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various classes of functions.
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The Mann iterative scheme was invented in 1953, see [7], and was used to

obtain convergence to a fixed point for many functions for which the Banach

principle fails. For example, the first author in [8] showed that, for any contin-

uous selfmap of a closed and bounded interval, the Mann iteration converges

to a fixed point of the function.

In 1974, Ishikawa [5] devised a new iteration scheme to establish conver-

gence for a Lipschitzian pseudocontractive map in a situation where the Mann

iteration process failed to converge.

Let X be a Banach space. The Mann iteration is defined by

x0 ∈X, xn+1 =
(
1−αn

)
xn+αnTxn, n≥ 0, (1)

where the αn ∈ (0,1), for all n≥ 0.

The Ishikawa iteration scheme is defined by

u0 ∈X, un+1 =
(
1−αn

)
un+αnTvn,

vn =
(
1−βn

)
un+βnTun, n≥ 0,

(2)

where

0≤αn ≤ βn ≤ 1, ∀n≥ 0. (3)

In specific situations, additional conditions are placed on (αn)n and (βn)n.

In [9], the first author modified the definition of Ishikawa by replacing (3) by

0≤αn,βn ≤ 1, ∀n≥ 0. (4)

During the past 25 years, a large literature has developed around the themes

of establishing convergence of the Mann iteration for certain classes of func-

tions, and then showing that the Ishikawa iteration, using (4), also converges.
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Of course, having established the convergence of an Ishikawa method using (4),

we obtain as a corollary the convergence of the corresponding Mann iteration

method by setting each βn = 0.

A reasonable conjecture is that, whenever T is a function for which Mann

iteration converges, so does the Ishikawa iteration. Given the large variety of

functions and spaces, such a global statement is, of course, not provable. How-

ever, in this paper, we do show that, for several classes of functions, Mann and

Ishikawa iteration procedures are equivalent.

Picard iteration is defined by p0 ∈ X and pn+1 = Tpn, where T is a selfmap

of X.

Theorem 1. LetX be a normed space and let B be a nonempty convex subset

of X, T : B→ B, with T satisfying

‖Tx−Ty‖ ≤ kmax
{‖x−y‖,‖x−Tx‖,‖y−Ty‖,‖x−Ty‖,‖y−Tx‖} (5)

for all x,y ∈ B, 0 ≤ k < 1. Suppose that T possesses a fixed point p ∈ B. Then

Picard iteration and certain Mann and Ishikawa iteration schemes converge

strongly to p.

Proof. Let p0 ∈ B and define pn+1 = Tpn, n ≥ 0. From [3], it follows that

(pn)n is Cauchy in B. Hence, it converges to a point x∗ ∈ B. From (5),

∥
∥pn+1−p

∥
∥= ∥∥Tpn−Tp

∥
∥

≤ kmax
{∥∥pn−p

∥
∥,
∥
∥pn−Tpn

∥
∥,

∥
∥pn−Tp

∥
∥,
∥
∥Tpn−p

∥
∥}

= kmax
{∥∥pn−p

∥
∥,
∥
∥pn−pn+1

∥
∥,

∥
∥pn−p

∥
∥,
∥
∥pn+1−p

∥
∥}.

(6)

Taking the limit as n→∞ yields ‖p−x∗‖ ≤ k‖p−x∗‖, which implies that

p = x∗, that is, (pn)n converges strongly to p.

In [9], it was noted that [8, Theorem 6] could be extended to maps satisfying

(5), that is, Mann iteration of a T satisfying (5) with αn ∈ (0,1) and bounded

away from zero converges strongly to the unique fixed point p of T .

In [12], it was shown that, for T satisfying (5) with αn ∈ (0,1), the Ishikawa

method, with each αn > 0 and
∑
αn =∞, converges strongly to p.

As shown in [10], inequality (5) is one of the most general contractive con-

ditions for a single map.

We need the following lemma.

Lemma 2 (see [11]). Let (an)n be a nonnegative sequence that satisfies the

inequality

an+1 ≤
(
1−λn

)
an+σn, (7)
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where λn ∈ (0,1) for eachn∈N,
∑∞
n=1λn =∞, and σn = εnλn, limεn = 0. Then

liman = 0.

We are able now to prove the following result.

Theorem 3. Let X be a normed space, K a nonempty closed convex subset

of X, and T a Lipschitzian selfmap of K with Lipschitz constant L≤ 1. Suppose

that T has a fixed point p ∈ B. Let x0 = u0 ∈ K, and define xn and un by (1)

and (2), with αn, βn satisfying (4), (i) limαn = limβn = 0, and (ii)
∑
αn =∞.

Then the following are equivalent:

(a) the Mann iteration converges strongly to p,

(b) the Ishikawa iteration converges strongly to p.

Proof. That (b) implies (a) is obvious setting βn = 0 in (2). We prove that

(a) implies (b). From (1) and (2),

∥
∥xn+1−un+1

∥
∥= ∥∥(1−αn

)(
xn−un

)+αn
(
Txn−Tvn

)∥∥

≤ (1−αn
)∥∥xn−un

∥
∥+αnL

∥
∥Txn−Tvn

∥
∥

= (1−αn
)∥∥xn−un

∥
∥+αnL

∥
∥(1−βn

)
un+βnTun−xn

∥
∥

= (1−αn
)∥∥xn−un

∥
∥+αnL

∥
∥(1−βn

)(
un−xn

)+βn
(
Tun−xn

)∥∥

≤ [1−αn
(
1−L(1−βn

))]∥∥xn−un
∥
∥+αnβnM,

(8)

for some positive M since (‖Tun−xn‖)n is bounded. This fact is obvious if

we prove that (‖un‖)n is bounded. A simple induction lead us to

∥
∥un+1

∥
∥≤ (1−αn

)∥∥un
∥
∥+αn

∥
∥Tvn

∥
∥

≤ (1−αn
)∥∥un

∥
∥+αnL

∥
∥(1−βn

)
un+βnTun

∥
∥

≤ (1−αn
)∥∥un

∥
∥+αnL

(
1−βn

)∥∥un
∥
∥+αnβnL

∥
∥Tun

∥
∥

= ∥∥un
∥
∥≤ ··· ≤ ∥∥u0

∥
∥.

(9)

With an := ‖xn−un‖, λn := αn(1−L(1−βn)) ∈ (0,1), and σn := αnβnM ,

for each n∈N, the inequality of Lemma 2 is satisfied. Therefore,

lim
∥
∥xn−un

∥
∥= 0. (10)

Since (a) is true, using (10),

∥
∥un−p

∥
∥≤ ∥∥xn−p

∥
∥+∥∥xn−un

∥
∥, (11)

which implies that lim‖un−p‖ = 0.
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Let X be an arbitrary Banach space and let J be the normalized duality map

from X into 2X
∗
. A map T with domain D(T) and range R(T) is called strongly

pseudocontractive (pseudocontractive) if, for each x,y ∈ D(T), there exists

j(x−y)∈ J(x−y) and a t > 1 (t = 1) such that

〈
Tx−Ty,j(x−y)〉≤ 1

t
‖x−y‖2. (12)

Equivalently, there exists a constant t > 1 such that

〈
(I−T)x−(I−T)y,j(x−y)〉≥ t−1

t
‖x−y‖2. (13)

If we set k= (t−1)/t, then the above inequality can be written in the form

〈
(I−T −kI)x−(I−T −kI)y,j(x−y)〉≥ 0 (14)

and, from a result of Kato [6],

‖x−y‖ ≤ ∥∥x−y+r[(I−T −kI)x−(I−T −kI)y]∥∥, (15)

for all x,y ∈X and r > 0.

Theorem 4. Let K be a closed convex subset of an arbitrary Banach space

X and let T be a Lipschitzian strongly pseudocontractive selfmap of K. Let x0 =
u0 ∈ K, and xn and un be defined by (1) and (2), with αn, βn, satisfying (4)

and conditions (i) and (ii) of Theorem 3. Let p be the fixed point of T . Then the

following are equivalent:

(a) the Mann iterative scheme converges to p,

(b) the Ishikawa iteration scheme converges to p.

Proof. The existence of a fixed point p comes from [4, Corollary 1] which

holds in an arbitrary Banach space. That (b) implies (a) is obvious settingβn = 0.

Without loss of generality, we may assume that the Lipschitz constant L
of T is greater than or equal to 1. If L ∈ (0,1], then the result follows from

Theorem 3.

To prove that (a) implies (b), it is necessary to express ‖un+1−xn+1‖ in terms

of (15). Using (1), (2), and the identity which appears as [2, formula (10), page

782], we obtain

∥
∥un−xn

∥
∥= ∥∥un+1+αnun−αnTvn−xn+1−αnxn+αnTxn

∥
∥

= ∥∥(1+αn
)
un+1+αn(I−T −kI)un+1−(1−k)αnun

+(2−k)α2
n
(
un−Tvn

)+αn
(
Tun+1−Tvn

)

−(1+αn
)
xn+1−αn(I−T −kI)xn+1+(1−k)αnxn



EQUIVALENCE OF MANN AND ISHIKAWA 455

−(2−k)α2
n
(
xn−Txn

)−αn
(
Txn+1−Txn

)∥∥

= ∥∥(1+αn
)(
un+1−xn+1

)+αn
[
(I−T −kI)un+1−(I−T −kI)xn+1

]

−(1−k)αn
(
un−xn

)+(2−k)α2
n
(
un−Tvn−xn+Txn

)

+αn
(
Tun+1−Tvn−Txn+1+Txn

)∥∥.

(16)

Using the triangular inequality and (15),

∥
∥un−xn

∥
∥

≥ (1+αn
)∥∥(un+1−xn+1

)+ αn
1+αn

[
(I−T −kI)un+1−(I−T −kI)xn+1

]∥∥

−(1−k)αn
∥
∥un−xn

∥
∥−(2−k)α2

n
∥
∥un−Tvn−xn+Txn

∥
∥

−αn
∥
∥Tun+1−Tvn−Txn+1+Txn

∥
∥

≥ (1+αn
)∥∥un+1−xn+1

∥
∥−(1−k)αn

∥
∥un−xn

∥
∥

−(2−k)α2
n
∥
∥un−Tvn−xn+Txn

∥
∥−αn

∥
∥Tun+1−Tvn−Txn+1+Txn

∥
∥.
(17)

Solving the above inequality for ‖un+1−xn+1‖ gives

∥
∥un+1−xn+1

∥
∥≤

[
1+(1−k)αn

]

1+αn
∥
∥un−xn

∥
∥

+ (2−k)α
2
n

1+αn
∥
∥un−Tvn−xn+Txn

∥
∥

+ αn
1+αn

∥
∥Tun+1−Tvn−Txn+1+Txn

∥
∥

≤
[
1+(1−k)αn

]

1+αn
∥
∥un−xn

∥
∥+(2−k)α2

n
∥
∥un−Tvn

∥
∥

+(2−k)α2
n
∥
∥Txn−xn

∥
∥+αn

∥
∥Tun+1−Tvn

∥
∥

+αn
∥
∥Txn+1−Txn

∥
∥,

(18)

∥
∥un−Tvn

∥
∥≤ ∥∥un−xn

∥
∥+∥∥xn−Txn

∥
∥+∥∥Txn−Tvn

∥
∥. (19)

Let L denote the Lipschitz constant for T . Then,

∥
∥Txn−Tvn

∥
∥≤ L∥∥xn−vn

∥
∥, (20)

∥
∥vn−xn

∥
∥= ∥∥(1−βn

)
un+βnTun−xn

∥
∥

≤ (1−βn
)∥∥un−xn

∥
∥+βn

∥
∥Tun−xn

∥
∥

≤ (1−βn
)∥∥un−xn

∥
∥+βn

[∥∥Tun−Txn
∥
∥+∥∥Txn−xn

∥
∥]

≤ (1−βn
)∥∥un−xn

∥
∥+βnL

∥
∥un−xn

∥
∥+βn

∥
∥Txn−xn

∥
∥

= (1−βn+βnL
)∥∥un−xn

∥
∥+βn

∥
∥Txn−xn

∥
∥.

(21)
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Note that, for L ≥ 1, 1−βn+βnL ≤ L. Substituting (21) into (20) and then

(20) into (19) gives
∥
∥un−Tvn

∥
∥≤ ∥∥un−xn

∥
∥+∥∥xn−Txn

∥
∥+L[L∥∥un−xn

∥
∥+βn

∥
∥Txn−xn

∥
∥]

= (1+L2)∥∥un−xn
∥
∥+(1+Lβn

)∥∥Txn−xn
∥
∥,

(22)

∥
∥Tun+1−Tvn

∥
∥≤ L∥∥un+1−vn

∥
∥= L∥∥(1−αn

)
un+αnTvn−vn

∥
∥

≤ L[(1−αn
)∥∥un−vn

∥
∥+αn

∥
∥Tvn−vn

∥
∥].

(23)

Using (21),
∥
∥Tvn−vn

∥
∥≤ ∥∥Tvn−Txn

∥
∥+∥∥Txn−xn

∥
∥+∥∥xn−vn

∥
∥

≤ (1+L)∥∥xn−vn
∥
∥+∥∥Txn−xn

∥
∥

≤ (1+L)[L∥∥xn−un
∥
∥+βn

∥
∥Txn−xn

∥
∥]+∥∥Txn−xn

∥
∥

= (1+L)L∥∥xn−un
∥
∥+[(1+L)βn+1

]∥∥Txn−xn
∥
∥,

(24)

∥
∥un−vn

∥
∥= ∥∥un−

(
1−βn

)
un−βnTun

∥
∥= βn

∥
∥(un−Tun

)∥∥

≤ βn
[∥∥un−xn

∥
∥+∥∥xn−Txn

∥
∥+∥∥Txn−Tun

∥
∥]

≤ βn
[
(1+L)∥∥xn−un

∥
∥+∥∥xn−Txn

∥
∥].

(25)

Substituting (25) and (24) into (23), we obtain
∥
∥Tun+1−Tvn

∥
∥≤ L(1−αn

)[
βn(1+L)

∥
∥un−xn

∥
∥+βn

∥
∥Txn−xn

∥
∥]

+αnL
[
(1+L)L∥∥xn−un

∥
∥+[(1+L)βn+1

]∥∥Txn−xn
∥
∥]

≤ [L(1−αn
)
βn(1+L)+αnL2(1+L)]∥∥xn−un

∥
∥

+{βnL
(
1−αn

)+αnL
[
(1+L)βn+1

]}∥∥xn−Txn
∥
∥.

(26)

Substituting (22) and (26) into (18) and using (1+αn)−1 ≤ 1−αn+α2
n, yields

∥
∥xn+1−un+1

∥
∥≤ (1+(1−k)αn

)(
1−αn+α2

n
)∥∥xn−un

∥
∥

+(2−k)α2
n
[(

1+L2)∥∥xn−un
∥
∥+(1+Lβn

)∥∥Txn−xn
∥
∥]

+(2−k)α2
n
∥
∥xn−Txn

∥
∥

+αn
[
L
(
1−αn

)
βn(1+L)+αnL2(1+L)]∥∥xn−un

∥
∥

+αn
{
βnL

(
1−αn

)+αnL
[
(1+L)βn+1

]}∥∥xn−Txn
∥
∥

+αnL
∥
∥xn+1−xn

∥
∥

≤ γn
∥
∥xn−un

∥
∥+δn

∥
∥xn−Txn

∥
∥+αn

∥
∥xn+1−xn

∥
∥,

(27)
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where

δn =αn
[
(2−k)(2+Lβn

)
αn+

[
βnL

(
1−αn

)+αnL
[
(1+L)βn+1

]]]
,

γn =
[
1+(1−k)αn

](
1−αn+α2

n
)+(2−k)(1+L2)α2

n

+αnL(1+L)
[
βn
(
1−αn

)+Lαn
]
.

(28)

Note that

(
1+(1−k)αn

)(
1−αn+α2

n
)= 1−kαn+kα2

n+(1−k)α3
n

≤ 1−kαn+kα2
n+(1−k)α2

n

= 1−kαn+α2
n.

(29)

Therefore,

γn ≤ 1−kαn+αn
{
2αn+(2−k)

(
1+L2)αn

+L(1+L)[βn
(
1−αn

)+Lαn
]}

= 1−kαn+αn
{[

2+(2−k)(1+L2)+L2(1+L)]αn
+L(1+L)(1−αn

)
βn
}

≤ 1−kαn+αnM
(
αn+βn

)
,

(30)

where M = 2+(2−k)(1+L2)+L2(1+L).
Since αn and βn satisfy (i), there exists an integer N such thatM(αn+βn)≤

k(1−k) for all n≥N.

Thus,

∥
∥xn+1−un+1

∥
∥≤ (1−k2αn

)∥∥xn−un
∥
∥

+αn
{[
(2−k)(2+Lβn

)
αn

+[βnL
(
1−αn

)+αnL
(
(1+L)βn+1

)]]∥∥xn−Txn
∥
∥

+L∥∥xn+1−xn
∥
∥}.

(31)

With λn := k2αn, an = ‖xn−un‖, and εn = the quantity in braces, we have

an+1 ≤
(
1−λn

)
an+εnλn. (32)

Since xn→ p and T is Lipschitzian, then is continuous. Therefore, limTxn =
Tp = p and ‖Txn−xn‖ → 0 as n → ∞. Also lim‖xn+1−xn‖ = 0. Thus, the

conditions of Lemma 2 are satisfied and lim‖xn−un‖ = 0.
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Consequently,

∥
∥un−p

∥
∥≤ ∥∥un−xn

∥
∥+∥∥xn−p

∥
∥ �→ 0 as n �→∞, (33)

and the Ishikawa method converges.

Using the argument in [2], it follows that we also have corresponding theo-

rem for Lipschitz strictly hemicontractive operators.

Let S : X → X be a Lipschitz operator with L > 1. It is well known that

the operator S : X → X is strongly accretive if and only if (I−S) is strongly

pseudocontractive operator, and conversely. Consider the equation Sx = f ,

where f ∈ X is given and S is a strongly accretive operator. A fixed point for

Tx = f+(I−S)x will be the solution of Sx = f , and conversely. If we consider

in (1) and (2) the operator Tx = f + (I − S)x, then T will be strongly pseu-

docontractive. Theorem 4 assures the equivalence between the convergencies

of Mann and Ishikawa iteration. We consider equation x+Sx = f , with S an

accretive operator, that is, (I−S) is a pseudocontractive operator. A solution

for x+Sx = f is a fixed point for Tx = f −Sx, which is a strongly pseudocon-

tractive operator. Replacing (1) and (2), we obtain the equivalence between the

convergencies of Mann and Ishikawa iteration for an accretive operator. The

solutions existences in the above two equations hold as in [2].

All our results hold for multivalued operators provided that this admit ap-

propriate single-valued selections.

It has been shown in [1] that there exists a Lipschitzian pseudocontractive

map defined on a compact subset of R2 for which an Ishikawa method, with

αn ≤ βn, converges to a fixed point, but for which no Mann iterative method

converges. Therefore, it is not possible to extend Theorem 4 to pseudocontrac-

tive maps.
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