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ON CAUCHY-TYPE FUNCTIONAL EQUATIONS
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Let G be a Hausdorff topological locally compact group. Let M (G) denote the Banach algebra
of all complex and bounded measures on G. For all integers n > 1 and all u € M(G), we
consider the functional equations [ f(xty)du(t) = 31" gi(x)hi(¥), x,¥ € G, where the
functions f, {g;}, {h;}: G — C to be determined are bounded and continuous functions on
G. We show how the solutions of these equations are closely related to the solutions of the
u-spherical matrix functions. When G is a compact group and u is a Gelfand measure, we
give the set of continuous solutions of these equations.

2000 Mathematics Subject Classification: 39832, 39B42.

1. Introduction. Let G be a locally compact Hausdorff group, that is, a locally com-
pact group which satisfies the following separation axiom: every pair of distinct points
in G have disjoint neighborhoods. Let u be a complex bounded measure on G. We con-
sider the functional equation

| fextpdun) = Y aiom), xyea. (L.1)

i=1

In the particular case where u = 6, (the Dirac complex measure concentrated at the
identity element of G) (i.e., (f,8.) = [ f(t)db.(t) = f(e), forall f: G — ), (1.1) reduces
to Levi-Civita equation

fxy)=> gi(x)hi(y), x,¥€G, (1.2)
i=1

a special case of which is Cauchy’s functional equation f(xy) = f(x)f(y), for all
X,y € G. This explains the choice of the title of this note.

Solutions of general equations like (1.2) were studied by many authors. The trigono-
metric addition and subtraction formulas and their relations have been studied by Wil-
son [19], Vietoris [17], and Vincze [18].

In their work, Chung et al. [7] found the solutions of the equation

Sxy)=f(x)g»)+gx)f(y)+h(x)h(y), x,¥€G, (1.3)

in which the group G need not be abelian.
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O’Connor [11] studied a solution of the equation

n
flxy™) =>aix)ai(y), x,v€EG, (1.4)
i=1
on a locally compact abelian group.
Poulsen and Stetkeer [12] introduced and solved the following functional equations:

flxo)=f)fY)+gx)g(y), x,y€Gq,

1.5
fxo)=fx)gy)+gx)f(y), x,y€Gq, {13

where o is a homomorphism of G such that o (o (x)) = x, for all x € G.

For other references and more information about (1.2), we can see the monographs
by Aczél [1], by Aczél and Dhombres [2], and by Székelyhidi [16].

Let K be a compact subgroup of the group Aut(G) of all mappings of G onto G that are
simultaneously automorphisms and homeomorphisms. Let dk be the normalized Haar
measure on K, that is, the normalized nonnegative measure on K which is invariant by
translations of K (see [10]) and consider

JKf(ka)dk: S gi0Oh(y), x,y€G. (1.6)

i=1

Equation (1.6) were considered by Stetker in several works (see, e.g., [13, 14, 15]) and
it was solved in the particular case when G is compact and commutative (see [13]).
Furthermore, on an abelian group G, the bounded solutions of equations like

JKf(xk(y))dk=f(X)f(y), X,y €G, 1.7)

were discussed by Chojnacki [6] and Badora [5].
Consider the group G = G <K, the semidirect product of G and K, where the topology
is the product topology and the group operation is given by

(91,k1)(92,k2) = (g1k1(g2),kik2), (1.8)

K, = {e} XK is a closed compact subgroup of G. So the functional equation (1.6) on G
is closely related to the functional equation

L Flxky)ydk =S gi(x)hi(v) (1.9

i=1

on G, which is a particular case of (1.1).
When n = 2, there are two interesting cases of (1.1):

Lf(xty)du(t) = FOgON + X)), x,y €, (1.10)
Lf(xty)du(t) =fxX)f(y)+g(y)gx), x,y€QG, (1.11)

which cover the functional equation for sinh and cosh that were studied by Vincze [18].
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The aim of this note is to study (1.1). Our discussion is organized as follows. In
Section 2, we make a general setup and recall some definitions. In Section 3, we establish
some general properties about the solutions of (1.1). In Section 4, we suppose that G
is compact and p is a Gelfand measure (see [3]). In this case, when {gi,...,gx} and
{hy,...,h,} are two sets of linearly independent functions and f is p-invariant, we
completely solve (1.1). The solutions are described in Theorem 4.2. As a particular case,
we obtain the result given by Stetkeer when G is compact and commutative (see [13]).

In Sections 4.3 and 4.4, we solve (1.10) and (1.11) without any assumption of u-
invariance nor of independence of the unknown functions f and g. We notice that the
solutions of (1.1), (1.10), and (1.11) are expressed in terms of u-spherical function of
the compact group G characterized in [3]. The approach adopted here is based on a
general process of diagonalization of matricial u-spherical functions.

The results obtained in this note may be viewed as some generalizations of important
works studied in the literature (see[1, 2, 5,6, 7,11, 12,13, 14, 15, 19]). Our work unifies
many of the results presented in these references.

2. Setup and notations. Throughout this note, G will be a Hausdorff topological
locally compact group. Let M (G) denote the Banach algebra of complex bounded mea-
sures; it is the dual of Cy(G), the Banach space of continuous functions vanishing at
infinity. For all i, v € M (G), we recall that the convolution product p * v is the measure
given by

(fouxv) = JG L}f(ks)du(k)dv(s), (2.1)

and the involution is defined in M (G) by u* = i, where

(fomy = (o), (Foi)=(fou), with f(x)=f(x), (2.2)

for all x € G.

Let C(G) (resp., C,(G)) designate the Banach space of continuous (resp., continuous
and bounded) complex valued functions.

For f € Cp(G), we define

Julx) = L IGf(kxt)du(t)du(k), x € G, (2.3)

and we say that f is p-invariant if f,(x) = f(x), for all x € G.

For every n € N, M n)(C) (resp., GL,(C)) will be the algebra of all complex n xn
matrices (resp., invertible matrices). If A € M, »)(C), we let At denote the transpose of
the matrix A.

Let u € M(G), u is called a Gelfand measure (see [3, 4]) if u* = y = p * p and the
Banach algebra u * M (G) * u is commutative under the convolution.
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REMARK 2.1. If K is a compact subgroup of G and u = dk is the normalized Haar
measure of K, then dk is a Gelfand measure on G if and only if (G,K) is a Gelfand pair
(see [8, 9]).

DEFINITION 2.2. Anonzero function® € Cj,(G) is a u-spherical function if it satisfies
the functional equation [, ®(xty)du(t) = ®(x)®(y), for all x,y € G.

A function ® € M(; ) (C) (n = 2), is a p-spherical matrix function if ®(e) = I,, and ®
satisfies the functional equation [, ®(xty)du(t) = ®(x)®(y), for all x,y € G.

3. Cauchy-type functional equations. In this section, we study the general prop-
erties of the functional equation (1.1) where u € M(G) and the unknown functions
f,gi,hi € Cp(G), foralli e {1,2,...,n}.

The following useful lemma produces a necessary condition for (1.1) to have a solu-
tion.

LEMMA 3.1. If (f,{gi},{hi}) are solutions of (1.1), then

Z (J Xt du() ) h(2) Z (Lhi(ytzmu(t))gi(x), G.1)

forall x,y,z € G.

PROOF. Using Fubini’s theorem, (1.1) shows that

Z (J gl(Xty)du(t) h (z) = i(xty)h; (z))du(t)

L (e
-
L
(2
<

f(xtysz)du(s))du(t)

f(xtysz)du(t))du(s) (3.2)

n[\/_|: %H u[\/_]:

J

-3

i=1

x)hl(ysz))du(s)

| moizau)gio,

which proves equality (3.1). |

ASSUMPTIONS. For the remainder of the note, we will make the following assump-

tions:
(Hy) peM(G) and p*p = p;
(Hp) the two sets of functions {g;}, {h;} are linearly independent.

We recall from [2] that assumption (H) implies that there exist {a;}ic(1,2,..n} € GX
GXx---xGand {b;}ic12,.n € GXGX---xG such that the matrices {g;(a;)}, {hi(b;)}
are invertible.

In the next theorem, we illustrate how the p-spherical matrix functions can be useful
in the study of the functional equation (1.1).
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THEOREM 3.2. Let u € M(G) such that u* u = u. Let (f,{gi},{hi}) be a solution of
(1.1). Then

®

(i)

(iii)

(iv)

for all z € G, the following identity holds in My ) (C):

{ [ aitxitziano ] ihir)y =g b ] | mzomano} 63
let ®(z) for z € G be the n xn matrix function defined by
®(z) = {gj(ai)}fl{L;gj(aitZ)du(t)}
(3.4)
—{ | hitztbano frie,))

then ® is a u-spherical matrix function. Furthermore, there exist the following
identities:

[ aitxite)auco] = (g, (010(2), (35)
{JGhi(tij)le(t)} =®(2){hi(x;)}, VzeG; (3.6)

let
(G1s-rn) = (91, gn)A™Y, (R, hy) = (hy,... hy) AL, (3.7)

where A is an invertible matrix of M n)(C). Then (g3,...,9y) and (h},...,h})
are linearly independent sets. There exists

> gi(x)hi(¥) = > gl (xR (), (3.8)
i=1 i=1

for all x,y € G, and the u-spherical matrix function ' corresponding to {g;}
and {h;} defined in (ii) above is given by

®'(z) = AD(z)A™; (3.9
assume that &' (z) has diagonal form, that is,
&’ (z) = Diag (<I>;(;z))ie{1 .... - (3.10)

then ®1,...,®;, are u-spherical functions with complex values and

J gi(xty)du(t) = g;(x)®;(y),
¢ (3.11)
L, hi(xty)du(t) = d;(x)h;(y),

forall x,y € G and for alli=1,...,n.
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PROOF. (i) From Lemma 3.1, we can easily derive (3.3).
(ii) For all x1,...,xn, Z € G,

{o;(x)10(2) =gy (e} | | mizebuco ey (312

By using (3.3), we get

{0, (x0}0(@) = { |_aj(xitz)du(o) Ho (b))} (b))

(3.13)
= chj(xitZ)du(t)},
which proves (3.5).
From the assumed form of ®, we compute
JG<I>(xsy)du(S) ={g;j(ai)} HG Lg.;(altxsy)du(t)du(ﬂ}
- {g;(@)} | gt@ix)dno o) (3.14)
={gj(a)} gj(a)}e(x)@(y) = 2(x)@(¥).
Using (1.1) and assumption (H;), we obtain
> | aixs)duni () = Y g:0hi(»), vx,y <G, (3.15)
i-1 i=1

In view of assumption (Hy), we deduce that [; gi(xs)du(s) = gi(x), for all x € G and
®(e) = I,,. Therefore, according to Definition 2.2, ® is a u-spherical matrix function.
Now, by applying (3.3) and (3.4), we get

o) [hi(x)} = (g} | ataizrauco Hni(x))}
= {gj(ai)}_l{gj(at)}{L,hj(Zth)du(t)} (3.16)

= {JG hi(Zth)d“(t)}a

which proves (3.6). Thus (i) and (ii) are proved.

To prove (iii), we write (g},...,g,) = (g1,...,gn) A"  and (h},...,h}) = (hq,...,hy) AL,
where A is an invertible n X n matrix. Then by a simple computation we get (3.8).

As mentioned above, the matrices {g;(a;)}, {hi(b;)} are invertible, then {g}(ai)},
{hi(b;)} are also invertible, and from (ii), the matrix u-spherical function &’ corre-
sponding to {g;} and {h;} is defined by

o(z)' = {gj(a)} | | gj(atz)aun)}
(3.17)
= A{gj(ai)}‘l{ng(aitz)dum}A*l =Ad(z)A™.

We notice that (3.11) come from (3.5) and (3.6). This ends the proof of Theorem. O
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In the next section, we study (1.1) in the case of compact groups.

4. Cauchy-type functional equations on compact groups

4.1. The aim of this section is to treat (1.1) in the case where G is compact (Haus-
dorff) not necessarily commutative. We suppose only that G is endowed with a Gelfand
measure p (see [3]). For such a measure, we let X, denote the set of all y-spherical
functions on G; it is the Gelfand spectrum of the commutative Banach algebra L‘f (G) =
uxLy(G,dx) * u. We recall (see [3]) that in compact groups, a u-spherical function w
is also a positive definite function and in particular, 0 (x) = w(x), for all x € G.

4.2. Solutions of (1.1) for compact groups. We start by the following result concern-
ing p-spherical matricial function.

THEOREM 4.1. Let ® : G — Mun) (C) be a continuous p-spherical matrix function,
that is,
Jcé(xty)du(t) =d(x)®(y), x,¥ €,
d(e) =1I,.

(4.1)

Then there exists w1,...,wy, € ¥, and an invertible matrix A € M, ») (C) such that
(4.2)

PROOF. Let G denote the set of irreducible characters of G (see [10]) and consider
the mapping from G to M) (C) defined by

& (Xm) = jccb(x)xn(x)dx. 4.3)

From (4.1), we have [, ®(xt)du(t) = ®(x). Consequently, we get

j @(x)xn(xmx:j j & (X)X (X)dp () dx
G GJG

- IG¢(X)(JGmdu(t))dx

— -1
- ch(x)(jcxn(tx )du()) (4.4)
= JGd)(x)wn(x’l)dx
=J ¢ (x)wr(x)dx,
G
where
W (x) =J Xr(tx)du(t). (4.5)
G

We recall (see [3]) that the u-spherical functions in the compact group are exactly those
given by (4.5) with x € G.
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For all v € G, we have

()b (xr) = Lquy)cb(x)w—n(x)dx

(4.6)
=J I d(ytx)wr(x)du(t)dx.
¢Jc
In view of [, ®(kx)du(k) = ®(x), it follows that
2b(xa) = [ | | @kt dutodundx
¢lcle
:J J J O (x)wr (t-1y-1k-1x)du(k)du(t)dx
¢lcle
:J J J O (x)wr(x Tkyt)du(k)du(t)dx 4.7)
¢lcle

= L;fi(x)wn(x)wn(y)dx
=wr(y) Ld>(x)wn(x)dx = W ()P (Xr)-

By the Peter-Weyl theorem (see, e.g., [10]), we know that the irreducible characters of
the compact groups G form a basis of the Banach space L?(G,dx). Therefore, the Span
{®(Xn)G, Xxn € G, ¢ € C*} = ", and it follows that there exiSts Xr,,Xrms»---sXmn € G
and ¢1,62,...,6n € C" such that {ti)(xm)gi, i=1,...,mn} is a basis of C". By combining
this result with (4.7), we obtain the desired conclusion. O

By using Theorems 4.1 and 3.2, we get the following result.

THEOREM 4.2. Let (f,{gi},{hi}) be a solution of (1.1) such that f is u-invariant. Then
there exists A € GL,(Q), and for eachi = 1,...,n, there exist positive definite u-spherical
functions w; and «;,B; € C such that

(G15--29n) = (X1 01,..., KWy ) A,

(s in) = (B Brcon) (AD) @8

n
f=> aiBiw;. (4.9)
i=1
Conversely, formulas (4.8) and (4.9) define a solution of (1.1).

To solve the functional equation (1.1) in compact groups, we note the following gen-
eral result that describes its solutions in case of n = 1.

PROPOSITION 4.3. Letu € M(G). Let f,g,h € C(G)\{0} be a solution of the functional
equation

ch(xty)du(t) —g(0h(»), x,y€G. (4.10)
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Then there exists a u-spherical function ¢ on G such that

j g(xty)du(t) = g(x)b(»), x,v€G,
G 4.11)

Lh(xty)du(t) —p()h(y), x,¥€EG,

forall x,y € G.
Furthermorve, if u* u =y and f is u-invariant, then there exist , B € C* such that

g=a¢, h=Bp,  f=axp. (4.12)

PROOF. Let a,b € G such that g(a) = 0 and h(b) # 0. In view of (4.10) and Lemma
3.1, we get

h(b)j g(atx)du(t)=g(a>j h(xth)du(t), (4.13)
G G
and
1 1
B(x) = WLh(xtb)du(t) _ ﬁLg(atx)du(t) (4.14)

is a p-spherical function.
Now according to Theorem 3.2, we have the rest of the proof. |

PROOF OF THEOREM 4.2. By Theorem 3.2, there exists a u-spherical n X n matrix
function ®(z), z € G such that (3.5) and (3.6) hold. Since G is compact, then by using
Theorem 4.1, there exist wy,...,w, € ¥, and A € GL,(C) such that

w1 0
APAT = 1 ] (4.15)

O P Wy
Now, if we put (g7,...,95) = (g1,...,gn)A~  and (h},...,h}) = (hi,...,hy) AL, it follows

immediately from Theorem 3.2(ii) that the functions h; and g; are solutions of the
system of functional equations

[ gictyraue) = giowi,
¢ (4.16)
L (et y)du(t) = w; (R (),

forall x,y e Gand foralli=1,...,n.
In view of Proposition 4.3, there exists «;, ; € C* such that

gi = xiwi,  h;=Biw;, (4.17)
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which implies that

(g1,---,9n) = (X1O1,...,Xnp)A,

(h1,...,hn) = (Birwoy, ..., Bnwn) (AD) 7, (4.18)

and f = >, o;Biw;. This ends the proof of the theorem. |

The subject of the following subsections is to treat some particular cases with
n = 2. More precisely, we are interested in solving (1.10) and (1.11). We will see that the
assumptions of independence or p-invariance required in Theorem 4.2 are not needed
here.

4.3. Solutions of (1.10). By using Theorems 4.2 and 3.2, and without assuming the
u-invariance of f, we get the following result.

THEOREM 4.4. The complete list of functions f,g € C(G)\{0} satisfying the functional
equation (1.10) consists of the following two cases, where &1, ®,, (®; + ®»), ® are positive
definite u-spherical functions and «, € C\{0}:

i) f=0/200)0®P,g=/2;
(i) f=p(@-P2)/2,9=(d1+P2)/2.

To solve this equation we need to prove the following lemmas.

LEMMA 4.5. If f € C(G) is a solution of the functional equation
L;f(Xty)du(t) =fx)wY)+fOw(x), x,veQG, (4.19)

in which w is a p-spherical function such that f and w are linearly independent, then
f(x)=0, forallx €G.

PROOF. Let f satisfy (4.19). By a small computation, we show that f is p-invariant.
Multiplying (4.19) by w(x) and integrating the result over G, we get

J J fxty)w(x)dxdu(t) :f(y)J |w(x)|2dX+w(y)J fxwx)dx. (4.20)
GJG G G
Since [ |w(x)|>dx # 0 (see [3]), and
J J fxty)w(x)dxdu(t)
GJG
:J J J Sfxtyk)w(x)dxdu(t)du(k),
GJGJIG
J J J Sfx)w(xk-ty-tt-Ydxdu(t)du(k) (4.21)
GJGJG
=J J J fx)w(tykx")dxdu(t)du(k)
GJGJIG
o) | Fromdx,
G

we obtain that f(x) =0, for all x € G. This completes the proof of Lemma 4.5. O
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LEMMA 4.6. If f,g € C(G) with f + 0 constitute a solution of the functional equation
(1.10), then there exists x € C\{0} such that

ch(xty)du(t) =gx)g(y)+af(x)f(y), x,yei. (4.22)

PROOF. Equation (1.10) shows that

feol | avtzant)-gg@ |- £2)| | axtydun -gnex |, @23

for all x,y,z € G.

Let a € G such that f(a) # 0, ®(x,¥y) = [cg(xty)du(t) —g(x)g(y), then we get
fx)®(y,a) = f(a)®(x,y) and ®(x,y) = f(x)¥(y), where ¥(y) = ®(y,a)/f(a).
Consequently, f(x)f(y)¥(a) = f(y)f(a)¥(x), from which we see that there exists
« € Csuch that x = w(a)/f(a) and [; g(xty)du(t) = g(¥)g(x)+«f(x)f(»), for all
x,y €G.

Now, by Lemma 4.5, « # 0. This proves Lemma 4.6. O

PROOF OF THEOREM 4.4. If f, g are linearly independent, by using Lemma 4.6, the
matrix p-spherical function defined in Theorem 3.2 is

_(9(2) «f(2)
®(z) = (f(z) 2(2) ) , z€G. (4.24)
Since « + 0, then we can diagonalize ®(z) as follows:
(92 +Bf(2) 0
b2 ( 0 a(2) —Bf(z)) ! .25

where 2 = «. This implies that g(z) + B.f (z) = ®; and g(z) — B.f (z) = ®, are u-spherical
functions. Consequently, we obtain case (ii). The rest of the proof is obvious. O

4.4. Solutions of (1.11)

THEOREM 4.7. The complete list of functions f,g € C(G)\{0} satisfying the functional
equation (1.11) consists of the following two cases, where ®1,®,, (1 + ®,), ® are positive
definite u-spherical functions and «, B € C\{0,+i}:

(i) f=1/0+ax?*)®, g=ad/(1+0?)
(i) f=(BP1+B1®2)/(B+B 1), g=(21-D2)/(B+B1).

To solve (1.11) we need the following lemma.

LEMMA 4.8. If f,g € C(G) constitute a solution of the functional equation (1.11), then
there exists x € C such that

Lg(xty)du(t) =f(xX)g(y)+gx) f(y)+agx)g(y), x,¥<G. (4.26)
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PROOF OF LEMMA 4.8. Let f, g satisfy (1.11). A small computation shows that

g(x)(J g(ytz)du(t)—f(y)g(z)—g(y)f(z))
¢ (4.27)

:g<z)(f6g<xty)du(t> g0 f )~ F X)),

The case g = 0 is trivial. Now we assume that g # 0. Let a € G such that g(a) = 0
and ®(x,y) = [gg(xty)du(t) — f(x)g(y) — g(x)f (), then we get g(x)®(y,a) =
ga)®(x,y) and ®(x,y) = g(x)¥(y), where ¥Y(y) = ®(y,a)/g(a). Consequently, for
all x,y € G, we have g(a)g(y)¥(x) = g(x)g(y)¥(a), which proves that g(a)¥(x) =
g(x)¥(a) and ¥Y(x) = xg(x), where &« = ¥(a)/g(a), from which we get ®(x,y) =
xg(x)g(y). This completes the proof of Lemma 4.8. |

PROOF OF THEOREM 4.7. If f, g are linearly independent, then by using Lemma 4.8,
the matrix p-spherical function defined in Theorem 3.2 is

(f(Z) g(z) )

9(z) f(z)+ag(z) (4.28)

and from Lemma 4.5, x € C\{0, =i}, then we may diagonalize ®(z) as follows:

2
f(z)+<%+,/%+1>g(z) 0
- . (4.29)
0 f(z)+<%—1/?+l)g(z)

Now if we take B = (/2 ++/?/4 + 1), by a small computation, we produce the solution
formulas of (1.11). O

P(z) =
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