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1. Introduction. In the two recent decades, existence problem for differential in-

clusions has attracted much attention. Differential inclusions represent an important

generalization of differential equations. The solution of a differential inclusion is a

reachable set instead of a single trajectory. Ordinary and partial differential equations

as modeling tools are too primitive to describe the behavior of many real dynamical

systems. The differential inclusion is the most appropriate tool in dynamic uncertainty

treatment. So it becomes important to study the qualitative behaviors of differential

and integrodifferential inclusions. In recent years, the existence results for differential

and integrodifferential inclusions have been extensively studied by several authors.

In this work, we prove the existence of mild solutions for second-order neutral func-

tional differential and integrodifferential inclusions in Banach spaces. In Section 3, we

consider the second-order neutral functional differential inclusion

d
dt
[
x′(t)−g(t,xt)]∈Ax(t)+F(t,xt,x′(t)), a.e. t ∈ J = [0,T ],
x(t)+ht(x)=φ(t), t ∈ J0 = [−r ,0], x′(0)=y0,

(1.1)

where the state x(·) takes values in a real Banach space X with the norm | · |, φ ∈
C(J0,X), y0 ∈X, A is the infinitesimal generator of a strongly continuous cosine family

{C(t) : t ∈ R}, g : J×C(J0,X) → X, ht : C(J0,X) → X, t ∈ J0, are given functions, and

F : J×C(J0,X)×X → 2X is a bounded, closed, convex multivalued map.

For a continuous function x defined on the interval J1 = [−r ,T] and t ∈ J, we denote

by xt the element of C(J0,X) defined by

xt(s)= x(t+s), s ∈ J0. (1.2)

Here xt(·) represents the history of the state from time t−r up to the present time t.
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We refer the reader to [9, 10, 14] and the references cited therein for motivation

regarding the nonlocal initial conditions. As indicated in the above papers, the nonlocal

condition x(0)+g(x)= x0 can be applied in physics with better effect than the classical

Cauchy problem x(0)= x0. For example, ht(x) may be given by

ht(x)=
p∑
i=1

cix
(
ti+t

)
, t ∈ J0, (1.3)

where ci, i = 1, . . . ,p, are given constants and 0 < t1 < t2 < ··· < tp ≤ T . At time t = 0,

we have

h0(x)=
p∑
i=1

cix
(
ti
)
. (1.4)

In this case, it allows the measurements at ti, i= 1, . . . ,p, rather than just at t = 0.

In Section 4, we study the existence of mild solutions for second-order neutral func-

tional integrodifferential inclusion

d
dt
[
x′(t)−g(t,xt)]∈Ax(t)+

∫ t
0
K(t,s)F

(
s,xs,x′(s)

)
ds, a.e. t ∈ J = [0,T ],

x(t)+ht(x)=φ(t), t ∈ J0 = [−r ,0], x′(0)=y0,
(1.5)

where A, F , g, ht , and φ are as in the problem (1.1) and K :D→ R, D = {(t,s) ∈ J×J :

t ≥ s}.
In many cases, it is advantageous to treat the second-order abstract differential equa-

tions directly rather than to convert them into first-order systems. A useful tool for the

study of abstract second-order equations is the theory of strongly continuous cosine

families. Here we use some of the basic ideas from cosine family theory. We refer to

[30, 31] for a detailed discussion of cosine family theory. Second-order equations which

appear in a variety of physical problems can be found in [4, 17].

For existence results on nonlocal initial value problem (IVP), we refer to the papers of

Byszewski [11], Balachandran and Chandrasekaran [2, 3], Dauer and Balachandran [12],

Lin and Liu [23], and Ntouyas and Tsamatos [25, 26]. Existence results for differential

inclusions on compact intervals are given in the papers of Avgerinos and Papageorgiou

[1] and Papageorgiou [27, 28]. In [6], Benchohra and Ntouyas studied the existence

results for second-order differential inclusions on noncompact intervals.

This paper is motivated by the recent papers of Benchohra and Ntouyas [7] and

Hernández and Henríquez [19, 20].

2. Preliminaries. In this section, we collect some basic facts from multivalued anal-

ysis which will be used in this paper.

Let C(J,X) be the Banach space of continuous functions from J into X with the norm

‖x‖∞ := sup
{∣∣x(t)∣∣ : t ∈ J}. (2.1)
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Let B(X) denote the Banach space of bounded linear operators from X into X. A mea-

surable function x : J →X is Bochner integrable if and only if |x| is Lebesgue integrable.

(For properties of the Bochner integral see Yosida [32].)

Let L1(J,X) denotes the Banach space of continuous functions x : J → X which are

Bochner integrable, with the norm

‖x‖L1 =
∫ T

0

∣∣x(t)∣∣dt ∀x ∈ L1(J,X). (2.2)

Let (X,| · |) be a Banach space. A multivalued map G : X → 2X is convex (closed)

valued if G(x) is convex (closed) for all x ∈X.

G is bounded on bounded sets ifG(D)=⋃x∈DG(x) is bounded inX, for any bounded

set D of X, that is,

sup
x∈D

{
sup

{|y| :y ∈G(x)}}<∞. (2.3)

A map G is called upper semicontinuous on X if, for each x0 ∈X, the set G(x0) is a

nonempty closed subset of X and if for each open set V of X containing G(x0), there

exists an open neighborhood U of x0 such that G(U)⊆ V .

A map G is said to be completely continuous if G(D) is relatively compact for every

bounded subset D ⊆X.

If the multivalued map G is completely continuous with nonempty compact values,

then G is upper semicontinuous if and only ifG has a closed graph, that is, for xn→ x∗,

yn→y∗, with yn ∈Gxn, we have y∗ ∈Gx∗.

The map G has a fixed point if there is x ∈X such that x ∈Gx.

In the following, BCC(X) denotes the set of all nonempty bounded closed and convex

subsets of X.

A multivalued map G : J → BCC(X) is said to be measurable if for each x ∈ X, the

function Y : J →R defined by

Y(t)= d(x,G(t))= inf
{|x−y|, y ∈G(t)} (2.4)

belongs to L1(J,R).
An upper semicontinuous mapG :X → 2X is said to be condensing if, for any bounded

subset D ⊆X, with α(D)≠ 0, we have

α
(
G(D)

)
<α(D), (2.5)

where α denotes the Kuratowski measure of noncompactness. For properties of the

Kuratowski measure, we refer to Banaś and Goebel [5]. We remark that a completely

continuous multivalued map is the easiest example of a condensing map. For more

details on multivalued maps, see the books of Deimling [13] and Hu and Papageorgiou

[21].
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Next, we give some basic results regarding the cosine families of bounded linear

operators. We say that the family {C(t) : t ∈ R} of operators in B(E) is a strongly

continuous cosine family if

(i) C(0)= I is the identity operator in E;

(ii) C(t+s)+C(t−s)= 2C(t)C(s) for all s, t ∈R;

(iii) the map t→ C(t)x is strongly continuous for each x ∈X.

The strongly continuous sine family {S(t) : t ∈ R}, associated to the given strongly

continuous cosine family {C(t) : t ∈R}, is defined by

S(t)x =
∫ t

0
C(s)xds, x ∈X, t ∈R. (2.6)

Assume the following condition on A.

(H1) A is the infinitesimal generator of a strongly continuous cosine family C(t),
t ∈ R, of bounded linear operators from X into itself and the adjoint operator A∗ is

densely defined, that is, D(A∗)=X∗ (see [8]).

The infinitesimal generator of a strongly continuous cosine family C(t), t ∈R, is the

operator A :X →X defined by

Ax = d2

dt2
C(t)x

∣∣∣∣
t=0
, x ∈D(A), (2.7)

where D(A)= {x ∈X : C(t)x is twice continuously differentiable in t}.
Define E = {x ∈X : C(t)x is once continuously differentiable in t}.
To establish our main theorem, we need the following lemmas.

Lemma 2.1 (see [30]). Let (H1) hold. Then

(i) there exist constants M ≥ 1 and ω ≥ 0 such that |C(t)| ≤ Meω|t| and |S(t)−
S(t∗)| ≤M|∫ t∗t eω|s|ds| for t,t∗ ∈R;

(ii) S(t)X ⊂ E and S(t)E ⊂D(A) for t ∈R;

(iii) (d/dt)C(t)x =AS(t)x for x ∈ E and t ∈R;

(iv) (d2/dt2)C(t)x =AC(t)x for x ∈D(A) and t ∈R.

Lemma 2.2 (see [30]). Let (H1) hold, let v : R→ X such that v is continuously differ-

entiable, and let q(t)= ∫ t0 S(t−s)v(s)ds. Then

(i) q is twice continuously differentiable and for t ∈R, q(t)∈D(A),
(ii) q′(t)= ∫ t0 C(t−s)v(s)ds and q′′(t)=Aq(t)+v(t).
For more details on strongly continuous cosine and sine families, we refer the reader

to the books of Goldstein [18] and to the papers of Fattorini [15, 16] and of Travis and

Webb [30, 31].

To prove the existence result, we rely on the following fixed point theorem due to

Martelli.

Lemma 2.3 (see [24]). Let X be a Banach space and N : X → BCC(X) a condensing

map. If the set

Ω := {x ∈X : λx ∈Nx for some λ > 1} (2.8)

is bounded, then N has a fixed point.
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3. Second-order neutral differential inclusions. To obtain the existence result for

the problem (1.1), we assume the following.

(H2) C(t), t > 0, is compact.

(H3) F : J×C(J0,X)×X → BCC(X); (t,u,v)→ F(t,u,v) is measurable with respect to

the first argument and upper semicontinuous with respect to the last two arguments.

Also for each fixed x ∈ C([−r ,T],X)∩C1(J,X), the set

SF,x =
{
f ∈ L1(J,X) : f(t)∈ F(t,xt,x′(t)) for a.e. t ∈ J} (3.1)

is nonempty.

(H4) The function g : J×C(J0,X)→X is completely continuous and for any bounded

set K in C(J1,X), the set {t → g(t,xt) : x ∈ K} is equicontinuous in C(J,X) and there

exist constants c1 and c2 such that

∣∣g(t,u)∣∣≤ c1‖u‖+c2, t ∈ J, u∈ C(J0,X
)
. (3.2)

(H5) ht : C(J0,X)→X, t ∈ J0, and there exists a constant G > 0 such that

∥∥ht(x)∥∥≤G for x ∈ C(J0,X
)
, t ∈ J0, (3.3)

and the set

{
x(0) : x ∈ C(J0,X

)
, ‖x‖ ≤ k, x(0)=φ(0)−h0(x)

}
(3.4)

is precompact in X.

(H6) ‖F(t,u,v)‖ := sup{|w| :w ∈ F(t,u,v)} ≤ p(t)ψ(‖u‖+|v|) for almost all t ∈ J,

u ∈ C(J0,X), and v ∈ X, where p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous and

increasing with

∫ T
0
m(s)ds <

∫∞
c

ds
s+ψ(s) <∞, (3.5)

where

M = sup
{∣∣C(t)∣∣ : t ∈ J}, M∗ = sup

{∣∣AS(t)∣∣ : t ∈ J},
m(t)=max

{
Mc1+Mc2

1+M∗c1,
(
M+MT +Mc1T

)
p(t)

}
,

c = (M+Mc1+M∗)(‖φ‖+G)+(M+MT +MTc1
)[∣∣y0

∣∣+c1
(‖φ‖+G)+c2

]
+(1+c1

)
MTc2+M∗Tc2+c2.

(3.6)

Remark 3.1. (i) If dimX <∞, then for each v ∈ C(J0,X), SF,u ≠ φ (see Lasota and

Opial [22]).

(ii) SF,u is nonempty if and only if the function Y : J →R defined by

Y(t) := inf
{|v| : v ∈ F(t,u)} (3.7)

belongs to L1(J,R) (see Papageorgiou [27]).
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In order to define a mild solution for the problem (1.1), we consider the integral

equation

x(t)= C(t)[φ(0)−h0(x)
]+S(t)[y0−g

(
0,x0

)]

+
∫ t

0
C(t−s)g(s,xs)ds+

∫ t
0
S(t−s)f (s)ds, t ∈ J,

(3.8)

where

f ∈ SF,x =
{
f ∈ L1(J,X) : f(t)∈ F(t,xt,x′(t)) for a.e. t ∈ J}. (3.9)

Definition 3.2. A function x : [−r ,T]→ X, T > 0, is called a mild solution of the

problem (1.1) if x(t)+ht(x) = φ(t), t ∈ [−r ,0], and there exists a v ∈ L1(J,X) such

that v(t)∈ F(t,xt,x′(t)) a.e. on J, and the integral equation (3.8) is satisfied.

We need the following lemma to prove our main theorem.

Lemma 3.3 (see [22]). Let I be a compact real interval and let X be a Banach space.

Let F be a multivalued map satisfying (H3) and let Γ be a linear continuous mapping

from L1(I,X) to C(I,X). Then, the operator

Γ ◦SF : C(I,X) �→ BCC
(
C(I,X)

)
, x �→ (Γ ◦SF)(x)= Γ(SF,x), (3.10)

is a closed graph operator in C(I,X)×C(I,X).
Now, we are able to state and prove our main theorem.

Theorem 3.4. Assume that Hypotheses (H1)–(H6) are satisfied. Then system (1.1) has

at least one mild solution on J1.

Proof. Consider the space Z = C([−r ,T],X)∩C1(J,X) with the norm

‖x‖∗ =max
{‖x‖J1 ,‖x′‖J}, (3.11)

where

‖x‖J1 = sup
{∣∣x(t)∣∣ :−r ≤ t ≤ T}, ‖x′‖J = sup

{∣∣x′(t)∣∣ : 0≤ t ≤ T}. (3.12)

Now, we transform the problem into a fixed point problem. Consider the multivalued

map N : Z → 2Z defined by Nx the set of functions u∈ Z such that

u(t)=




φ(t)−ht(x) if t ∈ J0,

C(t)
[
φ(0)−h0(x)

]+S(t)[y0−g
(
0,x0

)]

+
∫ t

0
C(t−s)g(s,xs)ds+

∫ t
0
S(t−s)f (s)ds if t ∈ J,

(3.13)

where (3.9) holds. We remark that the fixed points of N are mild solutions to (1.1).
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We will show that N is completely continuous with bounded closed convex values

and it is upper semicontinuous. The proof will be given in several steps.

Step 1. Nx is convex for each x ∈ Z.
Indeed, if u1, u2 belong to Nx, then there exist f1,f2 ∈ SF,x such that, for each t ∈ J,

we have

u1(t)= C(t)
[
φ(0)−h0(x)

]+S(t)[y0−g
(
0,x0

)]

+
∫ t

0
C(t−s)g(s,xs)ds+

∫ t
0
S(t−s)f1(s)ds,

u2(t)= C(t)
[
φ(0)−h0(x)

]+S(t)[y0−g
(
0,x0

)]

+
∫ t

0
C(t−s)g(s,xs)ds+

∫ t
0
S(t−s)f2(s)ds.

(3.14)

Let 0≤α≤ 1. Then, for each t ∈ J, we have

(
αu1+(1−α)u2

)
(t)= C(t)[φ(0)−h0(x)

]+S(t)[y0−g
(
0,x0

)]+
∫ t

0
C(t−s)g(s,xs)ds

+
∫ t

0
S(t−s)[αf1(s)+(1−α)f2(s)

]
ds.

(3.15)

Since SF,x is convex (because F has convex values), then

αu1+(1−α)u2 ∈Nx. (3.16)

Step 2. N maps bounded sets into bounded sets in Z .

Indeed, it is enough to show that there exists a positive constant � such that, for each

u ∈ Nx, x ∈ Bq = {x ∈ Z : ‖x‖∗ ≤ q}, one has ‖u‖∗ ≤ �. If u ∈ Nx, then there exists

f ∈ SF,x such that for each t ∈ J, we have

u(t)= C(t)[φ(0)−h0(x)
]+S(t)[y0−g

(
0,x0

)]

+
∫ t

0
C(t−s)g(s,xs)ds+

∫ t
0
S(t−s)f (s)ds.

(3.17)

By (H4)–(H6), we have, for each t ∈ J,

∣∣u(t)∣∣≤ ∣∣C(t)[φ(0)−h0(x)
]∣∣+∣∣S(t)[y0−g

(
0,x0

)]∣∣

+
∣∣∣∣
∫ t

0
C(t−s)g(s,xs)ds

∣∣∣∣+
∣∣∣∣
∫ t

0
S(t−s)f (s)ds

∣∣∣∣
≤M(‖φ‖+G)+MT [∣∣y0

∣∣+c1

∥∥x0

∥∥+2c2
]

+Mc1

∫ t
0

∥∥xs∥∥ds+MT sup
x∈[0,q]

ψ(2x)
(∫ t

0
p(s)ds

)
.

(3.18)
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By

u′(t)=AS(t)[φ(0)−h0(x)
]+C(t)[y0−g

(
0,x0

)]+g(t,xt)

+
∫ t

0
AS(t−s)g(s,xs)ds+

∫ t
0
C(t−s)f (s)ds,

(3.19)

we have for each t ∈ J,

∣∣u′(t)∣∣≤ ∣∣AS(t)[φ(0)−h0(x)
]∣∣+∣∣C(t)[y0−g

(
0,x0

)]∣∣+∣∣g(t,xt)∣∣

+
∣∣∣∣
∫ t

0
AS(t−s)g(s,xs)ds

∣∣∣∣+
∣∣∣∣
∫ t

0
C(t−s)f (s)ds

∣∣∣∣
≤M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1

∥∥x0

∥∥+c2
]+c1

∥∥xt∥∥+c2+M∗Tc2

+M∗c1

∫ t
0

∥∥xs∥∥ds+M sup
x∈[0,q]

ψ(2x)
(∫ t

0
p(s)ds

)
.

(3.20)

Then for each h∈N(Bq), we have

‖u‖∗ ≤ (M+M∗)(‖φ‖+G)+M(1+T)(∣∣y0

∣∣+c1

∥∥x0

∥∥+c2
)

+(c1q+c2
)(

1+MT +M∗T
)+M(1+T) sup

x∈[0,q]
ψ(2x)

(∫ T
0
p(s)ds

)
:= �. (3.21)

Step 3. N maps bounded sets into equicontinuous sets of Z .

Let t1, t2 ∈ J, 0< t1 < t2, and let Bq = {x ∈ Z : ‖x‖∗ ≤ q} be a bounded set of C(J1,X).
For each x ∈ Bq andu∈Nx, there exists f ∈ SF,x such that for t ∈ J, (3.17) holds. Thus,

∣∣u(t1)−u(t2)∣∣≤ ∣∣[C(t1)−C(t2)][φ(0)−h0(x)
]∣∣+∣∣[S(t1)−S(t2)][y0−g

(
0,x0

)]∣∣

+
∣∣∣∣
∫ t1

0

[
C
(
t1−s

)−C(t2−s)]g(s,xs)ds
∣∣∣∣+

∣∣∣∣
∫ t2
t1
C
(
t2−s

)
g
(
s,xs

)
ds
∣∣∣∣

+
∣∣∣∣
∫ t1

0

[
S
(
t1−s

)−S(t2−s)]f(s)ds
∣∣∣∣+

∣∣∣∣
∫ t2
t1
S
(
t2−s

)
f(s)ds

∣∣∣∣
≤ ∣∣C(t1)−C(t2)∣∣(‖φ‖+G)+∣∣S(t1)−S(t2)∣∣[∣∣y0

∣∣+c1

∥∥x0

∥∥+c2
]

+
∫ t1

0

∣∣C(t1−s)−C(t2−s)∣∣[c1

∥∥xs∥∥+c2
]
ds

+
∫ t2
t1

∣∣C(t2−s)∣∣[c1

∥∥xs∥∥+c2
]
ds

+
∫ t1

0

∣∣S(t1−s)−S(t2−s)∣∣∣∣f(s)∣∣ds+
∫ t2
t1

∣∣S(t2−s)∣∣∣∣f(s)∣∣ds,
(3.22)
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and similarly,

∣∣u′(t1)−u′(t2)∣∣≤ ∣∣A[S(t1)−S(t2)][φ(0)−h0(x)
]∣∣

+∣∣[C(t1)−C(t2)][y0−g
(
0,x0

)]∣∣+∣∣g(t1,xt1)−g(t2,xt2)
∣∣

+
∣∣∣∣
∫ t1

0
A
[
S
(
t1−s

)−S(t2−s)]g(s,xs)ds
∣∣∣∣

+
∣∣∣∣
∫ t2
t1
AS
(
t2−s

)
g
(
s,xs

)
ds
∣∣∣∣+

∣∣∣∣
∫ t1

0

[
C
(
t1−s

)−C(t2−s)]f(s)ds
∣∣∣∣

+
∣∣∣∣
∫ t2
t1
C
(
t2−s

)
f(s)ds

∣∣∣∣
≤ ∣∣A[S(t1)−S(t2)]∣∣(‖φ‖+G)

+∣∣S(t1)−S(t2)∣∣[∣∣y0

∣∣+c1

∥∥x0

∥∥+c2
]+∣∣g(t1,xt1)−g(t2,xt2)

∣∣

+
∫ t1

0

∣∣A[S(t1−s)−S(t2−s)]∣∣[c1

∥∥xs∥∥+c2
]
ds

+
∫ t2
t1

∣∣AS(t2−s)∣∣[c1

∥∥xs∥∥+c2
]
ds

+
∫ t1

0

∣∣C(t1−s)−C(t2−s)∣∣∣∣f(s)∣∣ds+
∫ t2
t1

∣∣C(t2−s)∣∣∣∣f(s)∣∣ds.
(3.23)

The right-hand side of the above inequalities tend to zero as t2−t1 → 0, since C(t),
S(t) are uniformly continuous for t ∈ J and the compactness of C(t), S(t) for t > 0

imply the continuity in the uniform operator topology. The compactness of S(t) follows

from that of C(t) (see [29]).

The equicontinuity for the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 is obvious. As a conse-

quence of Steps 2 and 3, (H2), (H4), and (H5) together with the Ascoli-Arzela theorem,

we can conclude that N : Z → 2Z is a completely continuous multivalued map, and

therefore, a condensing map.

Step 4. N has a closed graph.

Let xn→ x∗,un ∈Nxn, andun→u∗. We will prove thatu∗ ∈Nx∗. Clearly, x′n→ x′∗,

u′n ∈ Nx′n, and u′n → u′∗. un ∈ Nxn means that there exists fn ∈ SF,xn such that for

t ∈ J,

un(t)= C(t)
[
φ(0)−h0

(
xn
)]+S(t)[y0−g

(
0,xn0

)]+
∫ t

0
C(t−s)g(s,xns)ds

+
∫ t

0
S(t−s)fn(s)ds.

(3.24)

We must prove that there exists f∗ ∈ SF,x∗ such that for t ∈ J,

u∗(t)= C(t)
[
φ(0)−h0

(
x∗
)]+S(t)[y0−g

(
0,x∗0

)]+
∫ t

0
C(t−s)g(s,x∗s)ds

+
∫ t

0
S(t−s)f∗(s)ds.

(3.25)
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Clearly, we have that, as n→∞,

∣∣∣∣
(
un(t)−C(t)

(
φ(0)−h0

(
xn
))−S(t)(y0−g

(
0,xn0

))−
∫ t

0
C(t−s)g(s,xns)ds

)

−
(
u∗(t)−C(t)

(
φ(0)−h0

(
x∗
))−S(t)(y0−g

(
0,x∗0

))−
∫ t

0
C(t−s)g(s,x∗s)ds

)∣∣∣∣ �→0,
∣∣∣∣
(
u′n(t)−AS(t)

(
φ(0)−h0

(
xn
))−C(t)(y0−g

(
0,xn0

))−g(t,xnt)−
∫ t

0
AS(t−s)g(s,xns)ds

)

−
(
u′∗(t)−AS(t)

(
φ(0)−h0

(
x∗
))−C(t)(y0−g

(
0,x∗0

))

−g(t,x∗t)−
∫ t

0
AS(t−s)g(s,x∗s)ds

)∣∣∣∣ �→ 0.

(3.26)

Consider the linear and continuous operator Γ : L1(J,X)→ C(J,X) defined as

f �→ Γ(f )(t)=
∫ t

0
S(t−s)f (s)ds. (3.27)

From Lemma 3.3, it follows that Γ ◦SF is a closed graph operator. Moreover, we have

that

un(t)−C(t)
[
φ(0)−h0(x)

]−S(t)[y0−g
(
0,x0

)]−
∫ t

0
C(t−s)g(s,xns)ds ∈ Γ(SF,xn).

(3.28)

Since xn→ x∗, it follows from Lemma 3.3 that

u∗(t)−C(t)
[
φ(0)−h0(x)

]−S(t)[y0−g
(
0,x0

)]−
∫ T

0
C(t−s)g(s,x∗s)ds

=
∫ t

0
S(t−s)f∗(s)ds

(3.29)

for some f∗ ∈ SF,x∗ . Therefore, N is a completely continuous multivalued map, upper

semicontinuous with convex closed values.

Step 5. The set

Ω := {x ∈ Z : λx ∈Nx, for some λ > 1} (3.30)

is bounded.

Let x ∈Ω. Then λx ∈Nx for some λ > 1. Thus, there exists f ∈ SF,x such that

x(t)= λ−1C(t)
[
φ(0)−h0(x)

]+λ−1S(t)
[
y0−g

(
0,x0

)]

+λ−1
∫ t

0
C(t−s)g(s,xs)ds+λ−1

∫ t
0
S(t−s)f (s)ds, t ∈ J.

(3.31)

This implies by (H5)–(H6) that for each t ∈ J, we have
∣∣x(t)∣∣≤M(‖φ‖+G)+MT [∣∣y0

∣∣+c1

∥∥x0

∥∥+2c2
]

+Mc1

∫ t
0

∥∥xs∥∥ds+MT
∫ t

0
p(s)ψ

(∥∥xs∥∥+∣∣x′(s)∣∣)ds.
(3.32)
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We consider the function

µ(t)= sup
{∣∣x(s)∣∣ :−r ≤ s ≤ t}, t ∈ J. (3.33)

Let t∗ ∈ [−r ,t] be such that µ(t)= |x(t∗)|. If t∗ ∈ J0, then µ(t)≤ ‖φ‖+G.

If t∗ ∈ J, we have for t ∈ J,

µ(t)≤M(‖φ‖+G)+MT [∣∣y0

∣∣+c1
(‖φ‖+G)+2c2

]+Mc1

∫ t∗
0
µ(s)ds

+MT
∫ t∗

0
p(s)ψ

(
µ(s)+∣∣x′(s)∣∣)ds

≤M(‖φ‖+G)+MT [∣∣y0

∣∣+c1
(‖φ‖+G)+2c2

]+Mc1

∫ t
0
µ(s)ds

+MT
∫ t

0
p(s)ψ

(
µ(s)+∣∣x′(s)∣∣)ds.

(3.34)

Denoting by q(t) the right-hand side of the above inequality, we have

q(0)=M(‖φ‖+G)+MT [∣∣y0

∣∣+c1
(‖φ‖+G)+2c2

]
,

µ(t)≤ q(t), t ∈ J,
q′(t)=Mc1µ(t)+MTp(t)ψ

(
µ(t)+∣∣x′(t)∣∣), t ∈ J.

(3.35)

By

x′(t)= λ−1AS(t)
[
φ(0)−h0(x)

]+λ−1C(t)
[
y0−g

(
0,x0

)]+λ−1g
(
t,xt

)

+λ−1
∫ t

0
AS(t−s)g(s,xs)ds+λ−1

∫ t
0
C(t−s)f (s)ds, t ∈ J,

(3.36)

we obtain

∣∣x′(t)∣∣≤M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1

∥∥x0

∥∥+c2
]+M∗c2T +c1

∥∥xt∥∥+c2

+M∗c1

∫ t
0

∥∥xs∥∥ds+M
∫ t

0
p(s)ψ

(∥∥xs∥∥+∣∣x′(s)∣∣)ds.
(3.37)

Let

γ(t)= sup
{∣∣x′(s)∣∣ : 0≤ s ≤ t}, t ∈ J. (3.38)

Let t∗ ∈ [0, t] be such that γ(t)= |x′(t∗)|. By the previous inequality, we have for t ∈ J,

γ(t)≤M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1
(‖φ‖+G)+c2

]+M∗c2T +c1

∥∥xt∗∥∥+c2

+M∗c1

∫ t∗
0

∥∥xs∥∥ds+M
∫ t∗

0
p(s)ψ

(∥∥xs∥∥+γ(s))ds
≤M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1
(‖φ‖+G)+c2

]+M∗c2T +c1q(t)+c2

+M∗c1

∫ t
0
q(s)ds+M

∫ t
0
p(s)ψ

(
q(s)+γ(s))ds.

(3.39)
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Denoting by r(t) the right-hand side of the above inequality, we have

r(0)=M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1
(‖φ‖+G)+c2

]+M∗c2T +c1q(0)+c2,

γ(t)≤ r(t), t ∈ J,
r ′(t)=M∗c1q(t)+c1q′(t)+Mp(t)ψ

(
q(t)+γ(t)), t ∈ J.

(3.40)

Let ω(t)= q(t)+r(t), t ∈ J. Then ω(0)= c and for t ∈ J,

ω′(t)= q′(t)+r ′(t)
≤ (1+c1

)[
Mc1q(t)+MTp(t)ψ

(
q(t)+r(t))]

+M∗c1q(t)+Mp(t)ψ
(
q(t)+r(t))

≤ (Mc1+M∗c1+Mc2
1

)
ω(t)+(M+MT +MTc1

)
p(t)ψω(t)

≤m(t)ω(t)+ψ(ω(t)).

(3.41)

This implies that for each t ∈ J,

∫ω(t)
ω(0)

ds
s+ψ(s) ≤

∫ T
0
m(s)ds <

∫∞
ω(0)

ds
s+ψ(s) . (3.42)

This inequality implies that there exists a constant L such that ω(t)≤ L, t ∈ J. Then

∣∣x(t)∣∣≤ µ(t)≤ q(t)≤ L, t ∈ J1,∣∣x′(t)∣∣≤ γ(t)≤ r(t)≤ L, t ∈ J, (3.43)

and hence

‖x‖∗ =max
{‖x‖J1 ,‖x′‖J}≤ L, (3.44)

where L depends only on T and on the function p andψ. This shows thatΩ is bounded.

As a consequence of Lemma 2.3, we deduce that N has a fixed point which is a mild

solution of the system (1.1).

4. Second-order neutral integrodifferential inclusions. In this section, we study the

existence problem (1.5). We need the following assumptions.

(H7) For each t ∈ J,K(t,s) is measurable on [0, t] and

H(t)= esssup
{∣∣K(t,s)∣∣, 0≤ s ≤ t} (4.1)

is bounded on J.

(H8) The map t→Kt is continuous from J to L∞(J,R); here Kt(s)=K(t,s).
(H9) ‖F(t,u,v)‖ := sup{|w| :w ∈ F(t,u,v)} ≤ p(t)ψ(‖u‖+|v|) for almost all t ∈ J,

u ∈ C(J0,X), and v ∈ X, where p ∈ L1(J,R+) and ψ : R+ → (0,∞) is continuous and

increasing with

∫ T
0
m(s)ds <

∫∞
c

ds
s+ψ(s) <∞, (4.2)
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where

m∗(t)=max
{
Mc1+Mc2

1+M∗c1,
(
MT +MT 2+MT 2c1

)
sup
t∈J
H(t)p(t)

}
. (4.3)

We define the mild solution for the problem (1.5) by the integral equation

x(t)= C(t)[φ(0)−h0(x)
]+S(t)[y0−g

(
0,x0

)]+
∫ t

0
C(t−s)g(s,xs)ds

+
∫ t

0
S(t−s)

∫ s
0
K(s,u)f(u)duds, t ∈ J,

(4.4)

where f ∈ SF,x = {f ∈ L1(J,X) : f(t)∈ F(t,xt,x′(t)) for a.e. t ∈ J}.
Definition 4.1. A function x : [−r ,T]→ X, T > 0, is called a mild solution of the

problem (1.5) if x(t)+ht(x) = φ(t), t ∈ [−r ,0], and there exists a v ∈ L1(J,X) such

that v(t)∈ F(t,xt,x′(t)) a.e. on J, and the integral equation (4.4) is satisfied.

Theorem 4.2. Assume that hypotheses (H1)–(H5), (H7)–(H9) are satisfied. Then sys-

tem (1.5) has at least one mild solution on J1.

Proof. Consider the multivalued mapQ : Z → 2Z defined byQx, the set of functions

u∈ Z such that

u(t)=




φ(t)−ht(x) if t ∈ J0,

C(t)
[
φ(0)−h0(x)

]+S(t)[y0−g
(
0,x0

)]+
∫ t

0
C(t−s)g(s,xs)ds

+
∫ t

0
S(t−s)

∫ s
0
K(s,τ)f(τ)dτds if t ∈ J,

(4.5)

where (3.9) holds. We remark that the fixed points of Q are mild solutions to (1.5).

As in Theorem 4.2, with appropriate modifications we can easily show that Q is a

completely continuous multivalued map, upper semicontinuous with convex closed

values. Here we repeat only Step 5. That is, we prove that the set

Ω := {x ∈ Z : λx ∈Qx, for some λ > 1
}

(4.6)

is bounded.

Let x ∈Ω. Then λx ∈Qx for some λ > 1. Thus, there exists f ∈ SF,x such that

x(t)= λ−1C(t)
[
φ(0)−h0(x)

]+λ−1S(t)
[
y0−g

(
0,x0

)]+λ−1
∫ t

0
C(t−s)g(s,xs)ds

+λ−1
∫ t

0
S(t−s)

∫ s
0
K(s,τ)f(τ)dτds, t ∈ J.

(4.7)
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This implies by (H4)–(H9) that for each t ∈ J, we have
∣∣x(t)∣∣≤M(‖φ‖+G)+MT [∣∣y0

∣∣+c1

∥∥x0

∥∥+2c2
]

+Mc1

∫ t
0

∥∥xs∥∥ds+MT 2 sup
t∈J
H(t)

∫ t
0
p(s)ψ

(∥∥xs∥∥+∣∣x′(s)∣∣)ds. (4.8)

We consider the function (3.33). Let t∗ ∈ [−r ,t] be such that µ(t)= |x(t∗)|. If t∗ ∈ J0,

then µ(t)≤ ‖φ‖+G.

If t∗ ∈ J, by the previous inequality we have for t ∈ J,

µ(t)≤M(‖φ‖+G)+MT [∣∣y0

∣∣+c1
(‖φ‖+G)+2c2

]

+Mc1

∫ t∗
0

∥∥xs∥∥ds+MT 2 sup
t∈J
H(t)

∫ t∗
0
p(s)ψ

(∥∥xs∥∥+∣∣x′(s)∣∣)ds
≤M(∥∥φ∥∥+G)+MT [∣∣y0

∣∣+c1
(∥∥φ∥∥+G)+2c2

]

+Mc1

∫ t
0
µ(s)ds+MT 2 sup

t∈J
H(t)

∫ t
0
p(s)ψ

(
µ(s)+∣∣x′(s)∣∣)ds.

(4.9)

We denote the right-hand side of the above inequality as q1(t). Then, we have

q1(0)=M
(‖φ‖+G)+MT [∣∣y0

∣∣+c1
(‖φ‖+G)+2c2

]
,

µ(t)≤ q1(t), t ∈ J,
q′1(t)=Mc1µ(t)+MT 2 sup

t∈J
H(t)p(t)ψ

(
µ(t)+∣∣x′(t)∣∣), t ∈ J.

(4.10)

By

x′(t)= λ−1AS(t)
[
φ(0)−h0(x)

]+λ−1C(t)
[
y0−g

(
0,x0

)]+λ−1g
(
t,xt

)

+λ−1
∫ t

0
AS(t−s)g(s,xs)ds+λ−1

∫ t
0
C(t−s)

∫ s
0
K(s,τ)f(τ)dτds, t ∈ J,

(4.11)

we have
∣∣x′(t)∣∣≤M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1

∥∥x0

∥∥+c2
]+c1

∥∥xt∥∥+c2+M∗Tc2

+M∗c1

∫ t
0

∥∥xs∥∥ds+MT sup
t∈J
H(t)

∫ t
0
p(s)ψ

(∥∥xs∥∥+∣∣x′(s)∣∣)ds. (4.12)

Let (3.38) holds.

Let t∗ ∈ [0, t] be such that γ(t) = |x(t∗)|. By the previous inequality, we have for

t ∈ J,

γ(t)≤M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1
(‖φ‖+G)+c2

]+c1

∥∥xt∗∥∥+c2+M∗Tc2

+M∗c1

∫ t∗
0

∥∥xs∥∥ds+MT sup
t∈J
H(t)

∫ t∗
0
p(s)ψ

(∥∥xs∥∥+∣∣x′(s)∣∣)ds
≤M(‖φ‖+G)+MT [∣∣y0

∣∣+c1
(∥∥φ∥∥+G)+c2

]+c1q1(t)+c2+M∗Tc2

+M∗c1

∫ t
0
q1(s)ds+MT sup

t∈J
H(t)

∫ t
0
p(s)ψ

(
q1(s)+γ(s)

)
ds.

(4.13)
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We denote the right-hand side of the above inequality as r1(t). Then, we have

r1(0)=M∗(‖φ‖+G)+M[∣∣y0

∣∣+c1
(‖φ‖+G)+c2

]+c1q1(0)+c2+M∗Tc2,

γ(t)≤ r1(t), t ∈ J,
r ′1(t)=M∗c1q1(t)+c1q′1(t)+MT sup

t∈J
H(t)p(t)ψ

(
q1(t)+γ(t)

)
, t ∈ J.

(4.14)

Let ω1(t)= q1(t)+r1(t), t ∈ J. Then ω1(0)= c and for t ∈ J,

ω′
1(t)= q′1(t)+r ′1(t)

≤ (1+c1
)[
Mc1q1(t)+MT 2 sup

t∈J
H(t)p(t)ψ

(
q1(t)+r1(t)

)]

+M∗c1q1(t)+MT sup
t∈J
H(t)p(t)ψ

(
q1(t)+r1(t)

)

≤ (Mc1+M∗c1+Mc2
1

)
ω1(t)+

(
MT +MT 2+MT 2c1

)
sup
t∈J
H(t)p(t)ψω1(t)

≤m∗(t)ω1(t)+ψ
(
ω1(t)

)
.

(4.15)

This implies that for each t ∈ J,

∫ω1(t)

ω1(0)

ds
s+ψ(s) ≤

∫ T
0
m∗(s)ds <

∫∞
c

ds
s+ψ(s) . (4.16)

This inequality implies that there exists a constant L such that ω1(t)≤ L, t ∈ J. Then

∣∣x(t)∣∣≤ µ(t)≤ q1(t)≤ L, t ∈ J1,∣∣x′(t)∣∣≤ γ(t)≤ r1(t)≤ L, t ∈ J, (4.17)

and hence (3.44) holds, where L depends only on T and on the function p and ψ. This

shows that Ω is bounded.

As a consequence of Lemma 2.3, we deduce thatQ has a fixed point and thus system

(1.1) has at least one mild solution on J1.

Acknowledgment. The work of the first and second authors was supported by

Brain Korea 21 project at Yonsei University, 2003.

References

[1] E. P. Avgerinos and N. S. Papageorgiou, On quasilinear evolution inclusions, Glas. Mat. Ser.
III 28 (1993), no. 1, 35–52.

[2] K. Balachandran and M. Chandrasekaran, Existence of solutions of a delay differential equa-
tion with nonlocal condition, Indian J. Pure Appl. Math. 27 (1996), no. 5, 443–449.

[3] , The non-local Cauchy problem for semilinear integrodifferential equations with
deviating argument, Proc. Edinb. Math. Soc. (2) 44 (2001), no. 1, 63–70.

[4] J. M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42
(1973), 61–90.
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