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We give a new characterization of inverse Gaussian distributions using the re-
gression of a suitable statistic based on a given random sample. A corollary of
this result is a characterization of inverse Gaussian distribution based on a con-
ditional joint density function of the sample. Application of this corollary as a
transformation in the procedure to construct EDF (empirical distribution function)
goodness-of-fit tests for inverse Gaussian distributions is also studied.
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1. Introduction. A distribution is an inverse Gaussian distribution with pa-

rameters m> 0 and λ > 0, denoted IG(m,λ), if it has a density function given

by

f(x;m,λ)=



(

λ
2πx3

)1/2
exp

{
− λ(x−m)

2

2m2x

}
for x > 0,

0 otherwise.
(1.1)

(See Tweedie [11].)

The characteristic function of an IG(m,λ) distribution is

ϕ(t)= exp



λ
[
1−(1−2im2tλ−1

)1/2
]

m


 . (1.2)

Let Xj , j = 1, . . . ,n, n ≥ 2, be a random sample from an IG(m,λ) distribution.

Then, the statistics Y = ∑n
j=1Xj and Z = ∑n

j=1X
−1
j −n2Y−1 are jointly com-

plete sufficient for m and λ. Y and Z are independently distributed, Y has an

IG(nm,n2λ) distribution, and λZ has a chi-square distribution with (n−1)
degrees of freedom. Khatri [4] gave a characterization of the inverse Gaussian

distributions based on the independence between Y and Z , then Seshadri [9]
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gave several characterizations of the inverse Gaussian distributions based on

the constant regression of several different statistics given Y . In this note,

we give a characterization of the inverse Gaussian distributions based on the

regression of a statistic given Y and Z . The corollary of this result is a charac-

terization of the inverse Gaussian distributions based on the conditional joint

density function of X1, . . . ,Xn−2, given Y and Z . The result of this corollary

can be used as a transformation in the procedure to construct EDF (empirical

distribution function) goodness-of-fit tests for inverse Gaussian distributions.

2. Characterization results. The conditional joint density function of

X1, . . . ,Xn−2, given Y =y > 0, Z = z > 0, is

fX1,...,Xn−2|Y ,Z(x1,...,xn−2|y,z)

=




2Γ
(
(n−1)/2

)
y3/2

nπ(n−1)/2
∏n−2
j=1 x

3/2
j

(
y−∑n−2

j=1 xj
)1/2

z(n−1)/2

×



y−n−2∑

j=1

xj




2
z+n2y−1−

n−2∑
j=1

x−1
j


−4


y−n−2∑

j=1

xj





−1/2

for
n−2∑
j=1

xj < y,


y−n−2∑

j=1

xj




z+n2y−1−

n−2∑
j=1

x−1
j


< 4,

0 otherwise.
(2.1)

From (2.1), the UMVUE of the density function at a point x1 > 0 is given by

fX1|Y ,Z(x1|y,z)

=




(n−1)Γ
(
(n−1)/2

)
n
√
π Γ

(
(n−2)/2

)

×
y3/2

[
z+n2y−1−x−1

1 −(n−1)2
(
y−x1

)−1
](n−2)/2−1

x3/2
1

(
y−x1

)3/2z(n−1)/2

for x1 <y, z+n2y−1−x−1
1 −(n−1)2

(
y−x1

)−1 > 0,

0 otherwise,
(2.2)

where y,z > 0. (See Chhikara and Folks [1].)
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Let T =X1[Z+n2Y−1−X−1
1 −(n−1)2(Y−X1)−1]. E[T |Y ,Z] can be computed

in two different ways. On the one hand,

E[T |Y ,Z]= E
[
X1

[
Z+n2Y−1−X−1

1 −(n−1)2
(
Y −X1

)−1|Y ,Z
]]

= YZ
n
+(n−1)−(n−1)2E

[
X1

(
Y −X1

)−1|Y ,Z
]

= YZ
n
+n(n−1)−(n−1)2YE

[(
Y −X1

)−1|Y ,Z
]
.

(2.3)

On the other hand, this expectation can be computed using the conditional

density function of X1 given by (2.2), and the following integral is taken on the

support of this conditional density function:

E[T |Y ,Z]=
∫
t(x)fX1|Y ,Z(x) dx =

∫
udv, (2.4)

where

u(x)= n−1
n

× Γ
(
(n−1)/2

)
y3/2[z+n2y−1−x−1−(n−1)2(y−x)−1

](n−2)/2

√
π Γ

(
(n−2)/2

)
z(n−1)/2−1

,

dv = dx
x1/2(y−x)3/2 .

(2.5)

Hence,

v = 2x1/2

y(y−x)1/2 . (2.6)

Using integration by parts,

E[T |Y ,Z]=−
[
n−2
Y

]
E
[(
Y −X1

)−(n−1)2X2
1

(
Y −X1

)−1|Y ,Z]
=−n(n−1)(n−2)+(n−1)2(n−2)YE

[(
Y −X1

)−1|Y ,Z]. (2.7)

Comparing (2.3) and (2.7),

E
[(
Y −X1

)−1|Y ,Z]= nY−1

n−1
+ Z
n(n−1)3

. (2.8)

In the following part, we construct a characterization of inverse Gaussian dis-

tributions based on regression (2.8).

If X has an inverse Gaussian distribution with the characteristic function

ϕ(t) given by (1.2), then take logarithm of this characteristic function fol-

lowing three successive differentiations and several simplifications, thenϕ(t)
satisfies the differential equation

ϕ′4(t)−3ϕ(t)ϕ′2(t)ϕ′′(t)−ϕ2(t)ϕ′(t)ϕ′′′(t)+3ϕ2(t)ϕ′′2(t)= 0. (2.9)
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Conversely, if ϕ(t) is the characteristic function of a random variable X with

finite E[X−1] and E[X3], that is, a solution of the differential equation (2.9),

then, by the continuity of a characteristic function using the reverse procedure

for getting (2.9), this characteristic function is (1.2). Hence, the following result

is obtained.

Lemma 2.1. Let X be a nonnegative random variable with a nondegenerate

distribution F and with finite E[X−1] and E[X3]. Assume that E[X] =m and

Var(X) =m3/λ for some positive numbers m and λ, then F is an IG(m,λ) if

and only if its characteristic function is a solution of the differential equation

(2.9).

The following theorem is the main result of this note.

Theorem 2.2. Let Xj , j = 1, . . . ,n, n≥ 2, be a random sample of n nonneg-

ative random variables from a nondegenerate distribution F with finite E[X]
and Var(X). Then, F is an inverse Gaussian distribution if and only if regression

(2.8) holds.

Proof. We only need to show that if (2.8) holds, then F is an inverse Gauss-

ian distribution.

From (2.8),

E


eitY

{
n(n−1)3

(
Y −X1

)−1−n3(n−2)Y−1−
n∑
j=1

X−1
j

}= 0. (2.10)

From the fact that X is a random variable with finite E[X−1],

E
[
X−1eitX

]= i
∫ t
−T
ϕ(u)du+

∫
R
x−1e−iTx dF(x), (2.11)

for any constant T such that −T < t, where ϕ is the characteristic function of

X (Khatri [4]), then

I1(t)= E
[
eit(Y−X1)

(
Y −X1

)−1
]

= i
∫ t
−T
ϕn−1(u)du+

∫
R
x−1e−iTx dF∗(n−1)(x),

I2(t)= E
[
eitY Y−1]= i

∫ t
−T
ϕn(u)du+

∫
R
x−1e−iTx dF∗(n)(x),

I3(t)= E
[
eitXjXj−1]= i

∫ t
−T
ϕ(u)du+

∫
R
x−1e−iTx dF(x),

(2.12)

where F∗(k) denotes the k times convolution of F . Substitute (2.12) into (2.10),

simplify, and differentiate three times, the differential equation (2.9) is ob-

tained. Then by Lemma 2.1, F is an inverse Gaussian distribution.
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The following characterization of inverse Gaussian distributions based on

(2.1) or (2.2) can be obtained directly from Theorem 2.2. This result will be used

as a transformation in the procedure to construct EDF goodness-of-fit tests for

inverse Gaussian distributions. The application of this result is discussed in

Section 3.

Corollary 2.3. Let Xj , j = 1, . . . ,n, n≥ 2, be a random sample of nonneg-

ative random variables from a nondegenerate distribution F with finite E[X−1]
and E[X3]. F is an inverse Gaussian distribution if and only if the conditional

joint density function of X1, . . . ,Xn−2, given Y =y > 0 and Z = z > 0, is (2.1), or

the conditional density function of X1, given Y =y > 0 and Z = z > 0, is (2.2).

3. Application to goodness-of-fit test. Let Xj , j = 1, . . . ,n, n≥ 2, be a sam-

ple of nonnegative random variables from a nondegenerate distribution F with

finite E[X−1] and E[X3]. To test whether F is an inverse Gaussian distribution,

by Corollary 2.3, it is to test the equivalent simple hypothesis that whether the

conditional joint density of X1, . . . ,Xn−2, given Y =y > 0 and Z = z > 0, is (1.1).

The results of Rosenblatt [8] and then of Chhikara and Folks [1] are used to

change the X’s sample to the U ’s random sample from a distribution over the

interval (0,1), and the equivalent hypothesis now is whether the U ’s sample is

from the uniform distribution over the interval (0,1). Then, any EDF test statis-

tics can be used (D’Agostino and Stephens [2]). Nguyen and Dinh [5] used this

transformation and studied the first exact EDF goodness-of-fit tests for inverse

Gaussian distributions. In their study, at some alternative distributions, and

with reasonable, not large, sample sizes, the exact EDF goodness-of-fit tests

based on this transformation behave pretty well comparing with the other ap-

proximate EDF goodness-of-fit tests. The other goodness-of-fit tests for inverse

Gaussian distributions using EDF statistics were given by Edgeman et al. [3],

O’Reilly and Rueda [6], and Pavur et al. [7]. For detailed references, see Seshadri

[10].
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