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We consider an interval map which is a generalization of the well-known Gauss transforma-
tion. In particular, we prove a result concerning the asymptotic behavior of the distribution
functions of this map.
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1. Introduction. In 1800, Gauss studied the following problem. In modern notation,

it reads as follows. Write x ∈ [0,1) as a regular continued fraction

1

a1+ 1
a2+···

:= [a1,a2, . . .
]
G. (1.1)

Here, ak ∈ {1,2, . . .}. Define the map (now known as the Gauss transformation or the

continued fraction map) TG : [0,1)→ [0,1) as follows: for x = 0, TG0 := 0; for x �= 0, we

have

TGx = TG
[
a1,a2, . . .

]
G := [a2,a3, . . .

]
G. (1.2)

Note that TG removes the first digit and the first level of x = [a1,a2, . . .]G. By TG, we

generate a sequence of xk in the unit interval with

xk = TkGx0. (1.3)

Assuming that the “seed,” x0, is a random real number uniformly distributed in the

unit interval, define the distribution function

Fk(t)= probability that xk ≤ t, for 0≤ t ≤ 1. (1.4)

In his notebook, Gauss remarked, after some numerical computations, that “they [Fk]
come out so complicated that no hope appears to be left.” (See Knuth [17, page 346]).

Twelve years later, in a letter he wrote to Laplace, Gauss stated, without proof, that

lim
k→∞

Fk(x)= log(1+x)
log2

. (1.5)

However, he was unable to describe the behavior of Fk for a large but finite k. At the time,

Gauss considered the study of Fk a problem he could not resolve to his satisfaction.
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A century later, a proof was finally provided by Kuzmin [18]. In the same paper, he

actually proved that, for large k, one has

Fk(x)= log(1+x)
log2

+rn(x), (1.6)

where rn(x) = O(q
√
n), and 0 < q < 1. Around the same time, Lévy [19], by using a

different method that employs probabilistic notions, proved that

rn(x)=O
(
qn
)
. (1.7)

Note that in the 60’s, Szüsz [27] was able to prove the same result by using Kuzmin’s

approach. The asymptotic behavior of Fk(x)was finally resolved in 1974 by Wirsing [30]

and a complete solution to Gauss’s problem was found a few years later by Babenko

[1]. For detailed introductions, see [6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 23, 25]. For

various extensions and generalizations, see [4, 5, 9, 20, 21, 22, 24, 26, 28, 29]. See

also the monographs [15, 25]. Just as in the original Gauss-Kuzmin-Lévy Problem, the

hard part of these generalizations often involves finding the explicit expressions of the

distribution functions. Finally, we remark that the Gauss transformation has strong ties

with chaos theory [2, 3].

In this note, we consider generalization of the Gauss transformation and prove an

analogous result. Write x ∈ [0,1) as

2−a1

1+ 2−a2

1+···
:= [a1,a2, . . .

]
. (1.8)

Here, ak are natural numbers (see the next section for details) and one should think of

ak as the digits of x. Define the generalized Gauss transformation T : [0,1)→ [0,1) as

follows: for x = 0, T0 := 0; for x �= 0, we have

Tx = T [a1,a2, . . .
]

:= [a2,a3, . . .
]
. (1.9)

Here, T removes the first digit and the first level of x = [a1,a2, . . .]. Note that this is the

same as, for x = [a1,a2, . . .]≠ 0,

Tx = 2−a1

x
−1. (1.10)

Likewise, we can generate a sequence of xk in the unit interval with

xk = Tkx0. (1.11)

Assuming that the “seed,” x0, is a random real number uniformly distributed in the

unit interval, define the distribution function

Gk(t)= probability that xk ≤ t, for 0≤ t ≤ 1. (1.12)

Note that G0(t)= t. Our main result is the following theorem.
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Theorem 1.1. Let c−1 = log(4/3). Then, there exist

Gk(t)= c log
(

1+ t
2+t

)
+O(qk), (1.13)

where 0< q < 1.

In Section 2, we set up the necessary machinery, and in Section 3, we prove Theorem

1.1.

2. Preliminaries. In this section, first, we show in Lemma 2.1 that x ∈ [0,1) can be

written in the form of (1.8).

Lemma 2.1. For all x ∈ [0,1), there exist integers ak ∈ {0,1,2, . . .} such that

x = 2−a1

1+ 2−a2

1+···
. (2.1)

Proof. For any x ∈ [0,1), we can find a natural number a1 such that

1
2a1+1

<x ≤ 1
2a1

. (2.2)

This implies, for some p ∈ [0,1),

x = (1−p)2−a1+ p
2

2−a1 =
(

1− p
2

)
2−a1 . (2.3)

Defining x1 ∈ [0,1) by x1 = p/(2−p), we can write x as

x = 2−a1

1+x1
. (2.4)

Since x1 ∈ [0,1), we can repeat the same iteration and obtain

x = 2−a1

1+ 2−a2

1+···
. (2.5)

Thus, the lemma is proven.

We remark that, from the above proof, it follows that the digits {a1(x),a2(x), . . .}
are related by

ak(x)= a1
(
Tk−1x

)
, (2.6)

where a1(x)=m if x ∈ (2−m−1,2−m].
Next, we want to prove the convergence of expansion of the type of (2.1). Define

[a1,a2, . . . ,an], the convergent of x, by truncating the expansion on the right-hand

side of (2.1). We want to show

x = lim
n→∞

[
a1,a2, . . . ,an

]
. (2.7)



1070 HEI-CHI CHAN

To this end, define integer-valued functions Pn(x), Qn(x) by the following:

Pk(x)= 2ak(x)Pk−1(x)+2ak−1(x)Pk−2(x), k≥ 2,

Qk(x)= 2ak(x)Qk−1(x)+2ak−1(x)Qk−2(x), k≥ 1,
(2.8)

with a0(x)= 0, P0(x)= 0, P1(x)= 1, Q−1(x)= 0, and Q0(x)= 1.

Standard induction arguments show that

2−a1 |
| 1

+ 2−a2 |
| 1

+···+ 2−ak |
|1+t =

Pk+t2akPk−1

Qk+t2akQk−1
, 0≤ t ≤ 1, (2.9)

Pn−1(x)Qn(x)−Pn(x)Qn−1(x)= (−1)n2a1 ···2an−1 . (2.10)

Note that the left-hand side of (2.9) is a compact notation of continued fractions of the

type of (1.8) with k levels.

By combining Lemma 2.1 and (2.9), we have, for x ∈ [0,1),

x = Pn(x)+t2an(x)Pn−1(x)
Qn(x)+t2an(x)Qn−1(x)

, (2.11)

where t = Tnx. Taking t = 0 in (2.11) gives

[
a1, . . . ,an

]= Pn(x)
Qn(x)

. (2.12)

By combining (2.10) and (2.12), we have

∣∣x−[a1, . . . ,an
]∣∣= 2a1 ···2an

Qn
(
t−1Qn+2anQn−1

) , (2.13)

where t = Tnx. Note that this equation, which measures the difference between x and

its convergent, is the key ingredient of the following estimate.

Lemma 2.2. For all x ∈ [0,1), there exists |x−[a1, . . . ,an]| ≤ (1/2)n.

Remarks 2.3. This lemma implies (2.7).

Proof. By using (2.13) and the fact that t−1 ≥ 1, we have

∣∣x−[a1, . . . ,an
]∣∣≤ 2a1 ···2an

Qn
(
Qn+2anQn−1

) := sn. (2.14)

We claim that

sn ≤ 1
2
sn−1. (2.15)

Indeed,

sn ≤ 1
2

(
2a1 ···2an−1

QnQn−1

)
≤ 1

2

(
2a1 ···2an−1

Qn−1
(
Qn−1+2an−1Qn−2

)
)
= 1

2
sn−1. (2.16)

Note that, in obtaining the first inequality, we have used the fact that Qn ≥ 2anQn−1.

In obtaining the second inequality, we have used the fact that Qn ≥Qn−1+2an−1Qn−2.
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This proves the claim. By direct computation, we have s1 = 2−1−a1 ≤ 2−1. This, with

(2.15), shows that sn ≤ (1/2)n and so the lemma is proven.

A few remarks are as follows. First, it is clear that every irrational x ∈ [0,1) has a

unique expansion of the type of (2.1).

Second, we note that some particular cases of this type of continued fractions have

been studied before. For example, by setting q = 1/2 and ak = k, the right-hand side of

(1.8) gives the well-known continued fraction of Rogers and Ramanujan:

q

1+ q2

1+ q3

1+···

. (2.17)

Another example is the beautiful result due to Davison [7]. Let ak = Fk, where Fk is the

kth Fibonacci number. Davison showed that

2−F1

1+ 2−F2

1+ 2−F3

1+···

= 1
2

∑
n≥1

2−�nφ	, (2.18)

where φ is the Golden Ratio and �·	 denotes the floor function.

Third, we give an example. In terms of the continued fraction of the type of (1.8), we

have

π−3= 2−2

1+ 2−0

1+ 2−1

1+···

= [2,0,1,0,0,0,1,1,1,6, . . .]. (2.19)

Here, in the first equality, we gave only the first three digits. In the second equality

where we used the compact notation in (1.8), we gave the first ten digits.

Next, we prove the following lemma.

Lemma 2.4. Let c−1 = log(4/3). The invariant probability density of the map T is

given by

ρ(t)= c
(1+t)(2+t) . (2.20)

Remark 2.5. As expected, the integral of ρ is the first term of the right-hand side

of (1.13), that is,

∫ t
0
ρ(s)ds = c log

(
1+ t

2+t
)
. (2.21)

Proof. To this end, we need to show that ρ(t) defined in (2.20) is an eigenfunction

of eigenvalue 1 of the Perron-Frobenius operator (see, e.g., [14, 15, 25])

LTρ(t)=
∑

s∈T−1(t)

ρ(s)∣∣T ′(s)∣∣ . (2.22)
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First, we note that

T−1(t)=
{

2−k

1+t ; k= 0,1,2, . . .
}
. (2.23)

With this understood, we have, with γ = 1/2,

LTρ(t)= c
∞∑
k=0

γk

(1+t)2ρ
(
γk

1+t

)

= c
∞∑
k=0

γk+1(
t+1+γk)(t+1+γk+1

)

= c
∞∑
k=0

1
t+1+γk+1

− 1
t+1+γk

= c
(

1
t+1

− 1
t+2

)

= ρ(t).

(2.24)

This proves the lemma.

3. Proof of Theorem 1.1. Here, we follow [23, pages 152–155]; see also [10, 17, 25].

First, by following the same trick that is used in the original Gauss-Kuzmin-Lévy prob-

lem, one can show that {Gk(t)}, defined in (1.12), satisfy a Kuzmin-type equation

Gk+1(t)=
∞∑
m=0

Gk
(
γm

)−Gk
(
γm

1+t
)
. (3.1)

Just as in the original Gauss-Kuzmin-Lévy problem, it is easier to work with the deriva-

tive ofGk(t). To this end, we observe that since the derivative ofG0(t)= t is bounded in

the unit interval, we can show by induction that the derivative of Gk(t) is also bounded

in the unit interval.

This allows us to differentiate (3.1) term-by-term, obtaining

G′k+1(t)=
∑
m≥0

γm

(1+t)2G
′
k

(
γm

1+t
)
. (3.2)

Here, the prime denotes the derivative with respect to t. Next, we introduce fk(t) in

such a way that

G′k(t)=
fk(t)

(1+t)(2+t) . (3.3)

In terms of fk(t), (3.2) can be written as

fk+1(t)=
∑
m≥0

pm(t)fk
(
γm

1+t
)
, (3.4)

where

pm(t)= γm+1(1+t)(2+t)(
1+t+γm)(1+t+γm+1

) = γm+1+ ∆m
1+t+γm −

∆m+1

1+t+γm+1
. (3.5)
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Here, ∆m := γm−γ2m. Note that it follows from the definition of pm(t) that it is mani-

festly nonnegative for all t ∈ [0,1) and for all natural numbers m. Also, we have used

partial fraction decomposition in obtaining the second equality.

These formulae fit into the overall strategy as follows. Introduce a function Rk(t)
such that

Gk(t)= c log
(

1+ t
2+t

)
+Rk

(
c log

(
1+ t

2+t
))
. (3.6)

Here, c is the constant in Theorem 1.1. Because Gk(0) = 0 and Gk(1) = 1, we have

Rk(0)= Rk(1)= 0. To prove the theorem, we have to show that

Rk =O
(
qk
)
, (3.7)

where 0 < q < 1. To achieve this goal, we proceed as follows. First, by comparing the

derivatives of (3.3) and of (3.6), we obtain

R′′k
(
c log

(
1+ t

2+t
))
= (1+t)(2+t)

c2
fk′(t). (3.8)

Next, by using (3.4), we can show that (the details will be given below)

f ′k(t)=O
(
qk
)

(3.9)

for 0< q < 1. With (3.8), this implies R′′k =O(qk). Finally, by an interpolation formula

Rk(t)=− t(1−t)
2

R′′k (ξ), (3.10)

where 0 < ξ < 1, we arrive at (3.7), and Theorem 1.1 is proven. All we need to do is to

prove (3.9), as promised.

First, we note that from (3.4), we have

f ′k+1(t)=
∑
m≥0

p′m(t)fk
(
γm

1+t
)
−
∑
m≥0

pm(t)
γm

(1+t)2 f
′
k

(
γm

1+t
)
. (3.11)

Our immediate goal is to express, by using (3.11), f ′k+1(t) in terms of f ′k(t). To this end,

we need to rewrite the first sum in (3.11) as follows. By the second equality of (3.5) and

partial summation, we have

∑
m≥0

p′m(t)fk
(
γm

1+t
)
=
∑
m≥0

(
∆m+1(

1+t+γm+1
)2 −

∆m(
1+t+γm)2

)
fk
(
γm

1+t
)

=
∑
m≥0

∆m+1(
1+t+γm+1

)2

(
fk
(
γm

1+t
)
−fk

(
γm+1

1+t

))
.

(3.12)

This, with the application of the mean value theorem to the difference

fk
(
γm

1+t
)
−fk

(
γm+1

1+t

)
, (3.13)
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enables us to rewrite (3.11) as

f ′k+1(t)=
∑
m≥0

γm+1∆m+1

(1+t)(1+t+γm+1
)2 f

′
k
(
θm

)− ∑
m≥0

pm(t)
γm

(1+t)2 f
′
k

(
γm

1+t
)
, (3.14)

with

γm+1

1+t < θm <
γm

1+t . (3.15)

Note that the right-hand side of (3.14) is written in terms of the derivative of fk(t)
alone.

With the above understood, we proceed to compare the maximum of f ′k+1 and that

of f ′k. Let Mj be the maximum of |f ′j (t)| on t ∈ [0,1]. Then (3.14) implies

Mk+1 ≤Mk · max
t∈[0,1]

∣∣∣∣∣
∑
m≥0

γm+1∆m+1

(1+t)(1+t+γm+1
)2 +

∑
m≥0

pm(t)
γm

(1+t)2
∣∣∣∣∣. (3.16)

We estimate the sums on the right-hand side of (3.16). First, we note that each term in

the first sum in (3.16) is bounded; precisely, we have

γm+1∆m+1

(1+t)(1+t+γm+1
)2 ≤

γ2m+2(
1+γm+1

)2 . (3.17)

Next, observe that the function (cf. the second sum in (3.16))

pm(t)
γm

(1+t)2 (3.18)

is decreasing for t ≥ 0. Therefore, it attains its maximum at t = 0. This leads to

pm(t)
γm

(1+t)2 ≤
γ2m(

1+γm)(1+γm+1
) ≤ γ2m(

1+γm+1
)2 . (3.19)

These two observations allow us to rewrite inequality (3.16) as

Mk+1 ≤ qMk, (3.20)

where

q := (1+γ2) ∑
m≥0

γ2m(
1+γm+1

)2 = 5
∑
m≥0

1(
1+2m+1

)2 . (3.21)

Since we have, for m≥ 2,

1(
1+2m+1

)2 ≤
1
20

(
1
2

)m
, (3.22)

therefore,

q ≤ 5

(
1
9
+ 1

25
+ 1

20

∑
m≥2

1
2m

)
= 0.880555···< 1. (3.23)



A GAUSS-KUZMIN-LÉVY THEOREM FOR A CERTAIN. . . 1075

This, with (3.20), implies f ′k(t) = O(qk), that is, (3.9). This completes the proof of

Theorem 1.1.
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