IJMMS 2004:12, 637-646
PIL S0161171204203076
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON THE NUMBER OF REPRESENTATIONS OF POSITIVE
INTEGERS BY QUADRATIC FORMS AS THE BASIS
OF THE SPACE S4(IH(47),1)

AHMET TEKCAN and OSMAN BiziM

Received 11 March 2002

The number of representations of positive integers by quadratic forms F; = x% +X1X2 +
12x§ and G = 3x% +X1X2 +4x§ of discriminant —47 are given. Moreover, a basis for the
space S4(Ip(47),1) are constructed, and the formulas for v (n;Fs), v (n;G4), ¥ (n;F3 © G1),
r(n;Fr ®Go), and v (n;F, ® G3) are derived.
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1. Introduction. A real binary quadratic form F is a polynomial in two variables x
and x; of the shape F = F(x1,x2) = axf +bxixo+ cx% with real coefficients a, b, c. The
discriminant of F is defined by the formula b? —4ac and is denoted by A(F), where F is
an integral form if and only if a,b,c € Z, and is positive definite if and only if A(F) <0
and a,c > 0. If gcd(a,b,c) = 1, then F is called primitive.

Let F; = ax? + bx1x2 +cx5 and G = dx? + ex;x2 + fx5 be two positive definite
quadratic forms with discriminant A(F;) and A(G1), respectively. For each k > 1, let
Fi, and Gy denote the direct sum of k-copies of F; and Gq, respectively, where F; and
G1 have two variables, F» and G, have four variables, and therefore F; and Gy have 2k
variables.

Let

Q=Q(x1,X2,...,XK) = > brsXyxs (1.1)

l<r=s<k

be a positive definite quadratic form of discriminant A in k (k is even) variables with
integral coefficients b, ;. Consider the quadratic form

k
2Q = z Ays Xy Xs, (arr =2byy, Ars = Agy = bys, ¥ < 5) (1.2)
r,s=1

of discriminant D. Then A = (—=1)¥/2D. Let A, be the algebraic cofactors of elements
ays in D, let & = gcd(Ary/2,Ars), (¥,s = 1,2,...,k), let N = D/S be the level of the
form Q, and let x(d) be the character of the form Q, that is, x(d) =1 if A is a perfect
square, but if A is not a perfect square and 2 t A, then x(d) = (d/|A|) for d > 0 and
x(d) = (—=1)¥2x(-d) for d < 0, where (d/|Al) is the generalized Jacobi symbol.
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A positive definite quadratic from in k variables of level N and character x(d) is
called a quadratic form of type (-k/2,N,x). Let P, = P, (x1,X>,...,Xk) be the spherical
function of order v with respect to the quadratic form Q. Furthermore, let g denote an
odd prime number.

Let T'(1) denote a full modular group and let T denote any subgroup of a finite index
in T'(1). In particular,

To(N) ={< Z Z )el"(l):c=0m0d(N)]»,

T, (N) ={( ? Z )GFO(N):aEdzlmod(N)]», (1.3)

r(N)z«[( f Z )erl(N):b:Omod(N)},

for N e N.
Let Gy (T, x) and Si(T,x) denote the space of entire modular and cusp forms, re-
spectively, of type (k,T,x).If F(T) € Gk (T, x), then in the neighbourhood of the cusps

C =ico;
F(T)= >  amz™, am, *0. (1.4)
m=mgp=0

The order of an entire modular form F(1) = 0 of type (k,I',x) at the cusps € = ico with
respect to I' is

ord (F(T),ic,T) = my. (1.5)
Let
P(T;QX),Py(X),h) = > Py(n,...,m)zy Ve,
nj=hj(modN)
® (1.6)
X-’(T;Q(X),Pv(X))—Z< Z Pv(X))Z",
n=1 \QX)=n

where Q(X) =1/2, Z’T"S:la”xyxg is a quadratic form of type (k/2,N,x), P, (X) is a
spherical function of order v with respect to the Q(X), ni,...,n, are integers, and
h = (hy,...,hy), where h; are integers such that

k
> arshs =0(modN), (r=1,...,k). (1.7)

s=1

As well known, to each positive definite quadratic form Q, there corresponds the
theta series

P(1;Q) =1+ > r(m;Q)z", (1.8)

n=1
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where 7 (n;Q) is the number of representations of a positive integer n by the quadratic
form Q.

LEMMA 1.1. Any positive definite quadratic form Q of type (-k,q,1),k > 2, corre-
sponds to one and the same Eisenstein series

E(T;Q) =1+ E (xog-1(n)z"™ + Bok-1 (n)z), (1.9
n=1
where
k k/2 _ ik k_ ik k/2
q i 1 g*-i"q k/z(k !
_ L po—4va (g k 1.10
o ak—1 B o gf—1 pr=(-1) kC( ) ( )

C (k) is the zeta function of Riemann, and o1 (n) = > d*1 [1].
din

LEMMA 1.2. If Q is a primitive quadratic form of type (—k,q,1), 2|k, then the differ-
ence 9(T1;Q) —E(T;Q) is a cusp form of type (—k,q,1) [1].

LEMMA 1.3. The homogeneous quadratic polynomials in k variables

1 Ars
kD

Qrs = Xy Xs— 2Q, (r,s=1,2,...,k) (1.11)

are spherical functions of second order with respect to the positive definite quadratic
form Q in k variables [1].

LEMMA 1.4. If Q is a quadratic form of type (—-k/2,N,x) and P, is the spherical
function of order v with respect to Q, then the generalized theta series

(1;Q,P) Z ( > Pv)z" (1.12)
Q=n

is a cusp form of type (—(k/2+v),N,x) [1].

LEMMA 1.5. If Q and Q; are quadratic forms of types (ki,N,x1) and (k2,N,Xx2),
respectively, then the quadratic form Q1 & Qo», direct sum of Q1 and Q», is a quadratic
form of type (ki +kz,N,x1x2) [1].

LEMMA 1.6. If Q is a quadratic form of type (k,N,Xx), then

Gu+kj2(To(N),x); ifv <0,
;Q(x),Py(x)) € (1.13)
plriQ ) {ka/z(ro(N),X); ifv>0,

see [1].

2. The number of representations of positive integers by quadratic forms. In this
note, we consider the quadratic forms F; = x? + x1x, + 12x% and G; = 3x% + x1x2 +
4x§ of discriminant —47. Firstly, we investigate which positive integers can be repre-
sented by Fi, Gy, F», G», or F; ® G1, and then we construct a basis for the cusp space
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S4(Ip(47),x). Moreover, we derive the formulas for v (n;Fs), ¥ (n;G4), v(n;F3 & Gy),
r(n;F,®Gy), and v (n;F; & G3).

For the quadratic form F; = xf +X1X2 + 12x§, bi1=1,b12=by; =1/2,and by = 12.
Therefore, a1 = 2, a1 = a» = 1/2, and app = 24. Thus, A;; = 24 and A, = 2. Here,
D =47 since A = (—1)D. Also 6 = 1 and N = D/§. Therefore, F; is a quadratic form of
type (—1,I5(47),x). Similarly, for the quadratic form G; = 3x? + x1x» + 4x3, by; = 3,
bi> = by; = 1/2, and by, = 4. Therefore a,; = 6, ai1» = a1 = 1/2, and a»» = 8. Thus
Ay =8 and A = 6. For D =47, since A= (-1)D, § = 1, and N = 47, therefore, G, is a
quadratic form of type (—-1,I(47),X).

Let n be a positive integer. Then the equation

Fi(x1,x2) = x3+x1x2+12x3 =n (2.1)

(1) has two integral solutions (—1,0) and (1,0) for n = 1;
(2) has no integral solution for n = 2,3, and 5;

(3) has two integral solutions (-2,0) and (2,0) for n = 4.
Hence according to (1.8), we have

P(T;F) =1+2z+2z%+- -+, (2.2)
From (2.2), we get
0(T;F2) = 9% (T3F1) =1 +4z+ 42> +4z* + 825+ - - -, (2.3)
Similarly, the equation
Gi(x1,Xx2) =3x2+x1x2 +4x3 =n (2.4)

(1) has no integral solution for n = 1,2 and 5;

(2) has two integral solution (—1,0) and (1,0) for n = 3;
(3) has two integral solutions (0,1) and (0,—1) for n = 4.
Hence according to (1.8), we have

0(T;G1) =1+223 4224+ -, (2.5)
From (2.5), we get
9(T;G2) = 9% (1;G1) = 1+423 +4z4 +. - . (2.6)
From (2.2) and (2.5), we have

P(T;F1eG)) =p(T;F)9(T;G1) =1+2z+223 + 824 +42° + - - - (2.7)
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Moreover, we get

9(T;F3) = 1+62+122° +823 +62* +242° + - - -;
9(T;Fs) = 1+82+242° +322% + 2424 +482° + .
2(T;G3) =1+623+62%+- -+
9(T;G4) =1+823+8z%+- -+ 2.8
P(T;F1©G3) =1+22+62% +20z* +122°+ - - -
(T Fo®Go) = 1+4z+42°+423 +242* +402° + - - - ;
P(T;F30Gy) = 1+62+122%+1023 + 2024 + 6025 + - - - .

Now consider the quadratic forms Fz, Gz, and F & G;. From Lemma 1.5, they are of
type (-2,T5(47),1).

THEOREM 2.1. For the quadratic form F»,

1) 1= xf —(12/47)F, is a spherical function of second order with respect to F»;
(2) p(T;F2,p11) = (1/47)(46z + 11622+ 184z% +460z> + - - -) € S4(IH(47),1);

(3) ord(p(T;F2,@11),i0,I5(47)) = 1.

PROOF. If we take k = 4, Q = F», and v = s = 1, then from Lemma 1.3 we have
P = x% —(12/47)F,, which is a spherical function of second order with respect to F,.
The equation

Fo(x1,x2,X3,X4) =1 (2.9)

(1) has four integral solutions(+1,0,0,0) and (0,0,+1,0) for n = 1;

(2) has four integral solutions (1,0,+1,0) and (-1,0,+1,0) for n = 2;

(3) has no integral solutions for n = 3;

(4) has four integral solutions (+2,0,0,0) and (0,0,x2,0) for n = 4;

(5) has eight integral solutions (-2,0,+1,0), (-1,0,+2,0), (1,0,%+2,0), and (2,0,*1,
0) for n =5.

So we have from Lemma 1.4,

0(T;F, @11) = %{(47.1.2 —12.1.4)z+(47.1.4-12.2.4)22

+(47.4.2-12.4.4)z* +(47.44+47.1.4-12.5.8)z2° +-- -} (2.10)

46, 116 , 184 , 460
—47z+ 17 ? + 17 ? + 17 ? + € S4(TH(47),1).

From (1.5) we have ord((T;F2,@11),100,Ip(47)) = 1. O

THEOREM 2.2. For the quadratic form G-,

1) 11 = xf —(4/47)G> and @2, = x% —(3/47)G> are spherical functions of second
order with respect to G»;

(2) 9(T;G2,11) = (1/47) (4623 —64z% + - - -) € S4(T(47),1);
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(3) 9(T;G2,P22) = (1/47)(=3623 +462% + - - ) € S4([H(47),1);
(4) ord(p(T;G2,®11),10,1(47)) = ord((7;G2,@22),1i00,IH(47)) = 3.

PROOF. Similarly, if we take k =4, Q = G2, ¥ =s =1, and v = s = 2, then from
Lemma 1.3 we have @, = xf —(4/47)G> and @2 = x% —(3/47)G>, which are spherical
functions of second order with respect to G,. The equation

Ga(x1,X2,X3,X3) =N (2.11)

(1) has no integral solutions for n = 1,2 and 5;

(2) has four integral solutions (+1,0,0,0) and (0,0,+1,0) for n = 3;
(3) has four integral solutions (0,+1,0,0) and (0,0,0,+1) for n = 4.
So we have from Lemma 1.4,

9(T;G2,@11) = %{(47.1.2 ~4.3.4)2%+(47.04-4.44)z% +- .-}

_ %23_ %244‘ .. e S4(r0(47)11)!
: (2.12)
9(T:G2,022) = - {(47.04-3.3.4) 2%+ (47.1.2-344)2% + -}
30, 40,
=P P e ST AT, 1),
By definition ord(p(7;G2,@11),i%,I5(47)) = ord(p(T; G2, @22),i00,Ty(47)) = 3. O

THEOREM 2.3. For the quadratic form F; & G,

1) 11 = x% —(12/47)(Fy ® G1) and @2» = XE —(1/47)(Fy ® G1) are spherical func-
tions of second order with respect to F1 ® G1;

(2) p(T;F1@Gy,@11) = (1/47) (702 - 7223 +2742z* - 522> +- - -) € 84 (I (47),1);

(3) P(T;F1 @Gy, @) = (1/47) (=22 -623-322* =202 +---) € S4(Tp(47),1);

(4) ord(p(T;F1®G1,P11),i00,1p(47)) = ord(9(T;F1 ® G1, @22),100,15(47)) = 1.

PROOF. Ifwetakek=4,Q=F,&G,vr=s=1,and r =s =2, then from Lemma 1.3
we have @, = xf —(12/47)F; ® G; and @2» = x% —(1/47)F; ® G1, which are spherical
functions of second order with respect to F; @ G;. The equation

FreGi(x1,x2,X3,X4) =N (2.13)

(1) has two integral solutions (+1,0,0,0) for n = 1;

(2) has no integral solutions for n = 2;

(3) has two integral solutions (0,0,+1,0) for n = 3;

(4) haseightintegral solutions (+2,0,0,0), (1,0,+1,0), (0,0,0,+1),and (-1,0,+1,0)
for n = 4;

(5) has four integral solutions (1,0,0,+1) and (—1,0,0,=1) for n = 5.
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So we have

o(T;F10G1,@11)

= 417{(47.1.2 ~12.1.2)z+(47.0.2-12.3.2)23 + (47.4.2 +47.1.6 - 12.4.8) z*

(2.14)
+(47.1.4-1254)2° +---}
=72 gt vy L et €5,
P(T;FL @Gy, @22)
= i{(47.0.2— 1.1.2)z +(47.0.2—1.3.2)2° + (47.0.8 - 1.4.8) z*
" (2.15)

+(47.04-1.54)2°+---}
26 5 32, 20
47 47 47 47
From (1.5), ord(p(T;F1 © G1,P11),i0,1(47)) = ord(9(T;F1 ® G1, pa2),i0,I5(47)) = 1.
O

Z2 4 - €84(Tp(47),1).

The system of theta series in (2.10), (2.12), (2.14), and (2.15) are linearly independent
since the fifth order determinant of the coefficients in the expansions of these theta
series is different from zero. Since |S4(I,(47),1)| = 5, we proved Theorem 2.4.

THEOREM 2.4. The system of generalized fourfold theta series

1 00
9(TFa,@11) = o= > ( > 47xf—12n>z",
47 2
n=1 \Fp=n

9(T;G2,p11) = % > ( > 47X%—4n>z”,
G

n=1 2=n
9(T;G2,P22) = € > ( > 47x§3n)z", (2.16)
47 n=1 \Gz=n

1 00
(TR eGLen) =55 > ( 47xf—12n)z”,
FieGy=n

9(T;F1 @G, 22) = L > ( > 47x§—n)z"

is a basis of the space S4(Iy(47),1), of cusp forms of type (—4,1p(47),1).
From Theorems 2.1, 2.2, and 2.3 we have following corollaries.

COROLLARY 2.5. LetFy (Gy) be the divect sum of k-copies of F1 (G1) of type (—k,I(47),
1) and let @, be the spherical function of second order with respect to Fy (Gy), then

(1) ord(p(T;Fy, Qrs),i0,15(47)) = 1;

(2) ord(9(T;Gr, @rs),i0,Ip(47)) = 3.
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COROLLARY 2.6. LetFi®Gj, i,j > 1, i+ j=k be the direct sum of i-copies of Fi and
j-copies of Gy of type (—k,Iy(47),1) and let @, be the spherical function of second order
with respect to F; ® G j, then

ord (9(T;Fi® G}, Qyrs),10,15(47)) = 1. (2.17)

Now we give the formulas for »(n;Fs), v(n;G4), v (n;F3 ® G1), v(n;F» & Gp), and
v (n;F1 @ G3) by the following theorem.

THEOREM 2.7. For the quadratic forms Fy, G4, F3® G1, F» ® G» and F; @ G3 we have
the following formulas:

24 . 1272
r(nFy) = 5550 (n)+29221<zn47x1 12n)

6498200 8716584 )
T 2047221 ( Z 473 - ) " 20.47.221 (GZZnMXZ _3")
17864 811736
Sodrxi-12n |+ D 47x§—n),
" 29.47.221 (F R ) 29.47.221 (Fl%ln

24 . 54 )
r(n;Gy) = 55705 (n) 29_221<F22n47x1 IZn)

1305584 , 1742266
T 29.47.221 ( Z 47"1_4”> 29.47. 221( 2. 47x; - 3”)

Goy=n =n
5046 134592
to Y 47xf—12n)+( > 47x§—n),
29.47.221 (FleaGl—n 29.47.221 F8G)=n

221 29.221

372911 416904 )
" 29.47.221 221( 2. 471 ) 29.47.221 (GZZ 47"2_3")

=n

5046 , 52374 ,
+29.47.221( 2. A7x] 12”) 29.47.221( > 47X ")

F1eGi=n FieGi=n

r(nF3eG) = 2 =705 (M) + 5o 609 ( > 47x%—12n)
Fo=n

24 . 167 ,
rimFeG,) = 7217 (1’L)+29.221(Fzz_néﬂx1 12n)

1193705 1545330 ,
" 2947.221 ( 2. 47xi - ) 2947021 (Gzz_n‘m“? 3")

5046 , 228953 .
+29.47.221< 2. 47X 12”) 29.47.221( 2. 47x; ”)

FieGi=n FieGi=n
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_ 24 . 54 ,
r(nFLeGs) = 5517 5 (n) 29221(1:227147)(1 12n)

302460 418656 ,
T 2947.221 ( Z 471 - ) T 29.47.221 (GZZ_nMxZ _3")

8250 , 54491 -
+29.47.221( 2. 47x] 12") 29.47.221( 2. 47x3 ")’

FieGi=n FieGi=n
(2.18)
where
o3(n) if47 t n,
of(n) = (2.19)
3 Ug(n)+47203(r—7> if 47|n.

PROOF. By Lemma 1.5, F4, G4, F3® G1, F> ® G, F1 @ G3 are quadratic forms of type
(—4,TH(47),1). We know from Lemma 1.1 that there exist Eisenstein series which cor-
respond to each other. For k = 4, we have & = 24/221 for ps = 1/240. Thus we get

E(T;Fy) =E(T;G4) =E(T;F38G,) =E(T;F®G,) = E(T;F1©G3)

z (o3 (n)z" + Bos(n)z") (2.20)

_1. 24 24 +24.922+24.2823 24.73Z4 24.126ZS
T it o 221 221 221

By Lemma 1.2, the difference p(7;F4) —E(T;F4) is a cusp form of type (—4,I,(47),1).On
the other hand from Theorem 2.4, o(T;F2, ®11), £(T;G2,P11), £(T;G2,P22), 9(T;F1 &
G1,P11), 9(T;F1 & Gy, P22) are bases of the cusp space S;(Ip(47),1). Therefore, we can
find integers cy,...,cs such that

$(T;Fy) —E(T;Fy) = c19(T; F2, @11) + 20 (T;G2, @11) + 30 (T;G2, P22)

(2.21)
+ a9 (TF1eGL @) +60(T; F1 oG, @22).
From (2.8) and (2.20), we have
o . 1744 5088 , 6400 ; 3552 , 7584
9(T;Fy) —E(T;Fy) = 591 z+ o1 Z + o1 ? + o1 ? + o1 ? (2.22)
From (2.21) and (2.22), we get
1272 6498200
9 (T;Fs) = E(T;Fs) + 29.22150(7',1:2,(]911) - WW(T,GL(PH)
8716584 17864
—WXJ(T,GLQ%Z)+m&0(T,Fl@Gl,<P11) (2.23)

N 811736
29.221

P(T;FieGr,22).
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Similarly, we obtain

P(TiG1) = E(T:64) ~ 559 9(TiFn 1)~ o0 0 (136, 1)
- %P(T;qu)zz) + 22(_);26150(7';1:1 ®G1,@11)
+ 12394_125291250(1';1:1@G1,Q922),
P(TSE®G1) = E(TiFs@G1) + 000 p(TiFa, 1) + 50D LT3 G, o)
+ A;f;gfé"(ﬂGzthz) + 259(');26159(7';}71 ®G1,P11)
- 255_32724180(7';1‘"1 ®G1,P22),
(2.24)
9(T;F0G2) =E(T;F20G2) + 29_221XJ(T;F2,(P11) + %P(T;Gz,@n)
%W(T;Gzywzz) + ZZ?SSIW(T;H ®G1,®11)
N
9(T;FLeGs) = E(T;F1©G3) - 29?%50("';1:2,(1711) - %@(T;Gz,cpn)
—A;fg;féﬂ(ﬂGz,(Pzz)+289?%0150(T;F1 eG1,P11)
- 25;4;21180“;5 ®G1,P22)
as desired. O
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