds with positive scalar

curvature are Gromov and Lawson [3] and Schoen and Yau [11], and both

show that the connected sum of two manifolds with positive scalar curva-

ture carries metrics with positive scalar curvature (see [3, Theorem A] and

[11, Corollary 3]).

Writing after the solution of the Yamabe problem, Kobayashi [6] defines the

Yamabe number of a manifold to be the supremum over conformal classes

of the Yamabe invariant defined in Section 1.2 of this paper, and proves an

inequality [6, Theorem 2(a)] between the Yamabe number of two manifolds and

the Yamabe number of their connected sum. His formula can be related to our

results below in the limit t→ 0.

The first version of this work formed part of the author’s Ph.D. thesis [5]

in 1992, supervised by Simon Donaldson. In the interval between then and

the publication of the present paper, several papers on similar topics have ap-

peared, and we mention in particular Mazzeo et al. [8]. They study connected

sums of compact or noncompact manifolds with constant positive scalar cur-

vature, and the part of Theorem 3.9, dealing with the metrics of Section 2.2,

also follows from their main result.

The remainder of this section goes over some necessary background mate-

rial. In Section 2, we define two families of metrics gt upon connected sums,

make estimates of the scalar curvature of these metrics, and prove a uniform

bound on a Sobolev constant for a particular embedding of Sobolev spaces.

The main existence results for metrics of constant scalar curvature confor-

mal to the metrics gt above are proved in Section 3. We begin with a quite

general existence proof using a sequence method and then apply it, first to

the case of scalar curvature −1 and then to the case of scalar curvature 1. The

former is simple, but the latter is more difficult, and the proof of a result on

the eigenvalues of the Laplacian ∆ on the metrics gt in the positive case has

been deferred until the appendix.

In Section 4, we deal with the cases left over from Section 3 which are the

connected sums involving manifolds of zero scalar curvature. To do so, this

requires some additions to the methods of Section 3, as the problem of rescal-

ing a metric with scalar curvature close to ±1 to get exactly ±1 is different

from the problem of rescaling a metric with scalar curvature close to zero to

get scalar curvature of a small but unknown constant. We will see that each

combination of positive, negative, and zero scalar curvature manifolds has

distinctive features.

1.1. Analytic preliminaries. We define Lebesgue and Sobolev spaces, prin-

cipally to establish notation. An introduction to them may be found in Aubin
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[1, Section 2]. Let (M,g) be a Riemannian manifold. For q ≥ 1, the Lebesgue

space Lq(M) is the set of locally integrable functions u on M for which the

norm

g‖u‖Lq = ‖u‖Lq =
(∫

M
|u|q dVg

)1/q
(1.1)

is finite. Here dVg is the volume form of the metric g. Then Lq(M) is a Banach

space (with the convention that two functions are equal if they differ only on

a null set) and Lq(M) a Hilbert space. Let r ,s,t ≥ 1 with 1/r = 1/s +1/t. If

φ∈ Ls(M) and ψ∈ Lt(M), then φψ∈ Lr (M) and ‖φψ‖Lr ≤ ‖φ‖Ls‖ψ‖Lt ; this

is Hölder inequality.

Let q ≥ 1 and let k be a nonnegative integer. The Sobolev space Lqk(M) is

the subspace of u ∈ Lq(M) such that u is k times weakly differentiable and

|∇iu| ∈ Lq(M) for i≤ k. The Sobolev norm on Lqk(M) is

g‖u‖Lqk = ‖u‖Lqk =
 k∑
i=0

∫
M

∣∣∇iu∣∣q dVg
1/q

. (1.2)

This makes Lqk(M) a Banach space and L2
k(M) a Hilbert space. Since we will

often have to consider different metrics on the same manifold, we will use the

superscript notation g‖·‖Lq and g‖·‖Lqk to mean Lebesgue and Sobolev norms

computed using the metric g.

We also write Ck(M) for the vector space of continuous, bounded functions

on M with k continuous, bounded derivatives, and C∞(M)=⋂k≥0Ck(M). The

Sobolev embedding theorem [1, Theorem 2.20] says that if 1/r ≥ 1/q−k/n,

then Lqk(M) is continuously embedded in Lr (M) by inclusion, and if −r/n >
1/q−k/n, then Lqk(M) is continuously embedded in Cr (M) by inclusion.

1.2. The Yamabe problem. Now we briefly discuss the Yamabe problem,

concerning the existence of metrics of constant scalar curvature in a conformal

class on a compact manifold. An introduction to this problem and its solution

may be found in the survey paper [7] by Lee and Parker.

Fix a dimension n≥ 3. Throughout this paper, we will use the notation

a= 4(n−1)
n−2

, b = 4
n−2

, p = 2n
n−2

. (1.3)

Let M be a compact manifold of dimension n. Define a functional Q upon the

set of Riemannian metrics on M by

Q(g)=
∫
M SdVg

vol(M)2/p
, (1.4)

where S is the scalar curvature of g. Then Q is known as the total scalar cur-

vature or Hilbert action.
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Let g,g̃ be metrics on M . We say that g,g̃ are conformal if g̃ =φg for some

smooth conformal factor φ :M → (0,∞). Usually we writeφ=ψp−2 for smooth

ψ : M → (0,∞). The conformal class [g] of g is the set of metrics g̃ on M
conformal to g. Applying the calculus of variations to the restriction of Q to

a conformal class, we find that a metric g is a stationary point of Q on [g] if

and only if it has constant scalar curvature.

Let the scalar curvatures of g,g̃ be S, S̃, and write g̃ = ψp−2g for smooth

ψ :M → (0,∞). Then

S̃ =ψ1−p(a∆ψ+Sψ). (1.5)

Thus g̃ =ψp−2g has constant scalar curvature ν if and only if ψ satisfies the

Yamabe equation

a∆ψ+Sψ= ν|ψ|p−1. (1.6)

We can show, using Hölder inequality, thatQ is bounded below on a confor-

mal class. So we define

λ
(
[g]

)= inf
{
Q(g̃) : g̃ is conformal to g

}
. (1.7)

This constant λ([g]) is an invariant of the conformal class [g] of g on M ,

called the Yamabe invariant.

The Yamabe problem [14]. Given a compact Riemannian n-manifold

(M,g), find a metric g̃ conformal to g which minimizes Q on [g], so that

Q(g̃) = λ([g]). Then g̃ is a stationary point of Q on [g], and so has constant

scalar curvature.

A solution g̃ of the Yamabe problem is called a Yamabe metric. The problem

was posed in 1960 by Yamabe [14] who gave a proof that such a metric g̃ always

exists. His idea was to choose a minimizing sequence for Q on [g] and show

that a subsequence converges to a smooth minimizer g̃ for Q. Unfortunately,

the proof contained an error, discovered by Trudinger [12]. The proof was

eventually repaired by Trudinger, Aubin, Schoen, and Yau.

If λ([g])≤ 0, then constant scalar curvature metrics in [g] are unique up to

homothety [1, page 135] and are Yamabe metrics. Thus, if λ([g]) < 0, then [g]
contains a unique metric g̃ with scalar curvature −1, and if λ([g]) = 0, then

[g] contains a unique metric g̃ with scalar curvature 0 and volume 1. However,

if λ([g]) > 0, then constant scalar curvature metrics in [g] are not necessarily

unique up to homothety, and may be higher stationary points ofQ rather than

Yamabe metrics. Thus, [g] may contain several different metrics with scalar

curvature 1. We will see an example of this in Section 3.3.

In Sections 3 and 4, weak solutions in L2
1(M) to the Yamabe equation (1.6) will

be constructed for certain special compact manifolds M . For these solutions

to give metrics of constant scalar curvature, it is necessary that they should
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not be just L2
1 solutions but C∞ solutions. We quote a result from Trudinger

[12, Theorem 3, page 271] showing that this is the case.

Proposition 1.1. Let (M,g) be a compact Riemannian n-manifold with

scalar curvature S, and u a weak L2
1 solution of a∆u+ Su = S̃|u|(n+2)/(n−2)

for S̃ ∈ C∞(M). Then u∈ C2(M), and where u is nonzero, it is C∞.

1.3. Stereographic projections. Let (M,g) be a compact Riemannian man-

ifold with positive scalar curvature. Then, by [7, Lemma 6.1, page 63], the op-

erator a∆+ S in (1.6) admits a Green’s function Γm for each m ∈ M , which

is unique and strictly positive. That is, Γm : M \ {m} → (0,∞) is smooth with

(a∆+S)Γm = 0 on M \{m}, and Γm is singular at m with (a∆+S)Γm = δm on

M in the sense of distributions.

Definition 1.2. Let (M,g) be a compact Riemannian manifold with posi-

tive scalar curvature. For m∈M , define the metric ĝ = Γp−2
m g on M̂ =M \{m}

where Γm is the Green’s function of a∆+S at m. Then ĝ has zero scalar cur-

vature by (1.5). We call (M̂, ĝ) the stereographic projection of M from m.

The stereographic projection of �n is Rn. In general, stereographic projec-

tions (M̂, ĝ) are asymptotically flat, that is, their noncompact ends resemble

Rn in a more precise way in [7, Definition 6.3]. Following Lee and Parker [7,

page 64], we use the notation that φ = O′(|x|q) means φ = O(|x|q) and

∇φ =O(|x|q−1), and φ =O′(|x|q) means φ =O(|x|q), ∇φ =O(|x|q−1), and

∇2φ = O(|x|q−2) for small or large x in Rn, depending on the context. For

simplicity, we will suppose that g is conformally flat nearm inM . In this case,

the asymptotic expansion of the metric ĝ is particularly simple, [7, Theorem

6.5(a)].

Proposition 1.3. Let (M,g) be a compact Riemannian manifold with posi-

tive scalar curvature, and suppose m∈M has a neighbourhood that is confor-

mally flat. Let (M̂, ĝ) be the stereographic projection of M from m. Then there

exist µ ∈R and asymptotic coordinates {xi} on M̂ with respect to ĝij satisfing

ĝij(x)=ψp−2(x)δij, (1.8)

where ψ(v)= 1+µ|x|2−n+O′′(|x|1−n) for large |x|.
This constant µ is proportional to an important invariant of asymptotically

flat manifolds called the mass, which is defined and studied by Bartnik [2]. For

physical reasons, it was conjectured that the mass must be nonnegative for

complete asymptotically flat manifolds of nonnegative scalar curvature, and

zero only for flat space. This was proved for spin manifolds by Witten [13]

whose proof was generalized to n dimensions by Bartnik [2, Section 6].

A proof of the general case when n≤ 7 is given by Schoen [10, Section 4]. He

also claims the result for all dimensions [9, page 481] and [10, page 145], but
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the proof has not been published. This “positive mass theorem” in dimensions

3, 4, and 5 was important in the completion of the proof of the Yamabe problem

by Schoen [9]. We will only need the case when the metric g ofM is conformally

flat about m, which we state in the following theorem.

Theorem 1.4. In the situation of Proposition 1.3 (perhaps with the additional

assumption that M is spin or n ≤ 7), we have µ ≥ 0 with equality if and only if

M is �n, and its metric is conformal to the round metric.

2. Glued metrics on connected sums. In this section, we will define two

families of metrics gt on the connected sum M of constant scalar curvature

Riemannian manifolds (M′,g′) and (M′′,g′′). The first family, in Section 2.1,

is made by choosing M′ of constant scalar curvature ν , cutting out a small

ball, and gluing in a stereographic projection of M′′, homothetically shrunk

very small. The second family, in Section 2.2, is made by choosing M′ and M′′

both of constant scalar curvature ν , and joining them by a small “neck” of zero

scalar curvature. The relation between these families, when ν = 1, is discussed

in Section 2.3.

We finish with two results, Propositions 2.1 and 2.2, about the families of

metrics. The first gives explicit bounds for their scalar curvature to determine

how good an approximation to constant scalar curvature they are. The second

shows that the Sobolev constant for a certain Sobolev embedding of function

spaces can be given a bound independent of the width of the neck, for small

values of this parameter.

2.1. Combining constant and positive scalar curvature. Let (M′,g′) be a

compact Riemannian n-manifold with constant scalar curvature ν . Applying

a homothety to g′ if necessary, we may assume that ν = 1,0, or −1. For sim-

plicity, assume that m′ ∈M′ has a neighbourhood in which g′ is conformally

flat; this assumption will be dropped in Section 3.4. ThenM′ contains a ball B′

aboutm′, with a diffeomorphism Φ′ from Bδ(0)⊂Rn to B′ for some δ∈ (0,1),
such that Φ′(0)=m′ and (Φ′)∗(g′)= (ψ′)p−2h for some functionψ′ on Bδ(0),
where h is the standard metric on Rn. By choosing a different conformal iden-

tification with Bδ(0) if necessary, we may suppose ψ′(0) = 1 and dψ′(0) = 0,

so that ψ′(v)= 1+O′(|v|2) in the notation of Section 1.3.

Let (M′′,g′′) be a compact Riemannian n-manifold with scalar curvature 1.

As with M′, suppose m′′ ∈ M′′ has a neighbourhood in which g′′ is confor-

mally flat. Let (M̂, ĝ) be the stereographic projection of M′′ from m′′, as in

Definition 1.2, so that M̂ =M′′ \ {m′′}, and ĝ is asymptotically flat with zero

scalar curvature, and is conformal to g′′.
By Proposition 1.3, there is an immersion Ξ′′ :Rn\BR(0)→ M̂ for some R > 0

whose image is the complement of a compact set in M̂ , such that (Ξ′′)∗(ĝ) =
ξp−2h where ξ is a smooth function on Rn \BR(0) satisfying ξ(v) = 1+O′ ×
(|v|2−n). By making δ smaller if necessary, we set R = δ−4.
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A family of metrics {gt : t ∈ (0,δ)} onM =M′#M′′ will now be written down.

For any t ∈ (0,δ), define M and the conformal class of gt by

M = (M′ \Φ′[Bt2(0)])�(M̂ \(Ξ′′[Rn \Bt−5(0)
]))
/˜ t

, (2.1)

where ˜ t
is the equivalence relation defined by

Φ′[v]˜ t
Ξ′′[t−6v] whenever v ∈Rn, t2 < |v|< t. (2.2)

The conformal class [gt] of gt is then given by the restriction of the confor-

mal classes of g′ and ĝ to the open sets of M′ and M′′ that make up M ; this

definition makes sense because the conformal classes agree on the annulus of

overlap where the two open sets are glued by ˜ t
. Let At be this annulus inM .

Then At is diffeomorphic via Φ′ to the annulus {v ∈Rn : t2 < |v|< t} in Rn.

To define a metric gt within the conformal class just given, take gt = g′ on

the component of M \At coming from M′, and gt = t12ĝ on the component

coming from M̂ . It remains to choose a conformal factor on At which is iden-

tified with {v ∈Rn : t2 < |v|< t} by Φ′. Here we set (Φ′)∗(gt)=ψp−2
t h where

ψt is defined below.

The conditions for smoothness at the edges of the annulusAt are thatψt(v)
should join smoothly onto ψ′(v) at |v| = t, and onto ξ(t−6v) at |v| = t2.

Choose a C∞-function σ : R→ [0,1], that is, 0 for x ≥ 2 and 1 for x ≤ 1 and

strictly decreasing in [1,2]. Let β1(v)= σ(log |v|/ logt) and β2(v)= 1−β1(v)
for all v ∈Rn with t2 < |v|< t. Finally, define ψt by

ψt(v)= β1(v)ψ′(v)+β2(v)ξ
(
t−6v

)
. (2.3)

This ends the definition of gt for t ∈ (0,δ). The reasoning behind the

definition—why ĝ is shrunk by a factor of t6, but the cutoff functions change

between radii t and t2, for instance—will emerge in Section 2.4, where we show

that for this definition, the scalar curvature of gt is close to the constant func-

tion ν in the Ln/2-norm.

2.2. Combining two metrics of constant scalar curvature ν . A family of

metrics will now be defined on the connected sum of two Riemannian mani-

folds with constant scalar curvature ν . We will do this by writing down a zero

scalar curvature Riemannian manifold with two asymptotically flat ends, and

gluing one end into each of the constant scalar curvature manifolds using the

method of Section 2.1; the new manifold will form the neck in between.

Let N be Rn \ {0} with metric gN = (1+ |v|−(n−2))p−2h. Then N has two

ends and gN is asymptotically flat at each end. The involution v � v/|v|2
is an isometry. Also, as ∆|v|−(n−2) = 0, (1.5) shows that gN has zero scalar

curvature.

Let (M′,g′) and (M′′,g′′) be Riemannian n-manifolds with constant scalar

curvature ν ; applying homotheties if necessary, we will assume that ν = 1,0 or
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−1. We will use the gluing method of Section 2.1 to glue the two asymptotically

flat ends of (N,gN) into (M′,g′) and (M′′,g′′). Let M = M′#M′′. A family of

metrics {gt : t ∈ (0,δ)} onM will be defined, such that gt resembles the union

of (M′,g′) and (M′′,g′′) joined by a small neck of radius t6, modelled upon

(N,t12gN). It will be done briefly, as the treatment generalizes Section 2.1.

Suppose that M′, M′′ contain pointsm′,m′′ with neighbourhoods in which

g′, g′′ are conformally flat. (In Section 3.4 this assumption will be dropped.)

ThusM′,M′′ contain open balls B′, B′′ with diffeomorphismsΦ′,Φ′′ from Bδ(0)
in Rn to B′, B′′, such that Φ′(0) =m′, Φ′′(0) =m′′ and (Φ′)∗(g′) = (ψ′)p−2h,

(Φ′′)∗(g′′) = (ψ′′)p−2h, for some functions ψ′,ψ′′ on Bδ(0). By choosing dif-

ferent conformal identifications with Bδ(0) if necessary, we may suppose that

ψ′(0)=ψ′′(0)= 1 and dψ′(0)= dψ′′(0)= 0 so that ψ′(v)= 1+O′(|v|2) and

ψ′′(v)= 1+O′(|v|2).
For any t ∈ (0,δ), define M and the conformal class of gt by

M = (M′ \Φ′[Bt2(0)])�(M′′ \Φ′′[Bt2(0)])�{v ∈N : t5 < |v|< t−5}/˜ t
,
(2.4)

where ˜ t
is the equivalence relation defined by

Φ′
[
t6v

]˜ t
v if v ∈N, t−4 < |v|< t−5,

Φ′′
[
t6v
|v|2

]
˜ t
v if v ∈N, t5 < |v|< t4.

(2.5)

The conformal class [gt] of gt is then given by the restriction of the con-

formal classes of g′, g′′, and gN to the open sets of M′, M′′, and N that make

up M ; this definition makes sense because the conformal classes agree on the

annuli of overlap where the three open sets are glued by ˜ t
. Let At be this

region of gluing inM . Then At is diffeomorphic via Φ′ and Φ′′ to two copies of

the annulus {v ∈Rn : t2 < |v|< t}.
To define a metric gt within this conformal class, let gt = g′ on the com-

ponent of M \At coming from M′, gt = g′′ on the component of M \At com-

ing from M′′, and gt = t12gN on the component on M \At coming from N.

So, it remains to choose a conformal factor on At itself. Using Φ′ and Φ′′,
this is the same as choosing a conformal factor for two copies of the subset

{v ∈Rn : t2 < |v|< t} of Rn.

As in Section 2.1, define a partition of unity β1,β2 on At and define ψt
by ψt(v) = β1(v)ψ′(v)+β2(v)(1+t6(n−2)|v|−(n−2)) on the component of At
coming fromM′, andψt(v)= β1(v)ψ′′(v)+β2(v)(1+t6(n−2)|v|−(n−2)) on the

component coming fromM′′. Here ψt is thought of as a function on At , which

is identified by Φ′ and Φ′′ with two disjoint copies of {v ∈ Rn : t2 < |v| < t}.
Now let gt be ψp−2

t h in At , where h is the push-forward to At by Φ′, Φ′′ of the

standard metric on {v ∈Rn : t2 < |v|< t}. This completes the definition of gt .
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2.3. The relationship between Sections 2.1 and 2.2 when ν = 1. Suppose

that (M′,g′) and (M′′,g′′) are compact Riemannian n-manifolds with scalar

curvature 1, and m′, m′′ are points in M′, M′′ with conformally flat neigh-

bourhoods. Then Sections 2.1 and 2.2 with ν = 1 define two families of met-

rics {gt : t ∈ (0,δ)} on M = M′#M′′. Reversing the roles of M′ and M′′ in

Section 2.1, we get a third family by shrinking the stereographic projection

of (M′,g′) from m′ by a factor t12 and gluing it into (M′′,g′′). What is the

relationship between these three families of metrics on M?

Encoded in the choice of maps Φ′, Φ′′, and Ξ′′ above is a choice of isomet-

ric isomorphism Tm′M′ � Tm′′M′′. Because of the simplifying assumption of

conformal flatness nearm′,m′′, it turns out that this isomorphism is the only

arbitrary choice involved in the construction of the conformal classes [gt], and

if we choose the same isomorphism Tm′M′ � Tm′′M′′ in the three cases, then

the three families actually define the same 1-parameter family of conformal

classes {[gt] : t ∈ (0,δ)} for small t.
However, the parametrization of the conformal classes by t differs in Sec-

tions 2.1 and 2.2. Identifying M′ and M′′ with Rn conformally near m′, m′′,
and reasoning from the definition of stereographic projection, we find that in

Section 2.1, ˜ t
identifies v′ ∈M′ with v′′ ∈M′′ only if |v′| · |v′′| = t6, but in

Section 2.2, ˜ t
identifies v′ ∈M′ with v′′ ∈M′′ only if |v′|·|v′′| = t12.

Because of this, the conformal class [gt] constructed in Section 2.2 is the

same as the conformal class [gt2] constructed in Section 2.1. We adopted this

mildly inconvenient convention because with it, we will be able to prove results

simultaneously for the metrics of Sections 2.1 and 2.2 without changing the

powers of t involved.

2.4. Estimating the scalar curvature of gt . Now we show that the scalar

curvature of gt approaches the constant value ν in the Ln/2-norm as t→ 0.

Proposition 2.1. Let {gt : t ∈ (0,δ)} be one of the families of metrics de-

fined on M =M′#M′′ in Sections 2.1 and 2.2. Let the scalar curvature of gt be

ν − εt . Then there exist Y ,Z > 0 such that |εt| ≤ Y and gt‖εt‖Ln/2 ≤ Zt2 for

t ∈ (0,δ).
Proof. The proof will be given for the metrics gt of Section 2.1 only, the

modifications for Section 2.2 being left to the reader. We first derive an ex-

pression for εt . Outside At , the scalar curvature of gt is ν and 0 on the regions

coming from M′ and M′′. On At , calculating with (1.5) gives

ν−εt(v)= νβ1(v)
(
ψ′(v)

)(n+2)/(n−2)ψ−(n+2)/(n−2)
t (v)

+aψ−(n+2)/(n−2)
t (v)

(
∆β1(v)

)(
ψ′(v)−ξ(t−6v

))
−2aψ−(n+2)/(n−2)

t (v)
(∇β1(v)

)·(∇(ψ′(v)−ξ(t−6v
)))
,

(2.6)

since β1+β2 = 1.
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As ψ′(v) = 1+O′(|v|2), ξ(v) = 1+O′(|v|2−n), and t2 < |v| < t, it follows

easily that ψ′(v)− ξ(t−6v) = O′(|v|2). The reason for choosing to scale ĝ
by a factor of t12 whilst making β1 change between t2 and t is to make this

estimate work—the first power has to be as high as 12 to work in dimension 3.

Substituting it into (2.6) gives

∣∣εt∣∣≤ |ν|·∣∣β1(ψ′)(n+2)/(n−2)ψ−(n+2)/(n−2)
t −1

∣∣
+ψ−(n+2)/(n−2)

t ·{∣∣∇β1

∣∣O(|v|)+|∆β1|O
(|v|2)}. (2.7)

Using a lower bound for ψ′, we find that on the subannulus t2 < |v|< t, the

estimate |ψt(v)| ≥ C0 > 0 holds for some C0 and all t ∈ (0,δ). Using this to

get rid of the ψt terms on the right-hand side and an upper bound for ψ′, it

can be seen that

∣∣εt∣∣=O(1)+∣∣∇β1

∣∣O(|v|)+∣∣∆β1

∣∣O(|v|2) (2.8)

on the subannulus t2 < |v|< t. But

∣∣∇β1

∣∣= ∣∣dτ1/dx
∣∣

|v logt| =O(|v|−1), (2.9)

and in a similar way |∆β1| =O(|v|−2). Substituting into (2.8), we find that for

all t ∈ (0,δ), |εt| ≤ Y on the subannulus t2 < |v|< t, for some Y ≥ |ν|.
Thus, |εt| ≤ Y on At , and outside At , εt = 0 on the component coming from

M′ and |εt| = |ν| ≤ Y on the component coming from M′′. Therefore, |εt| ≤ Y
giving the first part of the proposition. To prove the second part, observe that

by the estimates on ψt above, the support of εt has volume ≤ C1tn, for some

C1 > 0. So, gt‖εt‖Ln/2 ≤ Zt2 where Z = YC2/n
1 .

2.5. A uniform bound for a Sobolev embedding. If (M,g) is a compact Rie-

mannian n-manifold, then L2
1(M) is continuously embedded in L2n/(n−2)(M)=

Lp(M) by the Sobolev embedding theorem. This means that L2
1(M) ⊂ Lp(M),

and ‖φ‖Lp ≤ A‖φ‖L2
1

for all φ ∈ L2
1(M), and some A > 0 depending on g. We

will prove that this holds for the metrics gt of Sections 2.1 and 2.2, with A
independent of t.

Proposition 2.2. Let {gt : t ∈ (0,δ)} be one of the families of metrics

defined on M = M′#M′′ in Sections 2.1 and 2.2. Then there exist A > 0 and

ζ ∈ (0,δ) such that gt‖φ‖Lp ≤A· gt‖φ‖L2
1

whenever φ∈ L2
1(M) and 0< t ≤ ζ.

Proof. First consider the metrics of Section 2.1. The proof works by prov-

ing similar Sobolev embedding results on the component manifolds (M′,g′)
and (M̂,t12ĝ) that make up (M,gt) and then gluing them together. These are

given in the following lemmas, the first follows from the Sobolev embedding

theorem [1, Theorem 2.20].
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Lemma 2.3. There exists D1 > 0 with g′‖φ‖Lp ≤ D1 · g′‖φ‖L2
1

for all φ ∈
L2

1(M′).

Lemma 2.4. There exists D2 > 0 with t12ĝ‖φ‖Lp ≤ D2 · t12ĝ‖∇φ‖L2 for all

φ∈ L2
1(M̂) and t > 0.

Proof. The inequality ‖φ‖Lp ≤D2‖∇φ‖L2 is invariant under homotheties,

and so, it is enough to prove the lemma when t = 1. Bartnik [2, Sections 1 and

2] reviews the theory of weighted Sobolev spaces on asymptotically flat man-

ifolds. We will apply [2, Theorems 1.2 and 1.3] which hold on asymptotically

flat manifolds by [2, page 676]. It was shown by [2, Theorem 1.2(iv)] with k= 1,

p = q = 2, and δ= (2−n)/2, that there exists B > 0 such that

(∫
M̂
|φ|2n/(n−2)dVĝ

)(n−2)/n
≤ B

(∫
M̂
|∇φ|2dVĝ+

∫
M̂
|φ|2σ−2dVĝ

)
(2.10)

for all φ∈ L2
1(N), where σ :N → [1,∞) is defined by σ(x)2 = 1+d(x,x0)2 for

some base point x0 ∈ N. But [2, Theorem 1.3(i)] with p = 2 and δ = (2−n)/2
shows that there exists C > 0 such that∫

M̂
|φ|2σ−2dVĝ ≤ C

∫
M̂
|∇φ|2dVĝ. (2.11)

Combining (2.10) and (2.11) and taking square roots proves the lemma, with

D2 = (B(1+C))1/2.

The volume form of gt on At is ψpt dVh, so the contribution from At to∫
MφpdVgt is

∫
At (ψtφ)

p dVh. Using (2.3), we may eliminate ψt , divide into in-

tegrals on the component manifolds, and show that gt‖φ‖Lp ≤ g′‖β1φ‖Lp +
t12ĝ‖β2φ‖Lp for φ∈ L2

1(M). Now

g′∥∥β1φ
∥∥
L2

1
≤ g′∥∥β1φ

∥∥
L2+ g′

∥∥β1∇φ
∥∥
L2+ g′

∥∥φ∣∣∇β1

∣∣∥∥
L2

≤ g′∥∥β1φ
∥∥
L2+ g′

∥∥β1∇φ
∥∥
L2+ g′

∥∥φ∣∣At∥∥Lp · g′∥∥dβ1

∣∣
At

∥∥
Ln ,

(2.12)

by Hölder inequality. But as ‖dβ1|At‖Ln is a conformally invariant norm, we

have g′‖dβ1|At‖Ln = h‖dβ1|At‖Ln , where h is the standard metric on Rn.

Combining Lemmas 2.3 and 2.4, (2.12), and the obvious analogue of (2.12)

for M̂ , and remembering that dβ1+dβ2 = 0, we obtain

gt‖φ‖Lp ≤D1 · g′
∥∥β1φ

∥∥
L2

1
+D2 · t12ĝ∥∥β2φ

∥∥
L2

1

≤D1

(
g′∥∥β1φ

∥∥
L2+ g′

∥∥β1∇φ
∥∥
L2+ g′

∥∥φ|At∥∥Lp · h∥∥dβ1|At
∥∥
Ln

)
+D2

(
t12ĝ∥∥β2φ

∥∥
L2+ t12ĝ∥∥β2∇φ

∥∥
L2+ t12ĝ∥∥φ|At∥∥Lp · h∥∥dβ1|At

∥∥
Ln

)
≤D3

gt‖φ‖L2
1
+D4 · gt‖φ‖Lp · h

∥∥dβ1|At
∥∥
Ln

(2.13)
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for all t ∈ (0,δ) and some D3,D4 > 0 depending on D1,D2 and bounds for the

ratios of the various conformal factors on At .
From (2.13), we see that Proposition 2.2 holds with A = 2D3 provided that

D4 · h‖dβ1|At‖Ln ≤ 1/2. As β1 depends only on r = |v|, we have

h∥∥dβ1

∥∥n
Ln =ωn−1 ·

∫ t
t2
rn−1

∣∣∣∣dβ1

dr

∣∣∣∣ndr =ωn−1| logt|1−n ·
∫ 2

1

∣∣∣∣dτidx
∣∣∣∣ndx,

(2.14)

where ωn−1 is the volume of the unit sphere �n−1 in Rn. So when t is small,
h‖dβ1‖Ln is small, and there exists ζ ∈ (0,δ) such that D4

h‖dβ1|At‖Ln ≤ 1/2
when 0< t ≤ ζ. This completes the proposition for the metrics of Section 2.1.

The proof for the metrics of Section 2.2 requires only simple modifications,

and we leave it to the reader.

3. Existence results for scalar curvature ±1. LetM be the manifold of Sec-

tions 2.1 and 2.2 with one of the metrics gt defined there, and denote its scalar

curvature by S. As in Section 1.2, a conformal change to g̃t =ψp−2gt may be

made, and the condition for g̃t to have constant scalar curvature ν is the Yam-

abe equation

a∆ψ+Sψ= ν|ψ|p−1. (3.1)

Now the metrics gt have scalar curvature close to ν , so let S = ν−ε; then by

Proposition 2.1, gt‖ε‖Ln/2 ≤ Zt2. Also we would like the conformal change to

be close to 1, so put ψ = 1+φ, where we aim to make φ small. Substituting

both of these changes into (3.1) gives

a∆φ−νbφ= ε+εφ+νf(φ), (3.2)

where b = 4/(n−2) and f(t)= |1+t|(n+2)/(n−2)−1−(n+2)t/(n−2).
In this section, we will suppose that ν = ±1, as the zero scalar curvature

case requires different analytic treatment and will be considered in Section 4.

Equation (3.2) has been written so that on the left is a linear operator a∆−νb
applied to φ, and on the right are the error terms.

The method of Section 3.1 is to define by induction a sequence {φi}∞i=0 of

functions in L2
1(M) by φ0 = 0, and

a∆φi−νbφi = ε+εφi−1+νf
(
φi−1

)
. (3.3)

This depends upon being able to invert the operator a∆−νb, and we consider

the existence and size of the inverse in Sections 3.2 and 3.3. Given this invert-

ibility, we show that if ε is sufficiently small, {φi}∞i=0 converges to φ∈ L2
1(M)

which is a weak solution of (3.2). Finally, we show that φ is smooth and ψ =
1+φ is positive so that g̃t has constant scalar curvature ν .
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In Sections 3.2 and 3.3, we state the existence theorems for constant positive

and negative scalar curvature respectively on connected sums, the main results

of this section. Note that Section 3.3 produces three distinct metrics of scalar

curvature 1 in the conformal class of each suitable connected sum of manifolds

with scalar curvature 1, in contrast to the negative scalar curvature case, where

any metric of scalar curvature −1 is unique in its conformal class.

3.1. An existence result for constant scalar curvature. Fix ν = ±1 and

suppose that (M,g) is a compact Riemannian n-manifold. Let A,B,X, and Y
be positive constants, to be chosen later. We write down four properties, which

(M,g) may or may not satisfy.

Property 1. The volume of M satisfies X/2≤ vol(M)≤X.

Property 2. Let the scalar curvature of g be ν−ε, then |ε| ≤ Y .

Property 3. Whenever φ∈ L2
1(M), φ∈ Lp(M), and ‖φ‖Lp ≤A‖φ‖L2

1
.

Property 4. For every ξ ∈ L2n/(n+2)(M), there exists a unique φ ∈ L2
1(M)

such that a∆φ−νbφ= ξ holds weakly. Moreover, ‖φ‖L2
1
≤ B‖ξ‖L2n/(n+2) .

We of course think of (M,g) as being the manifoldM of Sections 2.1 and 2.2,

with one of the metrics gt defined there. Then, Property 1 is clear from the def-

initions, Property 2 comes from Proposition 2.1, Property 3 from Proposition

2.2, and Property 4 remains to be proved. In terms of these properties, we state

the next result which is the core of the analysis of this section.

Theorem 3.1. LetA,B,X,Y > 0 andn≥ 3 be given. Then there existW,c > 0

depending only upon A,B,X,Y , and n, such that if (M,g) satisfies Properties 1,

2, 3, and 4 above and ‖ε‖Ln/2 ≤ c, then g admits a smooth conformal rescaling

to g̃ = (1+φ)p−2g, with constant scalar curvature ν , and ‖φ‖L2
1
≤W‖ε‖Ln/2 .

Proof. Suppose that (M,g) satisfies Properties 1, 2, 3, and 4 above. Define

a map T : L2
1(M)→ L2

1(M) by Tη= ξ where

a∆ξ−νbξ = ε+εη+νf(η). (3.4)

By Property 4, ξ exists and is unique provided that the right-hand side is

in L2n/(n+2)(M). So it must be shown that if η ∈ L2
1(M), then ε+εη+νf(η) ∈

L2n/(n+2)(M). Now ε ∈ Ln/2(M) implies that ε ∈ L2n/(n+2)(M); by the Sobolev

embedding theorem, η∈ L2n/(n−2)(M), and as ε∈ Ln/2(M), it follows that εη∈
L2n/(n+2)(M). Thus, the first two terms are in L2n/(n+2)(M). For the third term,

as η ∈ L2n/(n−2)(M) we have 1+η ∈ L2n/(n−2)(M), and so (1+η)(n+2)/(n−2) ∈
L2n/(n+2)(M). This deals with the first part of f(η) and the last two parts are

trivially in L2n/(n+2)(M). Therefore, the right-hand side of (3.4) is in L2n/(n+2)(M),
and the map T is well defined.

Now define a sequence {φi}∞i=0 of elements of L2
1(M) by φi = T i(0). Our

first goal is to prove that if ‖ε‖Ln/2 is sufficiently small, then this sequence
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converges in L2
1(M). Setting φ as the limit of the sequence, (3.4) implies that

φ will satisfy (3.2), as we would like. This will be achieved via the next lemma.

Lemma 3.2. Suppose L is a Banach space with norm ‖·‖, and T : L→ L is a

map satisfying ‖T(0)‖ ≤ F0s and

∥∥T(v)−T(w)∥∥
≤ ‖v−w‖{F1s+F2

(‖v‖+‖w‖)+F3
(‖v‖4/(n−2)+‖w‖4/(n−2))} (3.5)

for all v,w ∈ L, where F0,F1,F2,F3,s > 0. Then there exists W > 0 depending

only on F0,F1,F2,F3, and n, such that if s is sufficiently small, then the sequence

{φi}∞i=0 defined by φi = T i(0) converges to a limit φ in L, satisfying ‖φ‖ ≤Ws.
Proof. Puttingv=φi−1 andw=0 into (3.5) gives ‖φi−T(0)‖ ≤ F1s‖φi−1‖+

F2‖φi−1‖2+F3‖φi−1‖(n+2)/(n−2), and as ‖T(0)‖ ≤ F0s, this implies that ‖φi‖ ≤
χ(‖φi−1‖) where χ(x)= F0s+F1sx+F2x2+F3x(n+2)/(n−2).

From the form of this equation, it is clear that there existsW > 0 depending

only on F0,F1,F2,F3,n such that when s is small, there exists an x with 0<x ≤
Ws and 2χ(x) = x. Suppose s is small enough so that such an x exists. Now

φ0 = 0 so that ‖φ0‖ ≤ x, and if ‖φi−1‖ ≤ x, then ‖φi‖ ≤ χ(‖φi−1‖)≤ χ(x)≤ x.

Thus, by induction, ‖φi‖ ≤ x for all i.
Put v =φi and w =φi−1 in (3.5). This gives

∥∥φi+1−φi
∥∥≤ ∥∥φi−φi−1

∥∥·(F1s+2F2x+2F3x4/(n−2)) (3.6)

using the inequality ‖φi‖ ≤ x that we have just proved. Dividing the equation

x = 2χ(x) by x and subtracting some terms, it follows that 1 > F1s+2F2x+
2F3x4/(n−2) > 0, and so {φi}∞i=0 converges by comparison with a geometric

series. Let the limit of the sequence be φ. Then as ‖φi‖ ≤ x ≤Ws for all i, by

continuity φ also satisfies ‖φ‖ ≤Ws.
To apply Lemma 3.2, we must show that T : L2

1(M)→ L2
1(M) defined above

satisfies the hypotheses. Let s = ‖ε‖Ln/2 . We will define F0,F1,F2,F3 > 0 depend-

ing only on A,B,X, and n, such that (3.5) holds.

Putting η= 0 in (3.4) and applying Properties 1 and 4, we see that

∥∥T(0)∥∥L2
1
≤ B‖ε‖L2n/(n+2) ≤ Bvol(M)(n−2)/2n‖ε‖Ln/2 ≤ BX(n−2)/2ns, (3.7)

so let F0 = BX(n−2)/2n. From the definition of f , it can be seen that

∣∣f(x)−f(y)∣∣≤ ∣∣x−y∣∣·(F4
(|x|+|y|)+F5

(|x|4/(n−2)+|y|4/(n−2))), (3.8)
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where F4,F5 are constants depending only onn, and F4 = 0 ifn≥ 6. Let η1,η2 ∈
L2

1(M), and let T(ηi) = ξi. Then subtracting (3.4) applied to η2, ξ2 from (3.4)

applied to η1, ξ1 gives

(a∆−νb)(ξ1−ξ2
)= ε·(η1−η2

)+ν(f (η1
)−f (η2

))
. (3.9)

Applying Property 4 and making various estimates gives

∥∥ξ1−ξ2

∥∥
L2

1
≤ B

(∥∥ε·(η1−η2
)∥∥
L2n/(n+2)+|ν|

∥∥f (η1
)−f (η2

)∥∥
L2n/(n+2)

)
≤ ∥∥η1−η2

∥∥
L2

1
·
(
F1s+F2

(∥∥η1

∥∥
L2

1
+∥∥η2

∥∥
L2

1

)
+F3

(∥∥η1

∥∥4/(n−2)
L2

1
+∥∥η2

∥∥4/(n−2)
L2

1

))
,

(3.10)

where F1 = AB, F2 = A2BF4X(6−n)/2n and F3 = A(n+2)/(n−2)BF5. The calcula-

tion uses Hölder inequality, (3.8), Properties 1 and 3, the expression ‖η‖Lr ≤
‖η‖Ls (volM)(s−r)/rs when 1 ≤ r < s and η ∈ Lr (M) ⊂ Ls(M), and the fact that

F4 = 0 if n≥ 6.

This inequality is (3.5) for the operator T : L2
1(M)→ L2

1(M). So putting L =
L2

1(M) and applying Lemma 3.2, there is a constant W > 0 depending only

on F0,F1,F2,F3, and n, such that if ‖ε‖Ln/2 is sufficiently small, then the se-

quence {φi}∞i=0 defined by φi = T i(0) converges to a limit φ, satisfying ‖φ‖ ≤
W‖ε‖Ln/2 . Now W depends only on F0, . . . ,F3 and n, and these depend only on

n,A,B, and X, so W depends only on n,A,B, and X. Since φi = T(φi−1) and T
is continuous, taking the limit gives φ= T(φ), so (3.4) shows that φ satisfies

(3.2) weakly. Thus, we have proved the following lemma.

Lemma 3.3. There existsW > 0 depending only on n,A,B, and X, such that if

‖ε‖Ln/2 is sufficiently small, then there exists φ∈ L2
1(M) satisfying (3.2) weakly,

with ‖φ‖L2
1
≤W‖ε‖Ln/2 .

Thus, weak solutions φ of (3.2) do exist for small ‖ε‖Ln/2 , and for these

ψ= 1+φ is a weak solution of (1.6). But for g̃ =ψp−2g to be a metric, we need

ψ to be smooth and positive. Proposition 1.1 shows thatψ∈ C2(M) and is C∞

wherever it is nonzero, so it remains to show that ψ> 0.

Examples of manifolds (with negative scalar curvature) can be found for

which (1.6) admits solutions that change sign, so there is something to be

proved. This difficulty does not arise in the proof of the Yamabe problem, as

there ψ is the limit of a minimizing sequence of positive functions, so ψ ≥ 0

automatically.

We deal with this problem in the following proposition, by proving that if

ψ = 1+φ is a solution of (1.6) that is negative somewhere, then ‖φ‖L2
1

must

be at least a certain size. So if φ is small in L2
1(M), thenψ= 1+φ≥ 0. We then

show that ψ> 0 using a maximum principle.
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Proposition 3.4. If ‖φ‖L2
1

is sufficiently small, then ψ≥ 0.

Proof. Let ξ =min(ψ,0). Then ξ ∈ L2
1(M) and

∫
M ξ∆ψdVg =

∫
M |∇ξ|2dVg

since ξ∆ψ = |∇ξ|2+ (1/2)∆ξ2 and
∫
M∆ξ2dVg = 0. So, multiplying (1.6) by ξ

and integrating over M gives

∫
M

(
a|∇ξ|2+Sξ2+ν|ξ|p)dVg = 0, (3.11)

as ξ =−|ξ|. Also, from Property 3 and Hölder inequality, we have

A‖ξ‖L2
1
≥ ‖ξ‖Lp ≥ vol(suppξ)−1/n‖ξ‖L2 . (3.12)

Using (3.12) to eliminate
∫
M a|∇ξ|2dVg in (3.11) and using S ≥ ν−Y , |ν| = 1,

we find that

‖ξ‖pLp ≥
(
F6 vol(suppξ)−2/n−F7

)‖ξ‖2
L2 (3.13)

for F6,F7 > 0 depending on A,Y , and n. Now ‖ξ‖L2 ≥ vol(suppξ)1/n‖ξ‖Lp as

above, and so either ‖ξ‖Lp = 0 or we may substitute this into (3.13) to get

‖ξ‖4/(n−2)
Lp ≥ F6−F7 vol(suppξ)2/n. (3.14)

If this holds, then either ‖ξ‖4/(n−2)
Lp ≥ F6/2 or vol(suppξ)≥ (F6/2F7)n/2. Both

imply that ‖φ‖Lp is bounded below by a positive constant, and by Property 3,

‖φ‖L2
1

is bounded below by a positive constant too. Conversely, if ‖φ‖L2
1

is

smaller than this constant, then (3.14) cannot hold and so ‖ξ‖Lp = 0, which

implies ψ≥ 0.

We are now ready to define the constant c in Theorem 3.1. Let c be small

enough that three conditions hold:

(1) ‖ε‖Ln/2 ≤ c implies ‖ε‖Ln/2 is sufficiently small to satisfy Lemma 3.3 so

that φ exists and satisfies ‖φ‖L2
1
≤ cW ;

(2) ‖φ‖L2
1
≤ cW implies ‖φ‖L2

1
is sufficiently small to satisfy Proposition 3.4

so that ψ= 1+φ≥ 0;

(3) ‖φ‖L2
1
≤ cW implies ‖φ‖L2

1
is sufficiently small that φ cannot be the

constant −1. (As X/2≤ vol(M) by Property 1, this depends only on X.)

Then c depends only on n,A,B,X, and Y , as the three conditions each sep-

arately do. Thus, if ‖ε‖Ln/2 ≤ c, then there exists φ with ‖φ‖L2
1
≤ W‖ε‖Ln/2

such that ψ = 1+φ ≥ 0 and satisfies (1.6). By the third condition on c, ψ is

not identically zero. By Proposition 1.1, ψ ∈ C2(M), and is C∞ wherever it is
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nonzero. It remains to show that ψ > 0 for g̃ =ψp−2g to be nonsingular and

have constant scalar curvature ν . This we achieve using the strong maximum

principle [7, Theorem 2.6].

Theorem 3.5. Suppose h is a nonnegative smooth function on a connected

manifold M , and u ∈ C2(M) satisfies (∆+h)u ≥ 0. If u attains its minimum

m≤ 0, then u is constant on M .

As M is compact and S and ψ are continuous, they are bounded on M , and

there is a constant h≥ 0 such that S−νψp−2 ≤ h on M . Now M is connected,

andψ∈ C2(M) satisfies (1.6) and is nonnegative, soψ satisfies a∆ψ+hψ≥ 0.

Thus, by the strong maximum principle, if ψ attains the minimum value zero,

then ψ is identically zero on M . But it has already been shown that this is

not the case, so ψ cannot be zero anywhere and must be strictly positive. The

proof of Theorem 3.1 is therefore complete.

3.2. Constant negative scalar curvature. Now we construct metrics of sca-

lar curvature−1 on connected sums using the results of Section 3.1. Fix ν =−1

and consider the metrics gt of Sections 2.1 and 2.2. Properties 1, 2, and 3 of

Section 3.1 have already been dealt with, so it remains to show that Property 4

holds for the metrics gt , and that gt‖εt‖Ln/2 is small when t is small. As ν =−1,

Property 4 is about the invertibility of a∆+b, which is simple as the eigenval-

ues of ∆ are nonnegative.

Lemma 3.6. Let {gt : t ∈ (0,δ)} be one of the families of metrics defined on

M =M′#M′′ in Sections 2.1 and 2.2, and let A,ζ be as in Proposition 2.2. Then

for all t ∈ (0,ζ] and ξ ∈ L2n/(n+2)(M), there exists a unique φ ∈ L2
1(M) such

that a∆φ+bφ= ξ holds weakly and gt‖φ‖L2
1
≤ B gt‖ξ‖L2n/(n+2) , where B =A/b.

Proof. As ∆ is selfadjoint and all its eigenvalues are nonnegative, and

as a,b > 0, by some well-known analysis, a∆+b has a right inverse, T say,

from L2(M) → L2(M). Now M is compact and so L2(M) ⊂ L2n/(n+2)(M). Let

ξ ∈ L2(M). We may define φ∈ L2(M) by φ= Tξ, and a∆φ+bφ = ξ will hold

weakly.

It must be shown first that φ ∈ L2
1(M) and that it satisfies the inequality.

Since φ,ξ ∈ L2(M),
∫
MφξdVgt exists, and by subtraction,

∫
Mφ∆φdVgt exists

as well. This is
∫
M |∇φ|2dVgt and so φ∈ L2

1(M), by definition.

Multiplying the expression above byφ and integrating givesa
∫
M |∇φ|2dVgt+

b gt‖φ‖2
L2 =

∫
M φξdVgt . As a > b, the left-hand side is at least b gt‖φ‖2

L2
1
, and

the right-hand side is at most gt‖φ‖Lp gt‖ξ‖L2n/(n+2) by Hölder inequality since

φ ∈ Lp(M) by the Sobolev embedding theorem. But gt‖φ‖Lp ≤ Agt‖φ‖L2
1

by

Proposition 2.2. Putting all this together gives

b gt‖φ‖2
L2

1
≤Agt‖ξ‖L2n/(n+2)

gt‖φ‖L2
1
, (3.15)

and dividing by b gt‖φ‖L2
1

gives gt‖φ‖L2
1
≤ B gt‖ξ‖L2n/(n+2) .
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So far we have worked with ξ ∈ L2(M) rather than L2n/(n+2)(M). It has been

shown that the operator T : L2(M) ⊂ L2n/(n+2)(M)→ L2
1(M) is linear and con-

tinuous with respect to the L2n/(n+2) norm on L2(M) and bounded by B. But

therefore, by elementary functional analysis, the operator T extends uniquely

to a continuous operator on the closure of L2(M) in L2n/(n+2)(M), that is,

L2n/(n+2)(M) itself. Call this extended operator T . Then for ξ ∈ L2n/(n+2)(M),
φ= Tξ is a well-defined element of L2

1(M), satisfing gt‖φ‖L2
1
≤ B gt‖ξ‖L2n/(n+2) ,

and a∆φ+bφ= ξ holds in the weak sense, by continuity. This concludes the

proof.

All the previous work now comes together to prove the following two exis-

tence theorems for metrics of scalar curvature −1.

Theorem 3.7. Let (M′,g′) and (M′′,g′′) be compact Riemanniann-manifolds

with scalar curvature−1 and 1, respectively. SupposeM′,M′′ contain pointsm′,
m′′ with neighbourhoods in which g′, g′′ are conformally flat.

As in Section 2.1, define the family {gt : t ∈ (0,δ)} of metrics onM =M′#M′′.
Then there exists C > 0 such that gt admits a smooth conformal rescaling to

g̃t = (1+φ)p−2gt with scalar curvature −1 for small t, and gt‖φ‖L2
1
≤ Ct2.

Theorem 3.8. Let (M′,g′) and (M′′,g′′) be compact Riemannian n-mani-

folds with scalar curvature −1. Suppose M′, M′′ contain points m′, m′′ with

neighbourhoods in which g′, g′′ are conformally flat.

As in Section 2.2, define the family {gt : t ∈ (0,δ)} of metrics onM =M′#M′′.
Then there exists C > 0 such that gt admits a smooth conformal rescaling to

g̃t = (1+φ)p−2gt with scalar curvature −1 for small t, and gt‖φ‖L2
1
≤ Ct2.

The proofs of the theorems are nearly the same, so only the first will be

given. To get the second proof, change vol(M′) to vol(M′)+ vol(M′′) in the

definition of X.

Proof of Theorem 3.7. Applying Propositions 2.1 and 2.2 to the family

{gt : t ∈ (0,δ)} gives a constant Y for Property 2 of Section 3.1, and con-

stants A,ζ such that if t ≤ ζ, then Property 3 holds for gt with constant A.

By Lemma 3.6, there is a constant B such that Property 4 also holds for gt
when t ≤ ζ.

It is clear that as t→ 0, vol(M,gt)→ vol(M′) > 0. So there is a constant X > 0

such thatX/2≤ vol(M,gt)≤X for small enough t. This gives Property 1. Thus,

there are constantsn,A,B,X,Y such that Properties 1, 2, 3, and 4 of Section 3.1

hold for (M,gt) when t is small. Theorem 3.1 therefore gives a constant c such

that if gt‖εt‖Ln/2 ≤ c, we have the smooth conformal rescaling to a constant

scalar curvature metric that we want.

But by Proposition 2.1, gt‖εt‖Ln/2 ≤ Zt2. So for small enough t, gt‖εt‖Ln/2 ≤ c,
and there exists a smooth conformal rescaling to a metric g̃t = (1+φ)p−2gt



CONSTANT SCALAR CURVATURE METRICS ON CONNECTED SUMS 423

which has scalar curvature −1. Moreover, ‖φ‖L2
1
≤W gt‖εt‖Ln/2 ≤WZt2 where

W is the constant given by Theorem 3.1. Therefore, putting C =WZ completes

the proof.

3.3. Constant positive scalar curvature. Now we construct metrics of sca-

lar curvature 1 on connected sums. The problems we encounter are in proving

Property 4 of Section 3.1, which now deals with the invertibility of a∆−b, and

they arise because a∆may have eigenvalues close to b. Our strategy is to show

that if a∆ has no eigenvalues in a fixed neighbourhood of b on the component

manifolds of the connected sum, then for small t, a∆ has no eigenvalues in a

smaller neighbourhood of b on (M,gt).
This is the content of the next theorem. We will indicate here why the theo-

rem holds, but we leave the proof until the appendix, because it forms a rather

long and involved diversion from the main thread of the paper.

Theorem 3.9. Let {gt : t ∈ (0,δ)} be one of the families of metrics defined

onM =M′#M′′ in Sections 2.1 and 2.2, and suppose that for some γ > 0, a∆ has

no eigenvalues in (b−2γ,b+2γ) on (M′,g′) in Section 2.1, and on both (M′,g′)
and (M′′,g′′) in Section 2.2. Then, a∆ has no eigenvalues in (b−γ,b+γ) on

(M,gt) for small t.

Here is a sketch of the proof. Suppose φ is an eigenvector of a∆ on (M,gt)
for small t. Restricting φ to the portions of M coming from M′ and M′′ and

smoothing off gives functions onM′ andM′′. We try to show that one of these

is close to an eigenvector of a∆ onM′ orM′′. This can be done except when φ
is large on the neck compared to the rest of the manifold.

But as the neck is a small region when t is small, for φ to be large there and

small elsewhere means that φ must change quickly around the neck, so that∫
M |∇φ|2dVgt has to be large compared to

∫
M φ2dVgt . Thus, the eigenvalue of

φmust be large. Conversely, if the eigenvalue ofφ is close to b, thenφ cannot

be large on the neck compared to the rest ofM , and therefore eitherM′ orM′′

must also has an eigenvalue close to b.

Using this result, Property 4 of Section 3.1 can be proved for the metrics.

Lemma 3.10. Let {gt : t ∈ (0,δ)} be one of the families of metrics defined

on M = M′#M′′ in Sections 2.1 and 2.2, and suppose that b is not an eigen-

value of a∆ on (M′,g′) in Section 2.1, and on neither (M′,g′) nor (M′′,g′′)
in Section 2.2. Then there exists B > 0 such that for small t, whenever ξ ∈
L2n/(n+2)(M), there exists a unique φ ∈ L2

1(M) with a∆φ−bφ = ξ on (M,gt),
and gt‖φ‖L2

1
≤ B gt‖ξ‖L2n/(n+2) .

Proof. The spectrum of a∆ on a compact manifold is discrete, so if b is

not an eigenvalue of a∆, then a∆ has no eigenvalues in a neighbourhood of b.

Suppose b is not an eigenvalue of a∆ on (M′,g′) in Section 2.1, and on neither

(M′,g′) nor (M′′,g′′) in Section 2.2. Then there exists γ > 0 such that a∆ has
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no eigenvalues in (b−2γ,b+2γ) on these manifolds. So by Theorem 3.9, a∆
has no eigenvalues in (b−γ,b+γ) on (M,gt) for small t.

Thus, easy analytical facts about the Laplacian imply that a∆−b has a right

inverse T : L2(M) → L2(M). As M is compact, L2(M) ⊂ L2n/(n+2)(M). Let ξ ∈
L2(M). Then φ = Tξ ∈ L2(M) exists and satisfies the equation a∆φ−bφ = ξ
in the weak sense, and as a∆−b has no kernel,φ is unique. Sinceφ,ξ ∈ L2(M),
multiplying this equation by φ and integrating gives a convergent integral, so

by subtraction,
∫
M |∇φ|2dVgt converges, and φ∈ L2

1(M).
It remains to boundφ in L2

1(M). Letφ1 be the part ofφmade up of eigenvec-

tors of a∆ associated with eigenvalues less than b, and φ2 the part associated

with eigenvalues greater than b. Multiplying the equation a∆φ−bφ = ξ by

φ2−φ1 and integrating gives

∫
M

(
a
∣∣∇φ2

∣∣2−bφ2
2

)
dVgt −

∫
M

(
a
∣∣∇φ1

∣∣2−bφ2
1

)
dVgt =

∫
M

(
φ2−φ1

)
ξdVgt .

(3.16)

But the restriction on the eigenvalues of a∆ means that

∫
M
a
∣∣∇φ1

∣∣2dVgt ≤ (b−γ)
∫
M
φ2

1dVgt ,∫
M
a
∣∣∇φ2

∣∣2dVgt ≥ (b+γ)
∫
M
φ2

2dVgt ,
(3.17)

and these together with (3.16) and Hölder inequality imply that

γa
a+b+γ

∫
M

(∣∣∇φ1

∣∣2+∣∣∇φ2

∣∣2+φ2
1+φ2

2

)
dVgt ≤ gt

∥∥φ2−φ1

∥∥
Lp
gt‖ξ‖L2n/(n+2) .

(3.18)

For t ≤ ζ, we apply Proposition 2.2 to φ2 −φ1 to give gt‖φ2 −φ1‖Lp ≤
Agt‖φ2−φ1‖L2

1
. Butφ1,φ2 are orthogonal in L2

1(M), so gt‖φ2−φ1‖L2
1
= gt‖φ‖L2

1
,

and similarly, the integral on the left-hand side above is gt‖φ‖2
L2

1
. Therefore,

γa
a+b+γ

gt‖φ‖2
L2

1
≤Agt‖φ‖L2

1

gt‖ξ‖L2n/(n+2) . (3.19)

Dividing by γa gt‖φ‖L2
1
/(a+b+γ), then gives gt‖φ‖L2

1
≤ B gt‖ξ‖L2n/(n+2) for

small t, where B = (a+b+γ)A/aγ. So the lemma holds for ξ ∈ L2(M). This

may be extended to ξ ∈ L2n/(n+2)(M) as in the proof of Lemma 3.6, and the

argument is complete.

Now we will prove two existence theorems for metrics of scalar curvature 1.

Theorem 3.11. Let (M′,g′) and (M′′,g′′) be compact Riemannian n-mani-

folds with scalar curvature 1. Suppose that b is not an eigenvalue of a∆ on

(M′,g′), and thatM′,M′′ contain pointsm′,m′′ with neighbourhoods in which

g′, g′′ are conformally flat.
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As in Section 2.1, define the family {gt : t ∈ (0,δ)} of metrics onM =M′#M′′.
Then there exists C > 0 such that gt admits a smooth conformal rescaling to

g̃t = (1+φ)p−2gt with scalar curvature 1 for small t, and gt‖φ‖L2
1
≤ Ct2.

Theorem 3.12. Let (M′,g′) and (M′′,g′′) be compact Riemannian n-mani-

folds with scalar curvature 1. Suppose that b is not an eigenvalue of a∆ on

(M′,g′) or (M′′,g′′), and that M′, M′′ contain points m′, m′′ with neighbour-

hoods in which g′, g′′ are conformally flat.

As in Section 2.2, define the family {gt : t ∈ (0,δ)} of metrics onM =M′#M′′.
Then there exists C > 0 such that gt admits a smooth conformal rescaling to

g̃t = (1+φ)p−2gt with scalar curvature 1 for small t, and gt‖φ‖L2
1
≤ Ct2.

Proof of Theorems 3.11 and 3.12. These are the same as the proofs of

Theorems 3.7 and 3.8, except that Lemma 3.10 should be applied in place of

Lemma 3.6, and where the proofs of Theorems 3.7 and 3.8 mention scalar

curvature −1, these proofs should have scalar curvature 1.

In Section 2.3, we saw that when g′, g′′ have scalar curvature 1, Sections

2.1 and 2.2 define three families of metrics gt on M =M′#M′′ with the same

family of conformal classes [gt] where t in Section 2.2 corresponds to t2 in

Section 2.1. Thus, Theorems 3.11 and 3.12 construct three different metrics

of scalar curvature 1 in the same conformal class [gt] on M , for small t. The

first resembles (M′,g′) with a small, asymptotically flat copy of M′′ glued in

at one point, as in Section 2.1. The second is like the first, but swapping M′

and M′′. The third resembles (M′,g′) and (M′′,g′′) joined by a small neck, as

in Section 2.2.

These metrics are stationary points of the Hilbert action Q, but they need

not be absolute minima, that is, Yamabe metrics. The third is never a minimum.

If g′, g′′ are Yamabe metrics, the author expects that generically one of the

first and second metrics will be a Yamabe metric, and in a codimension 1 set

of cases when vol(M′) ≈ vol(M′′), both the first and second metrics will be

distinct Yamabe metrics.

3.4. Extending to conformally curved metrics. In defining the metrics {gt :

t ∈ (0,δ)} in Sections 2.1 and 2.2, we assumed, for simplicity, that g′, g′′ are

conformally flat in neighbourhoods ofm′,m′′. It turns out that if we drop this

assumption, then provided that the metrics gt on M are suitably defined, the

results of Sections 3.2 and 3.3 still hold without change. The principal differ-

ence is that the expression (2.6) for the scalar curvature of gt becomes more

complicated, with new error terms that have to be estimated and controlled.

Following the method of Section 2.1, we can choose an identification of a

ball about m′ in M′ with Bδ(0) such that the induced metric on Bδ(0) is g′ =
h+q′, where h is the standard metric on Rn and q′ = O′′(|v|2) in the sense

of Section 1.3. To glue in the neck metric gN of Section 2.2, for instance, we

would define gt = β1(h+q′)+β2(1+ t6(n−2)|v|−(n−2))p−2h, where (β1,β2) is
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the partition of unity defined in Section 2.1. Writing out the scalar curvature

explicitly, we see that as q′ =O′′(|v|2), the terms involving q′ can be absorbed

into the existing error terms in Section 2.4 so that (2.8) holds for the new

metrics gt . Therefore, Proposition 2.1 holds for the new metrics gt as well.

It can be seen by following the proofs of Proposition 2.2 and Theorem 3.9

in the appendix that no other nontrivial modifications are required to prove

these results for the more general families of metrics {gt : t ∈ (0,δ)} discussed

above. Thus, the new metrics satisfy all the necessary conditions, and the re-

sults of Sections 3.2 and 3.3 apply to them without change.

4. Connected sums with zero scalar curvature. In this section, the meth-

ods of Sections 2 and 3 will be adapted to study zero scalar curvature mani-

folds. We have three cases to consider, when the scalar curvatures of g′ and g′′

are 0 and 1, or 0 and 0, or −1 and 0. Each case introduces specific difficulties,

and each needs some additional methods to prove the existence of constant

scalar curvature metrics.

The first two cases fit into a common analytic framework, and will be handled

together. The differences with the previous method are that gt must be defined

more carefully than before to control the errors sufficiently, and in the analysis,

the operator a∆−νb now has one or two small eigenvalues. Thus, when the

sequence {φi}∞i=0 is defined inductively using the inverse of this operator, the

components in the directions of the corresponding eigenvectors have to be

attended to, to prevent the sequence diverging. The third case is discussed in

Section 4.5. We will outline what the constant scalar curvature metrics look

like and how to prove existence results, but will not go into much detail.

4.1. Combining zero and positive scalar curvature. Let (M′,g′) and

(M′′,g′′) be compact Riemannian n-manifolds such that g′ has scalar curva-

ture 0 and g′′ scalar curvature 1. Suppose, as in Section 2, thatM′,M′′ contain

points m′, m′′ with neighbourhoods in which g′, g′′ are conformally flat. As

in Section 2.1, there exists a ball B′ about m′ in M′ and a diffeomorphism

Φ′ : Br (0) ⊂ Rn → B′ for r < 1 with Φ′(0) =m′ and (Φ′)∗(g′) = (ψ′)p−2h for

some function ψ′ on Br (0) with ψ′(0) = 1 and dψ′(0) = 0. As g′ has zero

scalar curvature, we have ∆ψ′ = 0 by (1.5).

Let (M̂, ĝ) be the stereographic projection ofM′′ fromm′′. Then as in Section

2.1, there is an immersion Ξ′′ :Rn \BR(0)→ M̂ for some R > 0, whose image is

the complement of a compact set in M̂ , such that (Ξ′′)∗(ĝ) = ξp−2h where ξ
is a smooth function on Rn \BR(0) satisfying ξ(v) = 1+O′(|v|2−n). Also, by

Proposition 1.3, there exists µ ∈R such that

ξ(v)= 1+µ|v|2−n+O′(|v|1−n). (4.1)

As (M′′,g′′) is not conformal to �n with its round metric, Theorem 1.4

shows that µ > 0, at least if M′′ is spin or n ≤ 7. For our purposes, we only
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need to assume that µ �= 0 so that µ|v|2−n is the leading error term in (4.1).

Therefore, if n> 7 and M′′ is not spin, we suppose that µ �= 0.

Choose k with (n−2)(n+2)/2(n+1) < k < (n−2)(n+2)/2n, which will

remain fixed throughout this section. Choose δ∈ (0,1) such that δ2k/(n+2) ≤ r
and δ−2/n ≥ R. We will write down a family of metrics {gt : t ∈ (0,δ)} on

M = M′#M′′, in a similar way to Section 2.1. For any t ∈ (0,δ), define M and

the conformal class of gt by

M = (M′ \Φ′[Bt(n−2)/n(0)
])�(M̂ \(Ξ′′[Rn \Bt2k/(n+2)−1(0)

]))
/˜ t

, (4.2)

where ˜ t
is the equivalence relation defined by

Φ′[v]˜ t
Ξ′′[t−1v] whenever v ∈Rn, t(n−2)/n < |v|< t2k/(n+2). (4.3)

As in Section 2.1, the conformal class [gt] of gt is the restriction of the

conformal classes of g′ and ĝ to the open sets ofM′ and M̂ making upM , and

is well defined because the conformal classes agree on the annulus of overlap

At , where the two open sets are glued by ˜ t
. Define gt within this conformal

class by gt = g′ on the component of M \At coming from M′, and gt = t2ĝ
on the component coming from M̂ . It remains to choose a conformal factor on

At . This is done as in Section 2.1, except that the annulus {v ∈Rn : t(n−2)/n <
|v|< t2k/(n+2)} in Rn replaces {v ∈Rn : t2 < |v|< t} in Rn in the definition of

the partition of unity. This completes the definition of gt for t ∈ (0,δ).
Lemma 4.1. Let the scalar curvature of gt be −εt . Then εt is zero outside

At . There exists Y > 0 such that for all t ∈ (0,δ), εt satisfies |εt| ≤ Y , and

the volume of At with respect to gt satisfies vol(At)=O(t2nk/(n+2)). Therefore,
gt‖εt‖L2n/(n+2) =O(tk) and gt‖εt‖Ln/2 =O(t4k/(n+2)).

Proof. Outside At , the metric gt is equal to g′ or homothetic to ĝ, and so

has zero scalar curvature, verifying the first claim of the lemma. The proof that

|εt| ≤ Y is the same as that for the corresponding statement in Proposition 2.1,

setting ν = 0. The estimate on the volume of At also follows by the method

used in Proposition 2.1, and the last two estimates are immediate.

We introduced k above to make the estimate on gt‖ε‖L2n/(n+2) easy to write

down.

Lemma 4.2. For small t,

∫
M
εt dVgt = (n−2)ωn−1µtn−2+O(tn−2+α), (4.4)

where µ is the constant of (4.1), ωn−1 is the volume of the unit sphere �n−1 in

Rn, and α=min(2/n,2k(n+1)/(n+2)−(n−2)) > 0.
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Proof. Calculating with (1.5) gives

εt(v)=ψ−(n+2)/(n−2)
t (v)

(
2
(∇β1(v)

)·(∇(ψ′(v)−ξ(t−1v
)))

−(∆β1(v)
)(
ψ′(v)−ξ(t−1v

)))
.

(4.5)

Let F be the quadratic form on Rn given by the second derivatives of ψ′;
then ψ′ = 1+F +O′(|v|3). As the scalar curvature of g′ is zero, the trace of

F is zero. Now dVgt = ψpt dVh. Multiplying (4.5) by this equation and making

various estimates gives

εt(v)dVgt =
(
2
(∇β1(v)

)·(∇F+O(|v|2)−µtn−2∇(|v|2−n)−tn−1O
(|v|−n))

−(∆β1(v)
)(
F+O(|v|3)−µtn−2|v|2−n−tn−1O

(|v|1−n)))dVh.
(4.6)

Integrate this over At . Now β1(v) = β(|v|) where β(|v|) = σ(log |v|/ logt)
from Section 2.1. So (∇β1(v)) · (∇F) = 2|v|−1F(dβ/dx) and (∇β1(v)) ·
(−µtn−2∇(|v|2−n)) = (n− 2)µtn−2|v|1−n(dβ/dx) and ∆β1 = −(d2β/dx2)+
(1−n)|v|−1(dβ/dx). Therefore,

∫
At
εt(v)dVgt

=
∫
At

(
dβ
dx

(
(n+3)|v|−1F+(n−3)µtn−2|v|1−n+O(|v|2)+tn−1O

(|v|−n))

+|v|d
2β
dx2

(|v|−1F−µtn−2|v|1−n+O(|v|3)+tn−1O
(|v|1−n)))dVh.

(4.7)

Using a Fubini theorem, we may write the integral on the right-hand side as

a double integral over �n−1 and |v|. The volume forms are related by dVh =
|v|n−1dΩd|v| where dΩ is the standard volume form on �n−1 with radius 1.

But as the trace of F with respect to h is zero,
∫

�n−1 FdΩ = 0 and the terms

on the right-hand side of (4.7) involving F vanish. So viewing (4.7) as a double

integral and integrating over �n−1 gives

∫
At
εt(v)dVgt

=ωn−1

∫ t2k/(n+2)

t(n−2)/n

(
(n−3)µtn−2 dβ

dx
−µtn−2x

d2β
dx2

)
dx+error terms,

(4.8)

where ωn−1 is the volume of �n−1.
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The integral on the right-hand side is an exact integral, by parts. By defini-

tion, β changes from 0 to 1 and dβ/dx from 0 to 0 over the interval, so, the

integral becomes

∫
At
εt(v)dVgt = (n−2)ωn−1µtn−2+error terms (4.9)

which is nearly the conclusion of the lemma; it remains only to show that the

“error terms” are of order tn−2+α.

This is a simple calculation and will be left to the reader, the necessary

ingredients being that as |v| lies between t(n−2)/n and t2k/(n+2), O(|v|)may be

replaced by O(t2k/(n+2)), and tO(|v|−1)may be replaced by O(t2/n), dβ/dx =
O(|v|−1), and d2β/dx2 =O(|v|−2). The error term that is usually the biggest

is O(|v|n+1), and in order to ensure that this error term is smaller than the

leading term calculated above, that is, to ensure α > 0, k must satisfy k >
(n+2)(n−2)/2(n+1), which was one of the conditions in the definition of k
above.

The lemma shows that the average scalar curvature of (M,gt) is close to

−(n−2)ωn−1µtn−2 vol(M′)−1, so we will choose this value for the scalar cur-

vature of g̃t in Section 4.4.

4.2. Combining two metrics of zero scalar curvature. LetM′,M′′,M,g′,g′′,
m′, andm′′ be as usual, with g′, g′′ of zero scalar curvature and conformally

flat in neighbourhoods of m′, m′′. Rescaling g′, g′′ by homotheties still gives

metrics of zero scalar curvature. Thus gluing these rescaled metrics, using the

method of Section 2.2, gives a 2-parameter family of metrics in the same con-

formal class [gt] that all have small scalar curvature. Which of these metrics

do we expect to be close to a metric of constant scalar curvature?

The necessary condition is that vol(M′)= vol(M′′); we will explain why at the

end of Section 4.3. Suppose, by applying a homothety to g′ or g′′ if necessary,

that vol(M′)= vol(M′′). A family of metrics {gt : t ∈ (0,δ)} will be defined on

M following Section 4.1, such that when t is small, gt resembles the union of

M′ andM′′ with their metrics g′ and g′′, joined by a small neck of approximate

radius t, which is modelled upon the manifold N of Section 2.2, with metric

t2gN .

Choose k with (n−2)(n+2)/2(n+1) < k < (n−2)(n+2)/2n and apply the

gluing method of Section 4.1 twice, once to glue one asymptotically flat end

of (N,t2gN) into M′ at m′, and once to glue the other asymptotically flat end

into M′′ at m′′. The role of At in Section 4.1 is played by At = A′t ∪A′′t , the

disjoint union of annuli A′t joining N and M′, and A′′t joining N and M′′. With

this definition, we state the next two lemmas, which are analogues of Lemmas

4.1 and 4.2.
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Lemma 4.3. Let the scalar curvature of gt be −εt . Then εt is zero outside

At . There exists Y > 0 such that for all t ∈ (0,δ), εt satisfies |εt| ≤ Y , and

the volume of At with respect to gt satisfies vol(At)=O(t2nk/(n+2)). Therefore,
gt‖εt‖L2n/(n+2) =O(tk) and gt‖εt‖Ln/2 =O(t4k/(n+2)).

Proof. This is identical to Lemma 4.1, and its proof is the same except that

gt may also be homothetic to gN in the first sentence.

Lemma 4.4. For all small t,∫
A′t
εt dVgt = (n−2)ωn−1tn−2+O(tn−2+α),

∫
A′′t
εt dVgt = (n−2)ωn−1tn−2+O(tn−2+α),

(4.10)

where α=min(2/n,2k(n+1)/(n+2)−(n−2)) > 0 and ωn−1 is the volume of

the unit sphere �n−1 in Rn.

Proof. This is merely Lemma 4.2 applied twice, firstly to the gluing of N
intoM′ and secondly to the gluing of N intoM′′. We have also used the obser-

vation that for both asymptotically flat ends ofN, the constant µ of Section 4.1

takes the value 1. To see this, compare the definition of µ in Proposition 1.3

with the definition of (N,gN) in Section 2.2.

4.3. Inequalities on the connected sum. Now we derive the analytic in-

equalities needed for the main result in Section 4.4. First of all, observe that

Proposition 2.2 applies to the metrics of Sections 4.1 and 4.2.

Lemma 4.5. Let {gt : t ∈ (0,δ)} be one of the families of metrics defined on

M =M′#M′′ in Sections 4.1 and 4.2. Then there exist A> 0 and ζ ∈ (0,δ) such

that gt‖φ‖Lp ≤A· gt‖φ‖L2
1

whenever φ∈ L2
1(M) and t ∈ (0,ζ].

Proof. The proof follows that of Proposition 2.2, applied to the metrics of

Sections 4.1 and 4.2 rather than Sections 2.1 and 2.2, except for some simple

changes to take into account, the different powers of t used to define the new

metrics.

As in Section 3.3, to calculate with the inverse of a∆−νb, we need to know

about the spectrum of a∆ on (M,gt). The next three results give the necessary

information; the proofs are again deferred to the appendix.

Theorem 4.6. Let {gt : t ∈ (0,δ)} be the family of metrics defined on M =
M′#M′′ in Section 4.1. Choose γ > 0 such that a∆ on (M′,g′) has no eigenvalues

in (0,2γ). Then a∆ on (M,gt) has no eigenvalues in (0,γ) for small t.

For the metrics gt of Section 4.2, the situation is more complicated. For

small t, we expect the eigenvectors of a∆ on (M,gt) with small eigenvalues to
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be close to eigenvectors of a∆ on M′ or M′′ with small eigenvalues, that is, to

constant functions on M′ and M′′. So we expect two eigenvectors on (M,gt)
associated to small eigenvalues, one is the constant function, and the other

close to a constant on the M′ part of M , and to a different constant on the

M′′ part of M . The next result describes this second eigenvector. The proof is

deferred to the appendix.

Proposition 4.7. Let {gt : t ∈ (0,δ)} be the family of metrics defined on

M =M′#M′′ in Section 4.2. Then for small t, there exists λt > 0 and βt ∈ C∞(M)
such that a∆βt = λtβt on (M,gt). Here λt =O(tn−2), and

βt =



1+O(tn−2
)

on M′ \B′,
1+O(tn−2|v|2−n) on

{
v : t ≤ |v|< δ}⊂ B′,

−1+O(tn−2) on M′′ \B′′,
−1+O(tn−2|v|2−n) on

{
v : t ≤ |v|< δ}⊂ B′′,

(4.11)

identifying subsets of M′, M′′ with subsets of M .

The proposition is proved by a series method, starting with a function that

is 1 on the part ofM coming fromM′ and −1 on the part coming fromM′′, and

then adding small corrections to get to an eigenvector of a∆. Note that βt takes

the approximate values ±1 on the two halves because vol(M′) = vol(M′′) by

assumption; if the volumes were different, then the approximate values would

have to be adjusted so that
∫
M βt dVgt = 0.

We may now state the analogue of Theorem 4.6 for the metrics of Section 4.2,

which will be proved in the appendix.

Theorem 4.8. Let {gt : t ∈ (0,δ)} be the family of metrics defined on M =
M′#M′′ in Section 4.2. Choose γ > 0 such that all a∆ has no eigenvalues in

(0,2γ) on (M′,g′) or (M′′,g′′). Then for small t, the only eigenvalue of a∆ in

(0,γ) on (M,gt) is λt from Proposition 4.7, with eigenspace 〈βt〉.
Theorems 4.6 and 4.8 will fit into the existence proofs of Section 4.4 in the

same way as Theorem 3.9 does into that of Section 3.3. The small eigenvalue

λt in Theorem 4.8 means that βt-components of functions will have to be care-

fully controlled, to ensure that inverting a∆ upon them does not give a large

result. We now bound the βt-component of εt .

Lemma 4.9. Let {gt : t ∈ (0,δ)} be the family of metrics defined on M =
M′#M′′ in Section 4.2. Then for small t,

∫
M
βtεt dVgt =O

(
tn−2+α), (4.12)

where βt is the function of Proposition 4.7 and α is as in Lemma 4.4.
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Proof. Proposition 4.7 shows that βt = 1+O(t2(n−2)/n) on A′t and βt =
−1+O(t2(n−2)/n) on A′′t , as these are annuli in which t(n−2)/n < |v|< t2k/(n+2).

Applying these and Lemmas 4.3 and 4.4 to the integral of βtεt over M gives

∫
M
βtεt dVgt =O

(
tn−2+α)+Y vol

(
At
)·O(t2(n−2)/n), (4.13)

and as vol(At) = O(t2nk/(n+2)), the second term is O(t2nk/(n+2)+2(n−2)/n). But

by the definitions of k and α, it is easily shown that n−2+α< 2nk/(n+2)+
2(n−2)/n, and so the first error term is larger and subsumes the second, as

required.

We note that this lemma is the reason for requiring that vol(M′)= vol(M′′).
For if the two are not equal, then Lemma 4.4 still shows that

∫
A′t εtdVgt and∫

A′′t εtdVgt are equal to highest order, but βt takes values approximately pro-

portional to vol(M′)−1 on A′t , and to vol(M′′)−1 on A′′t . Thus in this case,∫
M βtεtdVgt is O(tn−2) rather than O(tn−2+α). But we will need

∫
M βtεtdVgt =

o(tn−2) for the proof in Section 4.4.

4.4. Existence of constant scalar curvature metrics. Now we give the exis-

tence results for constant scalar curvature metrics on the connected sums of

Sections 4.1 and 4.2.

Theorem 4.10. Let {gt : t ∈ (0,δ)} be one of the families of metrics on

M = M′#M′′ defined in Sections 4.1 and 4.2. Then there exists C > 0 such

that gt admits a smooth conformal rescaling for small t to g̃t = (1+φ)p−2gt ,
with scalar curvature −(n−2)ωn−1µtn−2 vol(M′)−1 in Section 4.1 and −(n−
2)ωn−1tn−2 vol(M′)−1 in Section 4.2, and gt‖φ‖L2

1
≤ Ctα. Here ωn−1 is the vol-

ume of the unit sphere �n−1 inRn, and µ,α are as in Section 4.1, and we suppose

µ �= 0 in the cases not covered by Theorem 1.4.

Proof. Let D0 be (n−2)ωn−1µvol(M′)−1 in Section 4.1 and (n−2)ωn−1×
vol(M′)−1 in Section 4.2. Define a function η on (M,gt) by η = εt −D0tn−2.

Then gt has scalar curvature −D0tn−2−η. As in Section 3, the condition for

g̃t = (1+ρ+τ)p−2gt to have scalar curvature −D0tn−2 is

a∆(ρ+τ)+bD0tn−2(ρ+τ)= η+η·(ρ+τ)−D0tn−2f(ρ+τ). (4.14)

Define a vector space P of functions on (M,gt) by P = 〈1〉 in Section 4.1,

and P = 〈1,βt〉 in Section 4.2, where βt is as in Proposition 4.7. We will con-

struct ρ,τ satisfying (4.14), with ρ ∈ P and τ ∈ P⊥ with respect to the L2
1 inner

product.

Define inductively sequences {ρi}∞i=0 of elements of P and {τi}∞i=0 of ele-

ments of P⊥ ⊂ L2
1(M) by ρ0 = τ0 = 0, and having defined the sequences up to
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i−1, let ρi and τi be the unique elements of P and P⊥ satisfying

a∆
(
ρi+τi

)+bD0tn−2(ρi+τi)
= η+η·(ρi−1+τi−1

)−D0tn−2f
(
ρi−1+τi−1

)
.

(4.15)

If we can show that these sequences converge to ρ ∈ P and τ ∈ P⊥ that are

small when t is small, then the arguments of Section 3 complete the theorem.

The difficulty lies in inverting the operator a∆+bD0tn−2: by Theorems 4.6

and 4.8, the operator is invertible on P⊥ with inverse bounded by γ−1, as all

the eigenvectors of a∆ in P⊥ have eigenvalues at least γ. But on P , the inverse

is of order t2−n, which is large; so ρi may be large even if the right-hand side

of (4.15) is small.

The solution is to ensure that the P components of η are smaller even than

tn−2 so that, after applying the inverse of a∆+bD0tn−2 to them, they are still

small. Let π denote orthogonal projection onto P ; both the L2 and the L2
1 inner

product give the same answer, and in fact, the projection makes sense even in

L1(M). Then from (4.15), we make the estimates

∥∥ρi∥∥L2
1
≤D1t2−n

(∥∥π(η)∥∥L1+
∥∥π(ηρi−1

)∥∥
L1+

∥∥π(ητi−1
)∥∥
L1

)
+D2

∥∥π(f (ρi−1+τi−1
))∥∥

L1 ,
(4.16)

∥∥τi∥∥L2
1
≤D3

(
‖η‖L2n/(n+2)+∥∥ηρi−1

∥∥
L2n/(n+2)+

∥∥ητi−1

∥∥
L2n/(n+2)

+D0tn−2
∥∥f (ρi−1+τi−1

)∥∥
L2n/(n+2)

) (4.17)

for some constants D1, D2, and D3 independent of t. The norms on the right-

hand side of (4.16) would normally be L2n/(n+2) norms, but as P is a finite-

dimensional space, all norms are equivalent, and we may use the L1 norm.

Our strategy is to show that if ‖ρi−1‖L2
1
≤D4tα and ‖τi−1‖L2

1
≤D5tk for large

enough constants D4, D5, then ‖ρi‖L2
1
≤D4tα and ‖τi‖L2

1
≤D5tk also hold for

small t, so by induction, the sequences are bounded; convergence for small t
easily follows by a similar argument to that used in Lemma 3.2.

From Lemmas 4.2, 4.4, and 4.9, we deduce that ‖π(η)‖L1 = O(tn−2+α), so

the first term on the right of (4.16) contributes O(tα) to ‖ρi‖L2
1
, consistent

with ‖ρi‖L2
1
≤D4tα if D4 is chosen large enough. The third term ‖π(ητi−1)‖L1

is bounded by A‖η‖L2n/(n+2)‖τi−1‖L2
1
, and ‖η‖L2n/(n+2) = O(tk) by Lemmas 4.1

and 4.3; the third term therefore contributes O(t2k+2−n) to ‖ρi‖L2
1
, and by the

definition of α, this error term is strictly smaller than O(tα). The fourth error

term is also easily shown to be smaller than O(tα).
Thus, the second term in (4.16) is the only problem, the reason is that the

P⊥-component of η, multiplied by ρi−1, may have an appreciable component

in P . We get round this as follows. Suppose ξ ∈ P⊥ and ρ ∈ P , and consider

the P -component of ξρ. In Section 4.1, this component is zero, and there is no

problem; in Section 4.2, there may be a component in the direction of βt , and
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it is measured by
∫
M ξβ

2
t dVgt . But by the description of βt in Proposition 4.7,

β2
t is close to 1 and ξ is orthogonal to the constants, and so in general the

P -component of ξρ will be small compared to the sizes of ξ and ρ. Taking this

into account, it is easy to get a good bound on ‖π(ηρi−1)‖L1 .

The rest of the proof will be left to the reader. What remains to be done is to

prove inductively that the bounds ‖ρi‖L2
1
≤D4tα, ‖τi‖L2

1
≤D5tk hold for small

enough t, and then, to prove the convergence of the sequences, and these may

both be done using the methods of Lemma 3.2, working from (4.16) and (4.17).

Setting φ= ρ+τ , where ρ, τ are the limits of the sequences. The reader may

then rejoin the proof of Theorem 3.1 after Lemma 3.3.

As the metrics constructed have negative scalar curvature, they are unique in

their conformal classes, and are Yamabe metrics. The theorem thus tells us that

the Yamabe metric on the connected sum, with small neck of two zero scalar

curvature manifolds, balances the volumes of the two component manifolds

so that they are equal, a fact which seems rather appealing.

4.5. Combining zero and negative scalar curvature. There is just one case

left, that of gluing a metric of zero scalar curvature into a metric of scalar

curvature−1. This case can be handled using the results of Section 3 and using

the following simple extension of the method: we define a family of metrics

{gt : t ∈ (0,δ)} on the connected sum M , with −1− εt the scalar curvature

of gt , and then prove that |εt| ≤ Y , ‖εt‖Ln/2 ≤ Ztι as in Proposition 2.1, and

that ‖φ‖Lp ≤At−κ‖φ‖L2
1

forφ∈ L2
1(M) as in Proposition 2.2, where norms are

taken with respect to gt .
Here ι,κ > 0. The idea is that if ι is large compared to κ, then we may follow

the proofs of Section 3 adding in powers of t, and at the crucial stages when

we need some expression to be sufficiently small, the power of t will turn

out to be positive, and so we only need to take t small enough. To do this in

practice, we modify the proof slightly to cut down the number of applications

of Proposition 2.2, and thus obtain a more favourable necessary ratio of ι to κ.

Now κ is essentially determined by what the Yamabe metric on the con-

nected sum actually looks like—if t is the radius of the neck, any family of good

approximations to the Yamabe metrics will have κ = (n−2)/n (this value will

be justified below). So, the problem is to make ι large enough, in other words,

to start with a family of metrics gt that are a good approximation to scalar

curvature −1. We will not go through the construction and proof again for

this case, but will describe how to define metrics gt that have close enough to

constant scalar curvature for the method outlined above to work.

Consider the connected sum M of (M′,g′) with scalar curvature −1 and

(M′′,g′′)with scalar curvature 0. To get a good enough approximation to scalar

curvature −1, we have to rescale g′′ so that its scalar curvature approximates

−1 rather than 0. Let ξ be the Green’s function of a∆ at m′′ on M′′ satisfying

a∆ξ = δm′′ −vol(M′′)−1 in the sense of distributions. Since ξ is only defined
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up to the addition of a constant, choose ξ to have minimum value 0. Then

ξ is a C∞-function on M̂ = M′′ \ {m′′} with a pole at m′′, of the form (n−
2)ω−1

n−1|v|2−n+O′(|v|1−n), in the usual coordinates.

Let ĝt = (t(n−2)2/2n + t(n−2)(n+2)/2n vol(M′′)ξ)p−2g′′ on M̂ . Calculating its

scalar curvature Ŝt using (1.5) gives

Ŝt =−
(
1+t2(n−2)/n vol

(
M′′)ξ)−(n+2)/(n−2)

(4.18)

so that −1≤ Ŝt < 0, and Ŝt is close to −1 away fromm′′ for small t. Outside a

small neighbourhood ofm′′, ĝt is close to t2(n−2)/ng′′ so that the diameter of

M′′ is multiplied by t(n−2)/n. But in a small neighbourhood ofm′′, ĝt resembles

a neck metric of radius proportional to t, as in Section 2.2. So ĝt looks likeM′′

rescaled by t(n−2)/n, and with a neck of radius proportional to t, opening out

to an asymptotically flat end.

We construct gt by gluing ĝt into g′ using the natural neck. Thus, a rough de-

scription of gt is that it is g′ on theM′ part and t2(n−2)/ng′′ on theM′′ part, and

the two parts are joined by a neck with radius proportional to t. With a family

{gt : t ∈ (0,δ)} of metrics defined in this way, the modified method outlined

above may be applied to show that there exist small conformal deformations

of gt to scalar curvature −1, for t sufficiently small.

One final point: we can now see the reason for the failure of Proposition 2.2

which necessitated this whole detour. Consider a smooth functionφ on (M,gt)
that is 0 on the M′ part, 1 on the M′′ part, and changes only on the neck. A

simple calculation shows that for such a function ‖φ‖Lp ∼ t(2−n)/n‖φ‖L2
1
, and

so the value for κ given above is the least possible.

4.6. Doing without conformal flatness. In Section 3.4, we explained that

the results of Section 3 still hold if the assumption, that g′, g′′ are conformally

flat in neighbourhoods ofm′,m′′, is dropped. However, the results of Section 4

do require modifications to generalize in this way. The problem is in extending

Lemmas 4.2 and 4.4 to the curved case: we need a quite precise evaluation of

the total scalar curvature of gt , and have to be careful that the error terms do

not swamp the term that we can evaluate.

To deal with the case of Section 4.1 first, it can be shown that the proof

of Lemma 4.2 still holds when g′ has conformal curvature near m′, because

defining gt as in Section 3.4, the extra error terms introduced in the scalar

curvature can be absorbed into the error terms already in (4.6), and so the

proof of Lemma 4.2 holds from that point. But if we allow g′′ to be conformally

curved near m′′, then Proposition 1.3 does not hold, and the scalar curvature

of gt is dominated (except for n= 3,4,5) by error terms that seem to have no

nice expression.

Therefore, the situation is this. Theorem 4.10 applies without change when

the metrics gt of Section 4.1 are defined using g′′ conformally flat near m′′,
but g′ not necessarily conformally flat near m′. To include the case g′′ not
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conformally flat, the result will hold if we weaken it so as not to prescribe

the constant value that the scalar curvature takes, but merely give an esti-

mate of its magnitude. Also, we believe that the result applies as stated when

n = 3,4, or 5 because then the mass term is large enough to dominate the

errors.

The case of Section 4.2 is easier; Theorem 4.10 applies without change to

the metrics gt of Section 4.2 defined using g′,g′′ not supposed conformally

flat about m′ and m′′. This is because the metrics gt are made by gluing in

the neck metric t2gN , which is conformally flat, so it reduces to the case of

Section 4.1 when g′′ is locally conformally flat, which we have already seen

works.

This leaves the case of Section 4.5. The generalization of Proposition 2.2

suggested there will extend without change to the conformally curved case, so

the problem is to define the metrics gt in such a way that the extra error terms,

introduced in the expression for the scalar curvature, still give good enough

approximations to constant scalar curvature for the existence result to apply.

We think that this can be done quite readily just by working on how to produce

good approximations gt , say, by adding a well-chosen conformal factor to the

existing definition.

Appendix

The spectrum of a∆ on M′#M′′. In this appendix, we prove Theorems 3.9,

4.6, and 4.8, and Proposition 4.7. They are results on the eigenvalues and eigen-

vectors of the operator a∆ onM with the metrics gt , defined in Sections 3 and

4. They appear here and not in the main text because the proofs are long cal-

culations.

Theorem 3.9 takes up Sections A.1 and A.2. Its proof divides naturally into

considering eigenvalues of a∆ smaller than b and eigenvalues larger than b.

The eigenvectors with eigenvalues smaller than b form a finite dimensional

space E. In Section A.1, we define a vector space Et that is a good approximation

to E when t is small, and using this, we show that all eigenvalues of vectors in

E are at most b−γ. In Section A.2, we consider eigenvectors with eigenvalues

larger than b, which must therefore be orthogonal to E, and by considering

their inner product with Et , we can show that their eigenvalues must be at

least b+γ.

In Section A.3, we prove similar results for use in the zero scalar curva-

ture material of Section 4. Most of the work needed to prove them has already

been done in Sections A.1 and A.2, and the main problem is the construction

of an eigenvector βt of a∆ with a small eigenvalue λt . This is done by a se-

quence method, the basic idea being to start with an approximation to βt and

repeatedly invert a∆ upon it; as λt is the smallest positive eigenvalue, the βt-
component of the resulting sequence grows much faster than any other and

so comes to dominate.



CONSTANT SCALAR CURVATURE METRICS ON CONNECTED SUMS 437

A.1. Eigenvalues of a∆ smaller than b. We now prove Theorem 3.9.

Proof of Theorem 3.9. It is well known that the spectrum of the Lapla-

cian on a compact Riemannian manifold is discrete and nonnegative, and that

the eigenspaces are finite dimensional. Therefore, on M′ and M′′, there are

only finitely many eigenvalues of a∆ smaller than b, and to each is associated

a finite-dimensional space of eigenfunctions.

Let E′ be the finite-dimensional vector space of smooth functions on M′

generated by eigenfunctions of a∆ onM′ associated with eigenvalues less than

b; we think of E′ as a subspace of L2
1(M′). For Section 2.2, define E′′ on M′′ in

the same way. As a∆ has no eigenvalues in the interval (b−2γ,b+2γ), we see

that

if φ∈ E′, then
∫
M′
a|∇φ|2dVg′ ≤

∫
M′

(
b−2γ

)
φ2dVg′ , (A.1)

if φ∈ (E′)⊥ ⊂ L2
1

(
M′), then

∫
M′
a|∇φ|2dVg′ ≥

∫
M′
(b+2γ)φ2dVg′ , (A.2)

and also two analogous inequalities for M′′ in Section 2.2. The perpendicular

subspace (E′)⊥ of (A.2) may be taken with respect to the inner product of

L2
1(M′) or with respect to that of L2(M′)—both give the same space as E′ is a

sum of eigenspaces of a∆.

Now if we have two statements like (A.1) and (A.2) but applying to M rather

than M′, then we can prove the result. This is the content of the next lemma.

Lemma A.11. Suppose there is a subspace Et of L2
1(M) for small t such that

if φ∈ Et, then
∫
M
a|∇φ|2dVgt ≤

∫
M
(b−γ)φ2dVgt , (A.3)

if φ∈ (Et)⊥ ⊂ L2
1(M), then

∫
M
a|∇φ|2dVgt ≥

∫
M
(b+γ)φ2dVgt , (A.4)

defining (Et)⊥ with the L2
1 inner product. Then Theorem 3.9 holds.

Proof. Suppose Et exists. We must show that l ∈ (b−γ,b+γ) cannot be

an eigenvalue of a∆ on (M,gt). Suppose φ is an eigenfunction of a∆ with

this eigenvalue l. Let φ1 and φ2 be the components of φ in Et and (Et)⊥,

respectively. Then, as a∆φ−lφ= 0,

0=
∫
M

(
φ2−φ1

)(
a∆

(
φ1+φ2

)−l(φ1+φ2
))
dVgt

=
∫
M

(
a
∣∣∇φ2

∣∣2−lφ2
2

)
dVgt −

∫
M

(
a
∣∣∇φ1

∣∣2−lφ2
1

)
dVgt

≥
∫
M

(
(γ+l−b)φ2

1+(γ+b−l)φ2
2

)
dVgt

(A.5)

using (A.3) and (A.4) in the last line. But as γ+ l−b,γ+b− l > 0, this shows

that φ1 =φ2 =φ= 0, which is a contradiction.
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To complete the proof of the theorem, we therefore need to produce some

spaces Et of functions onM satisfying (A.3) and (A.4). In Section 2.1, Et should

be modelled on E′, and in Section 2.2, on E′ ⊕E′′.
As a half-way stage between E′, E′′, and Et , spaces Ẽ′, Ẽ′′ of functions onM′,

M′′ will be made, that are close to E′, E′′ but vanish on small balls aroundm′,
m′′. Let σ ′ be a C∞-function onM′ that is 1 on the complement of a small ball

about m′, 0 on a smaller ball about m′, and otherwise, taking values in [0,1].
Now define Ẽ′ = σ ′E′ = {σ ′v : v ∈ E′}.

By choosing the ball outside which σ ′ is 1 to be small, we can ensure that Ẽ′

is close to E′ in L2
1(M′) in the following sense: the two have the same dimen-

sion, and any ṽ ∈ Ẽ′ may be written as ṽ = v1+v2, where v1,v2 ∈ E′,(E′)⊥,

respectively, and satisfy

∥∥v2

∥∥2
L2

1
≤ γ

2(a+b+2γ)
∥∥v1

∥∥2
L2

1
. (A.6)

Suppose that σ ′ has been chosen so that these hold. Then two statements

similar to (A.1) and (A.2) hold for Ẽ′, as we will see in the next lemma.

Lemma A.12. The subspace Ẽ′ satisfies the following two conditions:

if φ∈ Ẽ′, then
∫
M′
a|∇φ|dVg′ ≤

∫
M′

(
b− 3

2
γ
)
φ2dVg′ , (A.7)

if φ∈ (Ẽ′)⊥ ⊂ L2
1

(
M′), then

∫
M′
a|∇φ|2dVg′ ≥

∫
M′

(
b+ 3

2
γ
)
φ2dVg′ , (A.8)

where the inner product used to construct (Ẽ′)⊥ is that of L2
1(M′).

Proof. First we prove (A.7). Let φ ∈ Ẽ′, then φ = v1+v2 with v1 ∈ E′ and

v2 ∈ (E′)⊥. Because v1 and v2 are orthogonal in both L2 and L2
1,

a
∫
M′
|∇φ|2dVg′

= a
∫
M′

∣∣∇v1

∣∣2dVg′ +a
∫
M′

∣∣∇v2

∣∣2dVg′

≤ a
∫
M′

∣∣∇v1

∣∣2dVg′ +a
∥∥v2

∥∥2
L2

1

≤ a
∫
M′

∣∣∇v1

∣∣2dVg′ + aγ
2(a+b+2γ)

∥∥v1

∥∥2
L2

1

= a
(

1+ γ
2(a+b+2γ)

)∫
M′

∣∣∇v1

∣∣2dVg′ + aγ
2(a+b+2γ)

∫
M′
v2

1 dVg′

≤
(
(b−2γ)

(
1+ γ

2(a+b+2γ)

)
+ aγ

2(a+b+2γ)

)∫
M′
v2

1 dVg′

≤
(
b− 3

2
γ
)∫

M′
φ2dVg′ .

(A.9)
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Here between the third and fourth lines we have used (A.6), between the fifth

and sixth lines we have used (A.1), and between the last two we have used the

L2-orthogonality of v1, v2, and the trivial inequality (b−2γ)[1+γ/2(a+b+
2γ)]+aγ/2(a+b+2γ)≤ b−3γ/2. This proves (A.7).

To prove (A.8), observe that by (A.6), orthogonal projection from Ẽ′ to E′

is injective, and as they have the same (finite) dimension, it must also be sur-

jective. Let ṽ2 ∈ (Ẽ′)⊥. Then ṽ2 = v1+v2 with v1 ∈ E′ and v2 ∈ (E′)⊥. By this

surjectivity, there exists ṽ1 ∈ Ẽ′ such that ṽ1 = v1+v3 with v3 ∈ (E′)⊥, that is,

the E′-component of ṽ1 is v1, the same as that of ṽ2. But ṽ1 and ṽ2 are orthog-

onal in L2
1(M′), so taking their inner product gives that ‖v1‖2

L2
1
= −〈v2,v3〉 ≤

‖v3‖L2
1
‖v2‖L2

1
.

As ṽ1 = v1+v3 ∈ Ẽ′, we may square this inequality, substitute in for ‖v3‖2
L2

1

using (A.6), and divide through by ‖v1‖2
L2

1
. The result is that

∥∥v1

∥∥2
L2

1
≤ γ

2(a+b+2γ)
∥∥v2

∥∥2
L2

1
, for ṽ2 = v1+v2 ∈ (Ẽ′)⊥, (A.10)

which is the analogue of (A.6) for (Ẽ′)⊥ instead of Ẽ′. This is the ingredient

needed to prove (A.8) by the method used above for (A.7), and the remainder

of the proof will be left to the reader.

For the case of Section 2.2, a subspace Ẽ′′ of functions on M′′ is created in

the same way, and Lemma A.12 applies to this space too. We now define the

spaces Et . In Section 2.1, let Et be the space of functions that are equal to some

function in Ẽ′ on the subset of M identified with M′ \Φ′[Bt(0)], and are zero

outside this subset. In Section 2.2, let Et be the direct sum of this space of

functions, and the corresponding space made from Ẽ′′.
For small t, the functions in Et are C∞, and on their support, gt is equal to

g′ (or g′′ in case of Section 2.2). Thus, (A.7) applies to functions in Et .

Lemma A.13. For small enough t, the subspace Et of L2
1(M) satisfies

if φ∈ Et, then
∫
M
a|∇φ|2dVgt ≤

∫
M

(
b− 3

2
γ
)
φ2dVgt . (A.11)

A fortiori, it satisfies the inequality (A.3) of Lemma A.11.

Proof. In Section 2.1, this follows immediately from (A.7) as the gt and g′

agree upon the support of the functions of Et . In Section 2.2, φ is the sum of

elements of Ẽ′ and Ẽ′′; both sides of (A.11) split into two terms, each involving

one function. So (A.11) is the sum of two inequalities, which follow immediately

from (A.7) as before, and from the counterpart of (A.7) applying to Ẽ′′.
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The previous lemma showed that the space of functions Et uponM satisfies

inequality (A.3) of Lemma A.11. In the next proposition, proved in Section A.2,

we show that the inequality (A.4) is satisfied too.

Proposition A.14. Let M , gt , and Et be as in Section A.1. Then for small t,
inequality (A.4) of Lemma A.11 holds.

The proof of this proposition is the subject of Section A.2. Suppose, for the

moment, that the proposition holds. Then a space of functions Et upon M
has been constructed, satisfying inequality (A.3) by Lemma A.13, and inequal-

ity (A.4) by Proposition A.14. So by Lemma A.11, the proof of Theorem 3.9 is

finished.

A.2. Eigenvalues of a∆ larger than b. Next we will prove Proposition A.14

which completes the proof of Theorem 3.9. The idea of the proof is as follows.

Given φ∈ (Et)⊥, we want to show that its average eigenvalue of a∆ is at least

b+γ. We do this in different ways depending on whether φ is concentrated in

M′, or M′′, or the neck in between.

Proof of Proposition A.14. For simplicity, we will prove the proposition

for the metrics of Section 2.1 only, and the modifications for Section 2.2 will

be left to the reader. We will start from (A.8) of Lemma A.12. The constants

in (A.4) and (A.8) are different—the first has b+γ and the second b+3γ/2.

Choose constants b0 > b1 > ···> b5 with b0 = b+3γ/2 and b5 = b+γ. These

will be used to contain five error terms.

Shortly, we will choose r1,r2,r3 with 0< r1 < r2 < r3. Define three compact

Riemannian submanifolds with boundary Rt ⊂ St ⊂ Tt in (M,gt) to be the

subsets of M coming from subsets R, S, and T of M′′, respectively, where

R = M̂ \Ξ′′[Rn \Br1(0)], S = M̂ \Ξ′′[Rn \Br2(0)],
T = M̂ \Ξ′′[Rn \Br3(0)]. (A.12)

When t is small, Rt , St , and Tt lie in the region of M in which the function

β2, used in Section 2.1 to define gt , is 1. Then Rt , St , and Tt are homothetic to

R, S, and T , respectively, by a homothety multiplying their metrics by t12.

The idea is this. A diffeomorphism Ψ ′t from M′ \ {m′} onto M \Rt will be

constructed, which will be the identity outside Tt . Using Ψ ′t , any function in

L2
1(M) defines a function in L2

1(M′). Applying (A.8) of Lemma A.12 therefore

induces an inequality upon functions in L2
1(M). We will be able to show that

for functions that are not too large in St , this inequality implies (A.4) as we

require. Then only the case of functions that are large in St remains.

Suppose, for the moment, that r1, r2, and r3 are fixed with r1 < r2 < r3. For

Rt to be well defined, r1 must satisfy r1 > δ−4. For Tt to be well defined, t must

be sufficiently small that t6r3 < δ. We also suppose that t is small enough that

the functions of Et vanish on Tt .
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Let Ψ ′t : M′ \ {m′} → M be the identity outside Φ′
[
Bt6r3(0)

]
in M′, and on

Φ′
[
Bt6r3(0)

]
in M′ define Ψ ′t by

Ψ ′t
(
Φ′(v)

)= Φ′( t6r1v
|v| +

(
r3−r1

)
v

r3

)
. (A.13)

Let φ∈ L2
1(M) and define φ′ = (Ψ ′t )∗(φ). Then φ′ ∈ L2

1(M′), as we will see.

An easy calculation shows that

b0

∫
M′

(
φ′
)2dVg′ = b0

∫
M
φ2 ·Ft dVgt , (A.14)

where Ft is a function on M that is 1 on that part of M coming from M′ \
Φ′[Bt6r3(0)], is zero on that part of M not coming from M′ \Φ′[Bt6r1(0)], and

in the intermediate annulus is given by

Ft
((
φ′
)−1(v)

)= (|v|−t6r1
)n−1rn3

|v|n−1
(
r3−r1

)n ·ψ′(v)pψt(v)−p. (A.15)

Similarly, we may easily show that

a
∫
M′

∣∣∇φ′∣∣2dVg′ ≤ a
∫
M

∣∣∇φ∣∣2 ·GtdVgt , (A.16)

where Gt is a function on M that is 1 on that part of M coming from M′ \
Φ′[Bt6r3(0)], is zero on that part of M not coming from M′ \Φ′[Bt6r1(0)], and

in the intermediate annulus is given by

Gt
((
φ′
)−1(v)

)
=max

((|v|−t6r1
)n−1rn+2

3

|v|n−1
(
r3−r1

)n+2 ,
(|v|−t6r1

)n−3rn−2
3

|v|n−3
(
r3−r1

)n−2

)
·ψ′(v)ψt(v)−1.

(A.17)

Here, the first term in the max(···) is the multiplier for the radial component

of ∇φ, and the second term is the multiplier for the nonradial components.

As Ft,Gt are bounded, we see from (A.14) and (A.16) that φ′ ∈ L2
1(M′), as was

stated above.

Suppose now that φ ∈ (Et)⊥ ⊂ L2
1(M). For small enough t, this implies that

φ′ ∈ (Ẽ′)⊥, and so (A.8) applies by Lemma A.12. Combining this with (A.14)

and (A.16) gives

a
∫
M

∣∣∇φ∣∣2 ·Gt dVgt ≥ b0

∫
M
φ2 ·Ft dVgt . (A.18)

Now by the definition of ψt , ψ′(v)ψt(v)−1 approaches 1 as t→ 0. In fact, it

may be shown that∣∣ψ′(v)ψt(v)−1−1
∣∣≤ C0t6(n−2)|v|−(n−2) when t6 ≤ |v| ≤ t6−2/(n−2), (A.19)
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for some constant C0. For t small enough, this certainly holds in the region

t6r1 ≤ |v| ≤ t6r3, and in this region, we have |ψ′(v)ψt(v)−1−1| ≤ C0r
−(n−2)
1 .

Choose r1 greater than δ−4, and large enough that b1(1+C0r
−(n−2)
1 )p ≤ b0

and b2 ≤ b1(1−C0r
−(n−2)
1 ). Then for small t, the ψ′ψ−1

t terms in Ft and Gt
can be absorbed by putting b2 in place of b0. Next, r2 is defined uniquely in

terms of r3 to satisfy r1 < r2 < r3 and b3(r2− r1)n−1rn3 r
1−n
2 (r3− r1)−n = b4.

Then b3(|v|−t6r1)n−1rn3 |v|1−n(r3−r1)−n ≥ b4 when t6r2 ≤ |v| ≤ t6r3. This is

to bound Ft below on the region |v| ≥ t6r2.

Finally, we define r3. Choose r3 > r1 sufficiently large that two conditions

hold. The first is that b3 ·max((|v|−t6r1)n−1rn+2
3 |v|1−n(r3−r1)−(n+2),(|v|−

t6r1)n−3rn−2
3 |v|3−n(r3− r1)2−n) ≤ b2 when t6r1 ≤ |v| ≤ t6r3; combining this

with one of the inequalities used to define r1 shows that b3Gt ≤ b1. The second

condition is that

vol(S)
vol(T)−vol(S)

≤ b4−b5

4b5
. (A.20)

This condition will be needed later.

The last two definitions are circular as r2 is defined in terms of r3, and vice

versa because St depends on r2. However, manipulating the definition of r2 re-

veals that, however large r3 is, r2 must satisfy r2 ≤ r1(1−b1/(n−1)
3 b−1/(n−1)

2 )−1,

and so vol(S) is bounded in terms of r1, whereas vol(T) can grow arbitrarily

large. Therefore, (A.20) does hold for r3 sufficiently large.

The above estimates show that Gt ≤ b1/b3 and Ft ≥ b1b4/b0b3 on M \St for

small t. Substituting these into (A.18) gives that, when t is sufficiently small,

a
∫
M

∣∣∇φ∣∣2dVgt ≥ b4

∫
M\St

φ2dVgt . (A.21)

Suppose that
∫
St φ

2dVgt ≤(b4/b5−1)·∫M\St φ2dVgt . Then b4

∫
M\St φ

2dVgt ≥
b5

∫
Mφ2dVgt , and from (A.21), we see that (A.4) holds for φ, which is what we

have to prove. Therefore, it remains only to deal with the case that
∫
St φ

2dVgt >
(b4/b5−1)·∫M\St φ2dVgt .

Suppose that this inequality holds. The basic idea of the remainder of the

proof is that when t is small, the volume of St is also small, and this forces φ
to be large on St compared to its average value elsewhere. Therefore, φ must

change substantially in the neighbourhood Tt of St , and this forces ∇φ to be

large in Tt .
Restrict t further, to be small enough that t6r3 ≤ t2. Then Tt is contained in

the region of gluing in which β2 = 1. So the pair (St,Tt) is homothetic to a pair

(S,T) of compact manifolds with C∞ boundaries and with S contained in the

interior of T ; the metrics on (St,Tt) are the metrics on (S,T)multiplied by t12.

For these S,T , the following lemma holds.
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Lemma A.15. Let S,T be compact, connected Riemannian n-manifolds with

smooth boundaries such that S ⊂ T but S �= T . Then there exists C1 > 0 such

that for all φ∈ L2
1(T),(∫

S φ2dVg
vol(S)

)1/2

−
( ∫

T\S φ2dVg
vol(T)−vol(S)

)1/2

≤ C1

(∫
T
|∇φ|2dVg

)1/2
. (A.22)

Proof. We begin by quoting a theorem on the existence of solutions of the

equation ∆u= f on a manifold with smooth boundary.

Theorem A.16. Suppose that T is a compact manifold with smooth bound-

ary, and that f ∈ L2(T) and satisfies
∫
T fdVg = 0. Then there exists ξ ∈ L2

2(T),
unique up to the addition of a constant such that ∆ξ = f , and in addition, n·∇ξ
vanishes at the boundary, where n is the unit outward normal to the boundary.

Proof. This is a partial statement of [4, Example 2, page 65]. Hörmander’s

example is only stated for C∞-functions f and ξ, but the proof works for f ∈
�(0)(T) and ξ ∈�(2)(T) in his notation, which are L2(T) and L2

2(T) in ours.

Put f = vol(S)−1 in S and f = (vol(S)−vol(T))−1 in T \S. Then
∫
T fdVg = 0,

so by the theorem, there exists a function ξ ∈ L2
2(M) satisfying∆ξ = f , and that

∇ξ vanishes normal to the boundary. Because of this vanishing, the boundary

term has dropped out of the following integration-by-parts equation:∫
T
φ∆ξ =−

∫
T

(∇φ)·(∇ξ)dVg. (A.23)

Substituting in for ∆ξ and using Hölder inequality gives

1
vol(S)

∣∣∣∣∫
S
φdVg

∣∣∣∣− 1
vol(T)−vol(S)

∣∣∣∣∫
T\S
φdVg

∣∣∣∣
≤
(∫

T
|∇ξ|2dVg

)1/2
·
(∫

T
|∇φ|2dVg

)1/2
.

(A.24)

Now S is connected, so the constants are the only eigenvectors of ∆ on S
with eigenvalue 0 and derivative vanishing normal to the boundary. By the

discreteness of the spectrum of ∆ on S with these boundary conditions, there

is a positive constant KS less than or equal to all the positive eigenvalues. It

easily follows that for φ∈ L2
1(S),(∫

S φ2dVg
vol(S)

)1/2

≤ 1
vol(S)

∣∣∣∣∫
S
φdVg

∣∣∣∣+
(∫
S |∇φ|2dVg
KS ·vol(S)

)1/2

. (A.25)

Also, a simple application of Hölder inequality yields

1
vol(T)−vol(S)

∣∣∣∣∫
T\S
φdVg

∣∣∣∣≤
( ∫

T\S φ2dVg
vol(T)−vol(S)

)1/2

. (A.26)
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Adding together (A.24), (A.25), and (A.26) gives (A.22), as we want, with con-

stant C1 = (
∫
T |∇ξ|2dVg)1/2+(KS ·vol(S))−1/2.

The point of this calculation is that because (St,Tt) are homothetic to (S,T)
by the constant factor t12, Lemma A.15 implies that for all φ∈ L2

1(Tt),

(∫
St φ

2dVgt
vol(S)

)1/2

−
( ∫

Tt\St φ
2dVgt

vol(T)−vol(S)

)1/2

≤ C1t6
(∫

Tt
|∇φ|2dVgt

)1/2

. (A.27)

Now, using (A.20), it follows that

(∫
St
φ2dVgt

)1/2
−
(
b4−b5

4b5

∫
M\St

φ2dVgt
)1/2

≤ vol(S)1/2C1t6
(∫

M
|∇φ|2dVgt

)1/2
.

(A.28)

But because
∫
St φ

2dVgt > (b4/b5 − 1) · ∫M\St φ2dVgt , substituting this into

(A.28), squaring, and manipulating gives that

b5

∫
M
φ2dVgt <

b4b5

b4−b5
·
∫
St
φ2dVgt <

4b4b5t12C2
1 vol(S)

b4−b5
·
∫
M
|∇φ|2dVgt .

(A.29)

Therefore, if t is small, then inequality (A.4) holds. This completes the proof

of Proposition A.14.

A.3. The spectrum of a∆ in the zero scalar curvature cases. Now we prove

Proposition 4.7 and Theorems 4.6 and 4.8. We will start with a preliminary ver-

sion of Theorems 4.6 and 4.8. Suppose γ > 0 such that a∆ has no eigenval-

ues in (0,2γ) on (M′,g′) in Section 4.1, and on both (M′,g′) and (M′′,g′′) in

Section 4.2. Then

if φ∈ L2
1(M

′),
∫
M′
φdVg′ = 0, then

∫
M′
a|∇φ|2dVg′ ≥

∫
M′

2γφ2dVg′ , (A.30)

and the same forM′′ in Section 4.2. This is an analogue of (A.2) of Section A.1,

and the analogues of E′ and E′′ are the spaces of constant functions onM′ and

M′′.
Define spaces of functions Et onM as in Section A.1. This involves choosing

a function σ ′ on M′ (done just before Lemma A.12) that is 1 outside a small

ball around m′, and a similar function σ ′′ on M′′. B′, B′′.For the proof of
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Proposition 4.7 later, we must choose σ ′,σ ′′ to vary with t rather than being

fixed as they were before. Let σ ′,σ ′′ be functions on M′, M′′ defined in the

same way as β1,β2 in Section 4.1, but which are 0 when |v| ≤ t2k/(n+2) and 1

when |v| ≥ t(n−2)/(n+1) and outside

This makes sense for small t, as the definition of k in Section 4.1 gives

2k/(n+ 2) > (n− 2)/(n+ 1) so that t2k/(n+2) < t(n−2)/(n+1) < δ for small t.
Note also that the choice of the inner radius t2k/(n+2) means (from Section 4.1)

that gt is identified with g′ and g′′ on the support of σ ′ and σ ′′, respectively,

so that the functions Et are supported in the parts of M where gt equals g′ or

g′′. Here is a first approximation to Theorems 4.6 and 4.8:

Lemma A.17. Let {gt : t ∈ (0,δ)} be one of the families of metrics defined in

Sections 4.1 and 4.2. Then for small t,

if φ∈ (Et)⊥ ⊂ L2
1(M), then

∫
M
a|∇φ|2dVgt ≥ γ

∫
M
φ2dVgt . (A.31)

Here the orthogonal space is taken with respect to the L2 inner product.

Proof. This is proved just as is Proposition A.14, except that we use the

inner product in L2(M) rather than that in L2
1(M), and instead of choosing a

series of constants interpolating between b+2γ and b+γ, we choose constants

interpolating between 2γ and γ, and some simple changes must be made to

the proof as the powers of t, used in defining the metrics of Sections 4.1 and

4.2, are different to those used in Sections 2.1 and 2.2.

Now as Et is modelled on E′ in Section 4.1 and on E′ ⊕E′′ in Section 4.2, it

is close to the constant functions in Section 4.1, and to functions taking one

constant value on theM′ part ofM and another constant value on theM′′ part

in Section 4.2.

These spaces Et are not quite good enough for our purposes, for we will need

spaces that contain the constants. We therefore produce modified spaces Ẽt ,
and prove a similar lemma for them. In Section 4.1, let Ẽt = 〈1〉. In Section 4.2,

let e ∈ Et be the unique element that is nonnegative on the part of M coming

from M′ and satisfies
∫
M edVgt = 0 and

∫
M e2dVgt = 2vol(M′), and let Ẽt =

〈1,e〉.
Lemma A.18. Let {gt : t ∈ (0,δ)} be one of the families of metrics defined in

Sections 4.1 and 4.2. Then for small t,

if φ∈ (Ẽt)⊥ ⊂ L2
1(M), then

∫
M
a|∇φ|2dVgt ≥ γ

∫
M
φ2dVgt . (A.32)

Here the orthogonal space is taken with respect to the L2 inner product.

Proof. Let ξ be the unique element of Et with
∫
M ξdVgt =1, and

∫
M eξdVgt =

0 in Section 4.2. Ifφ∈ (Ẽt)⊥, thenφ−〈φ,ξ〉 ∈ E⊥t where 〈,〉 is the inner product
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of L2(M). So, by Lemma A.17,∫
M
a|∇φ|2dVgt ≥ γ

∫
M

(
φ−〈φ,ξ〉)2dVgt

= γ
∫
M

(
φ2+〈φ,ξ〉2)dVgt

≥ γ
∫
M
φ2dVgt .

(A.33)

Here between the first and second lines, we have used the fact that φ∈ (Ẽt)⊥,

and thus
∫
MφdVgt = 0, as the constants lie in Ẽt .

As Ẽt is just the constant functions in Section 2.1, we immediately deduce

that Theorem 4.6 is true.

We will now construct the eigenvector βt of Proposition 4.7, using a se-

quence method. The proposition is stated again here.

Proof of Proposition 4.7. Let y be the unique element of C∞(M) satis-

fying
∫
M ydVgt = 0 and a∆y = e. To make βt = e+w and a∆βt = λtβt , we

must find w and λt such that a∆w = λt(e+w)−a∆e. Define inductively a se-

quence of real numbers {λi}∞i=0 and a sequence {wi}∞i=0 of elements of C∞(M)
beginning with λ0 =w0 = 0. Let

λi = 2vol
(
M′)(∫

M
y
(
e+wi−1

)
dVgt

)−1

, (A.34)

and let wi be the unique element of C∞(M) satisfying
∫
MwidVgt = 0 and

a∆wi = λi
(
e+wi−1

)−a∆e. (A.35)

Note that as
∫
M edVgt =

∫
Mwi−1dVgt = 0, the right-hand side has integral zero

over M , and so wi exists. Thus, the sequences {λi}∞i=0 and {wi}∞i=0 are well

defined, provided only that the integral on the right-hand side of (A.34) is

nonzero; we will prove later that the integral is bounded below by a positive

constant.

If both sequences converge to λt andw, respectively, say, then (A.35) implies

that a∆w = λt(e+w)−a∆e so that βt = e+w is an eigenvector of a∆ associ-

ated to λt . The rôle of (A.34) is as follows: multiply (A.35) by y and integrate

over M . Integrating by parts gives∫
M
wia∆ydVgt = λi

∫
M
y
(
e+wi−1

)
dVgt −

∫
M
ea∆ydVgt . (A.36)

Substituting e for a∆y and recalling that
∫
M e2dVgt = 2vol(M′), we get∫

M
ewidVgt = λi

∫
M
y
(
e+wi−1

)
dVgt −2vol

(
M′)= 0, (A.37)
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so that
∫
M ewidVgt = 0, and ifw is the limit of the sequence, then

∫
M ewdVgt =

0.

Now as
∫
MwidVgt =

∫
M ewidVgt = 0, wi ∈ (Ẽt)⊥ and Lemma A.18 gives

a
∥∥∇wi∥∥2

L2 ≥ γ
∥∥wi∥∥2

L2 . (A.38)

Multiplying (A.35) by wi and integrating over M by parts gives

a
∥∥∇wi∥∥2

L2 =
∫
M
a
∣∣∇wi∣∣2dVgt

= λi
∫
M
wi
(
e+wi−1

)
dVgt −a

∫
M
∇wi ·∇edVgt

≤ ∣∣λi∣∣∥∥wi∥∥L2

(‖e‖L2+∥∥wi−1

∥∥
L2

)+a∥∥∇wi∥∥L2‖∇e‖L2

≤ ∣∣λi∣∣a1/2γ−1/2∥∥∇wi∥∥L2

(‖e‖L2+∥∥wi−1

∥∥
L2

)+a∥∥∇wi∥∥L2‖∇e‖L2 ,
(A.39)

applying (A.38) between the second and third lines, and Hölder inequality.

Dividing by a1/2γ−1/2‖∇wi‖L2 and using (A.38) on the left-hand side gives

γ
∥∥wi∥∥L2 ≤

∣∣λi∣∣(‖e‖L2+∥∥wi−1

∥∥
L2

)
+D0, (A.40)

where D0 = (aγ)1/2‖∇e‖L2 .

Define D1= (2vol(M′))−1
∫
M yedVgt . Then y = D1e+ z, where

∫
M zdVgt =∫

M zedVgt=0. So z ∈ (Ẽt)⊥, and by Lemma A.18,

a‖∇z‖2
L2 ≥ γ‖z‖2

L2 . (A.41)

As
∫
M zedVgt =0 and e=a∆y=aD1∆e+a∆z, we have

∫
M z(D1∆e+∆z)dVgt =

0, so

‖∇z‖2
L2 =−D1

∫
M
∇z ·∇edVgt ≤D1‖∇z‖L2‖∇e‖L2 . (A.42)

Multiplying by (aγ)1/2‖∇z‖−1
L2 and substituting (A.41) into the left-hand side,

then gives γ‖z‖L2 ≤D0D1. Sincey =D1e+z and
∫
M ewi−1dVgt = 0 from (A.34),

we find

∣∣λi∣∣−1 =D1+ 1
2vol

(
M′)

∫
M
zwi−1dVgt

≥D1− ‖z‖L2

∥∥wi−1

∥∥
L2

2vol
(
M′)

≥D1−D0D1

∥∥wi−1

∥∥
L2

2vol
(
M′)γ

.

(A.43)

Now (A.40) and (A.43) are what we need to prove that the sequences {λi}∞i=0

and {wi}∞i=0 are well defined and convergent, provided that D0 is sufficiently

small and D1 sufficiently large. It can be shown that if 2D2
0 ≤ γ2 vol(M′) and
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D1 is large enough, then the two sequences converge to λt andw, respectively,

satisfying

a∆w = λt(e+w)−a∆e, where ‖w‖L2 ≤ 2D0/γ,∣∣λt∣∣−1 ≥D1− D2
0D1

γ2 vol
(
M′) ≥ 1

2
D1, so that

∣∣λt∣∣≤ 2D−1
1 .

(A.44)

The proof uses the same sort of reasoning as Lemma 3.2, and will be left to

the reader.

Now look at D0 and D1 more closely. Firstly, D0 = (aγ)1/2‖∇e‖L2 , and e is

defined by σ ′ and σ ′′ chosen just before Lemma A.17. In fact, e= c′σ ′−c′′σ ′′,
where c′ and c′′ are close to 1, as vol(M′) = vol(M′′). But σ ′, σ ′′ are defined

in the same way as β1,β2 of Section 2.1, and an estimate analogous to (2.9) of

Section 2.4 applies to them, from which we find that D0 =O(t(n−2)2/(n+1)) for

small t. Because ‖w‖L2 ≤ 2D0/γ, this gives that ‖w‖L2 =O(t(n−2)2/(n+1)).
Secondly, we need to estimateD1. Let ξ′ be the Green’s function of a∆ atm′

on M′ satisfying a∆ξ′ = δm′ −1/vol(M′) in the sense of distributions. Then

ξ′ has a pole of the form D2|v|2−n +O′′(|v|1−n) at m′, where D2 = (n −
2)−1ω−1

n−1. Similarly, we may define the Green’s function ξ′′ of a∆ at m′′ on

M′′.
The application of this is in modelling the function y onM . We may viewM ,

approximately, as being made up of the unions ofM′ andM′′, each with a small

ball of radius t cut out. To get a function ξ onM with ∆ξ close to vol(M′)−1 on

the part coming from M′, and close to −vol(M′′)−1 on the part coming from

M′′, we try ξ equal approximately to d′ − ξ′ on M′ and ξ′′ −d′′ on the part

coming fromM′′, for constants d′ and d′′. To join these two functions together

on the neck, we must have d′ +d′′ = 2D2t2−n+O(t1−n), and for
∫
M ξdVgt = 0,

we must have d′ vol(M′) = d′′ vol(M′′)+O(t1−n). As vol(M′) = vol(M′′), this

gives d′ =D2t2−n+O(t1−n)= d′′.
But e is approximately equal to 1 on M′ and to −1 on M′′ so that e ∼

vol(M′)a∆ξ. Therefore, y ∼ vol(M′)ξ, and D1 = (2vol(M′))−1
∫
M yedVgt ∼

d′ vol(M′). So finally, we conclude that D1 = D2 vol(M′)t2−n +O(t1−n). This

validates the claim that D1 is large for small t, that was used earlier to ensure

convergence.

Taking the limit over i in (A.34), we find that

λ−1
t =D1+ 1

2vol(M′)

∫
M
zwdVgt , (A.45)

so using estimates on D1, z, and w gives that λt = O(tn−2) for small t, one

of the conclusions of the proposition. Also, if e is a first approximation to βt ,
then λty is the second, and the model of y above gives a model of βt . So we

see that (4.11) holds for βt , completing the proof.
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Finally, we show that Lemma A.18 may be modified further to apply to func-

tions orthogonal to both 1 and the eigenvector βt constructed in Proposition

4.7.

Lemma A.19. Let {gt : t ∈ (0,δ)} be the family of metrics defined on M =
M′#M′′ in Section 4.2. Then for small t, ifφ∈ L2

1(M) satisfies 〈φ,1〉 = 〈φ,βt〉 =
0 in either the L2 or the L2

1 inner product, then∫
M
a|∇φ|2dVgt ≥ γ

∫
M
φ2dVgt . (A.46)

Here βt is the eigenvector of a∆ constructed in Proposition 4.7.

Proof. The proof is almost the same as that of Lemma A.18. Note that as

1,βt are eigenvectors of ∆, orthogonality to them with respect to the L2 and

L2
1 inner products is equivalent, and so we may suppose that 〈,〉 is the inner

product of L2(M). Let ξ be the unique element of Ẽt satisfying 〈ξ,βt〉 = 1 and∫
M ξdVgt = 0. Ifφ∈ L2

1(M) satisfies 〈φ,1〉 = 〈φ,βt〉 = 0, thenφ−〈φ,ξ〉βt ∈ Ẽ⊥t ,

taken with respect to the L2 norm. So by Lemma A.18,∫
M
a
∣∣∇φ−〈φ,ξ〉∇βt∣∣2dVgt ≥ γ

∫
M

(
φ−〈φ,ξ〉βt

)2dVgt . (A.47)

But as βt is an eigenvalue of ∆, it is orthogonal to φ in both L2 and L2
1 norms,

so this equation becomes∫
M
a
(|∇φ|2+〈φ,ξ〉2

∣∣∇βt∣∣)dVgt ≥ γ ∫
M

(
φ2+〈φ,ξ〉2β2

t
)
dVgt . (A.48)

Now λt < γ for small t so that
∫
M a|∇βt|2dVgt ≤ γ

∫
M β

2
t dVgt , and subtracting

this multiplied by 〈φ,ξ〉2 from (A.48) gives (A.46).

Thus, Theorem 4.8 is true.
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