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We establish a generalized Jensen’s inequality for analytic vector-valued functions
on TN using a monotonicity property of vector-valued Hardy martingales. We then
discuss how this result extends to functions on a compact abelian group G, which
are analytic with respect to an order on the dual group. We also give a gener-
alization of Helson and Lowdenslager’s version of Jensen’s inequality to certain
operator-valued analytic functions.
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1. Introduction. We consider generalizations of the classical Jensen’s in-

equality

∫ 2π

0
log

∣∣f (eiθ)∣∣dθ
2π

≥ log
∣∣∣∣
∫ 2π

0
f
(
eiθ
)dθ

2π

∣∣∣∣ (1.1)

for functions analytic on the closed unit disk of the complex plane.

For the following, let G be a nonzero connected compact abelian group with

Haar measure λ normalized so that λ(G)= 1. We use Γ to denote the discrete

dual group. By [11, Theorem 24.25], since G is connected, Γ is a torsion-free

group. This is necessary and sufficient for the existence of well-defined alge-

braic orders on Γ .

The seminal paper of Helson and Lowdenslager [9] introduced a concept of

generalized analyticity which has received much attention in the recent litera-

ture (see [1, 2, 3, 4, 5]). In [9], they introduced the theory of analytic functions

on G where analyticity is defined in terms of functions with Fourier transform

supported on a “positive set” � on the dual group Γ . Furthermore, [9] contains

versions of Jensen’s inequality for matrix-valued functions, in particular, The-

orems 13 and 14 therein. More precisely, Helson and Lowdenslager obtained

the following result.

Proposition 1.1 [9, page 192]. Suppose for some n that B is a function

defined on the unit circle of the complex plane that is square summable with
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respect to λ and analytic with values in the set of n×n matrices. Then

∫
G

log
∣∣det(B)(x)

∣∣2dλ≥ log
∣∣∣∣det

(∫
G
B(x)dλ

)∣∣∣∣
2

, (1.2)

where we take log(0)=−∞.

In [9], this result directly implies a related Jensen’s inequality for certain

analytic functions with range in a suitable finite-dimensional trace class. As a

corollary of our main theorem, we obtain a generalization of this version of

Jensens’s inequality to much more general spaces of operators.

For our main result, we use martingale theory to prove Jensen’s inequal-

ity for analytic functions with values in an arbitrary complex Banach space.

Hardy martingales were first introduced by Garling in [7]. It has become ap-

parent from [4, 7] that Hardy martingales represent a probabilistic counterpart

to certain analytic functions on products of tori. In [4], Hardy martingales pro-

vided the means to prove a generalized Jensen’s inequality for scalar-valued

functions. In the present paper, we follow a similar approach by establishing a

monotonicity property and then discussing how this implies the desired ver-

sion of Jensen’s inequality.

2. Hardy martingales and Jensen’s inequality. We begin by introducing the

terminology and notations used in this paper. We denote the set of all complex

numbers by C. A set �⊂ Γ is an order on the dual group Γ whenever it satisfies

the following:

(a) �+�⊂�,

(b) �∪(−�)= Γ ,

(c) �∩(−�)= {0},
where for B ⊂ Γ , −B = {−b : b ∈ B}.

As a special case, we use T to denote the circle group {eit : 0≤ t < 2π} with

normalized Lebesgue measure and identify its dual with Z, the set of integers.

FixN to be a positive integer. We do much of our work with the compact abelian

group TN with normalized Haar measure on TN denoted by µN . Similarly as in

[7], for functions defined on TN we often use the reverse lexicographical order

on the dual group ZN , that is,

�∗
N = {0}∪


 N⋃
j=1

{(
n1, . . . ,nj,0, . . . ,0

)∈ ZN :nj > 0
}. (2.1)

Let X be a Banach space with norm ‖ · ‖X , or simply ‖ · ‖. Suppose that

(Ω,�,µ) is a general measure space. Whenever f : Ω→ X is strongly measur-

able,
∫
Ω f dµ denotes the Bochner integral. Let L1(Ω,X) be the Banach space

of strongly measurable functions f :Ω→X such that ‖f‖1 <∞, where ‖f‖1 =∫
Ω ‖f‖X dµ <∞. When X = C, the field of scalars, we simply write L1(Ω).
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For f ∈ L1(G,X), define the Fourier transform f̂ : Γ → X by f̂ (χ) =∫
G f(x)χ(x)dλ(x).A vector-valued function onT is analytic if its Fourier trans-

form vanishes on the negative integers. Fundamentals of the theory of analytic

vector-valued functions on T were introduced in [6], and after that several

mathematicians have studied the properties of

H1(T,X)= {f ∈ L1(T,X) : f̂ vanishes for n< 0
}
. (2.2)

We generalize the definition above to the functions defined on a compact

abelian group G, whose dual group is ordered by �. We say f ∈ L1(G,X) is

analytic with respect to � if the Fourier transform f̂ vanishes off �. Define the

corresponding Hardy space by

H1
�(G,X)=

{
f ∈ L1(G,X) : f̂ vanishes off �

}
. (2.3)

Garling introduced vector-valued Hardy martingales in [7] and used them to

prove several properties of analytic functions on TN (with respect to the order

�∗
N ). We now recall the relevant definitions and properties for the reader’s

convenience.

First, let �0 = {∅,TN}, while for 1≤ j ≤N, let �j be the σ -algebra generated

by the first j coordinate functions �j = σ{eiθ1 , . . . ,eiθj}. Whenever � is a sub-

σ -algebra of �N , we denote the conditional expectation with respect to � by

E(·|�). A martingale (gj) on TN with values in X is called a Hardy martingale

if E(gj+1einθj+1 |�j)= 0 for n> 0 and all j = 0, . . . ,N−1.

If f ∈ L1(TN,X), define fj = E(f |�j) for j = 0,1,2, . . . ,N. For j = 1, . . . ,N,

the function fj is constructed from f by projecting the Fourier transform of

f onto Zj . Here, Zj is identified with the following subgroup of ZN :

Zj = {(n1, . . . ,nN
)∈ ZN :nk = 0 for k= j+1, . . . ,N

}
. (2.4)

From the discussion preceding [7, Theorem 1], we can conclude that

H1
�∗N

(
TN,X

)= {f ∈ L1(TN,X) :
(
fj
)

is a Hardy martingale
}
. (2.5)

Let d0(f )= f0 =
∫
TN f dµN while dj(f)= fj−fj−1 for j = 1, . . . ,N. This gives

a martingale difference decomposition

f =
N∑
j=0

dj(f). (2.6)

Garling showed in [7] that f ∈H1
�∗N
(TN,X) if and only if for j = 1, . . . ,N, dj(f)

has a formal Fourier series expansion of the form

dj(f)=
∞∑
k=1

fj,k
(
θ1 . . . ,θj−1

)
eikθj , (2.7)
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where fj,k(θ1, . . . ,θj−1) is a function of θ1, . . . ,θj−1. Hence we have that f ∈
H1

�∗N
(TN,X) if and only if for j = 1,2, . . . ,N the function dj(f) belongs to

H1(T,X) when considered as a function of θj only.

Proposition 2.1. Suppose that f ∈H1
�∗N
(TN,X). Then for 0≤n≤N−1,

∫
TN

log

∥∥∥∥∥∥
n∑
j=0

dj(f)

∥∥∥∥∥∥dµN ≤
∫
TN

log

∥∥∥∥∥∥
n+1∑
j=0

dj(f)

∥∥∥∥∥∥dµN. (2.8)

Proof. Let D = {z ∈ C : |z| < 1}. If g : D → X is analytic in the sense of

being strongly differentiable on D, then from the discussion on [8, page 89],

we have, for 0< r < 1,

log
∥∥g(0)∥∥≤ 1

2π

∫
T

log
∥∥g(reiθ)∥∥dθ. (2.9)

As in [6], we can identify each function g ∈ H1(T,X) with a Bochner inte-

grable function analytic on D by defining

g
(
reiθ

)= g∗Pr (θ)= 1
2π

∫
T
g(t)Pr (θ−t)dt (2.10)

for 0< r < 1 and 0< θ < 2π , where Pr (θ) is the Poisson kernel. From the dis-

cussion preceding Proposition 2.1 herein, we notice that as a function of θn+1,

the function
∑n+1
j=0 dj(f) is in H1(T,X). Hence

∑n+1
j=0 dj(f)∗Pr is an analytic

function on D, and we can apply (2.9). Next, using [6, Proposition 1], we can

take r = 1 in (2.9) which gives us

log

∥∥∥∥∥∥
n+1∑
j=0

dj(f)∗P0

∥∥∥∥∥∥≤

 1

2π

∫
θn+1

log

∥∥∥∥∥∥
n+1∑
j=0

dj(f)

∥∥∥∥∥∥dθn+1


. (2.11)

Since for j = 0, . . . ,n, dj(f) is constant with respect to θn+1 and dn+1∗P0 =
0, we can rewrite inequality (2.11) as

1
2π

∫
θn+1

log

∥∥∥∥∥
n∑
j=0

dj(f)

∥∥∥∥∥dθn+1 ≤
(

1
2π

∫
θn+1

log

∥∥∥∥∥
n+1∑
j=0

dj(f)

∥∥∥∥∥dθn+1

)
. (2.12)

The desired conclusion follows immediately from (2.12).

Theorem 2.2 (Jensen’s inequality). Let G be a compact abelian group with

an order � on the dual group Γ . Given a function f ∈H1
�(G,X), we have

∥∥∥∥
∫
G
f(x)dλ(x)

∥∥∥∥≤ exp
(∫

G
log

∥∥f(x)∥∥dλ(x)). (2.13)
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Proof. First, we note that [4, Lemma 3.2] shows that it is sufficient to obtain

the result for a function in a dense subspace of H1
�(G,X). Let f ∈H1

�(G,X) be

an analytic trigonometric polynomial, that is, f =∑m
k=1xkχk where, for 1≤ k≤

m, xk ∈ X and χk ∈ �. We first discuss reducing the proof to the case when

G = TN for some suitable N and �=�∗
N . Applying the Weil formulas (see [10])

as in [4, page 194], we can construct a positive integer N, an order �(f ) on

ZN , and a trigonometric polynomial f † =∑m
k=1xkχ

†
k ∈H1

�(f )(T
N,X) such that

∫
G
f dλ=

∫
TN
f †dµN,

∫
G

log |f |dλ=
∫
TN

log
∣∣f †∣∣dµN. (2.14)

Clearly, it suffices to establish the desired result for f †. Also as proved in [4],

there exists an isomorphism φ : TN → TN with adjoint φ∗ : ZN → ZN such that

for j ∈ {1, . . . ,m}, φ∗(χj)∈�∗
N . Then we have that f † ◦φ∈H1

�∗(N)(TN,X). At

this point, we can see that (2.13) will hold for f if and only if the corresponding

statement holds for f † ◦φ.

All that remains is to prove (2.13) for the case f ∈H1
�∗N
(TN,X). But this fol-

lows directly from repeated application of Proposition 2.1 sinced0 =
∫
TN f dµN .

In [9], Helson and Lowdenslager obtained versions of Jensen’s inequality

for matrix-valued functions. With our main theorem we can now extend their

results as stated below.

Corollary 2.3. Let � be any seperable Hilbert space and let �1 be the space

of trace-class operators on �. Then, if f :G→ �1 is analytic on G, we have

∫
G

log
(
tr
∣∣f(x)∣∣)dλ≥ log

(
tr
∣∣∣∣
∫
G
f(x)dλ

∣∣∣∣
)
. (2.15)

Proof. We only need to note that the space of trace-class operators �1

acting on a separable Hilbert space � is a Banach space under the norm ‖A‖1 =
tr|A| where |A| denotes the absolute value of an operator (see [12, Sections

VI.4, VI.6]).

Remark 2.4. We find it rather interesting that we do not need to place

geometric assumptions on the Banach space such as Burkholder’s UMD condi-

tion. In papers such as [3, 5], the UMD condition arises because we seek what

amounts to certain bounded projections from L1(G,X) to H1
�(G,X). This re-

quires more concern for the geometry of the Banach space X and the related

vector-valued function spaces. Our work deals strictly with properties of the

functions in H1
�(G,X), which is closer in spirit to the work in [6].

Also note that in our case, analyticity is defined in terms of the Fourier

transform. This leads to several aspects of the proofs being readily adapted

from work previously done for scalar-valued functions.
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