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We study the generating function for the number of even (or odd) permutations on n letters
containing exactly r ≥ 0 occurrences of a 132 pattern. It is shown that finding this function
for a given r amounts to a routine check of all permutations in S2r .
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1. Introduction. Let [n]= {1,2, . . . ,n} and let Sn denote the set of all permutations

of [n]. We will view permutations in Sn as words withn distinct letters in [n]. A pattern

is a permutation σ ∈ Sk, and an occurrence of σ in a permutation π =π1π2 ···πn ∈ Sn
is a subsequence of π that is order equivalent to σ . For example, an occurrence of 213

is a subsequence πiπjπk (1 ≤ i < j < k ≤ n) of π such that πj < πi < πk. We denote

by τ(π) the number of occurrences of τ in π , and we denote by srσ (n) the number of

permutations π ∈ Sn such that σ(π)= r .

In the last decade much attention has been paid to the problem of finding the num-

bers srσ (n) for a fixed r ≥ 0 and a given pattern τ (see [1, 2, 3, 5, 6, 7, 10, 11, 14, 15,

16, 17, 18, 19]). Most of the authors consider only the case r = 0, thus studying per-

mutations avoiding a given pattern. Only a few papers consider the case r > 0, usually

restricting themselves to patterns of length 3. Using two simple involutions (reverse

and complement ) on Sn, it is immediate that, with respect to being equidistributed, the

six patterns of length three fall into the two classes {123,321} and {132,213,231,312}.
Noonan [13] proved that

s1
123(n)=

3
n

(
2n
n−3

)
. (1.1)

Noonan and Zeilberger [14] suggested a general approach to the problem; they gave

another proof of Noonan’s result, and conjectured that

s2
123(n)=

59n2+117n+100
2n(2n−1)(n+5)

(
2n
n−4

)
,

s1
132(n)=

(
2n−3
n−3

)
.

(1.2)

The second conjecture was proved by Bóna in [6] and the first conjecture was proved by

Fulmek [8]. Noonan and Zeilberger conjectured that srσ (n) is P -recursive in n for any r
and τ . It was proved by Bóna [4] for σ = 132. Mansour and Vainshtein [11] suggested a

new approach to this problem in the case σ = 132, which allows one to get an explicit
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expression for sr132(n) for any given r . More precisely, they presented an algorithm that

computes the generating function
∑
n≥0 sr132(n)xn for any r ≥ 0.

Let π be any permutation. The number of inversions of π is given by iπ = |{(i,j) :

πi > πj, i < j}|. The signature of π is given by sign(π) = (−1)iπ . We say π is an

even permutation (resp., odd permutation) if sign(π) = 1 (resp., sign(π) = −1). We

denote by En (resp., On) the set of all even (resp., odd) permutations in Sn. Clearly,

|En| = |On| = (1/2)n! for all n≥ 2.

We denote by erσ (n) (resp., orσ (n)) the number of even (resp., odd) permutations

π ∈ En (resp., π ∈On) such that σ(π)= r .

Apparently, for the first time the relation between even (odd) permutations and

pattern-avoidance problem was suggested by Simion and Schmidt in [16] for σ ∈ S3. In

particular, Simion and Schmidt [16] proved that

e0
132(n)=

1
2(n+1)

(
2n
n

)
+ 1
n+1

(
n−1
n−1

2

)
,

o0
132(n)=

1
2(n+1)

(
2n
n

)
− 1
n+1

(
n−1
n−1

2

)
,

(1.3)

where
(

n−1
(n−1)/2

)
= 0 and n is an even number.

In this note, as a consequence of [12], we suggest a new approach to this problem

in the case of even (or odd) permutations where σ = 132, which allows one to get an

explicit expression for er132(n) for any given r . More precisely, we present an algo-

rithm that computes the generating functions Er (x) =
∑
n≥0 er132(n)xn and Or(x) =∑

n≥0or132(n)xn for any r ≥ 0. To get the result for a given r , the algorithm performs

certain routine checks for each element of the symmetric group S2r . The algorithm has

been implemented in C, and yields explicit results for 0≤ r ≤ 6.

2. Definitions and preliminary results. Recall the definitions (kernel permutation,

kernel cell decomposition, feasible cells, shapes, kernel shapes, and cells) and the nota-

tions (s the size of the kernel, c the capacity of the kernel, and f the number of the

feasible cells in the kernel cell decomposition) which are given in [12]. In this section

we describe how the cell decomposition approach (see [12]) can be determined by the

generating function for the number of even permutations which contain the pattern

132 exactly r times.

Let π be any permutation with a kernel permutation ρ, and assume that the feasible

cells of the kernel cell decomposition associated with ρ are ordered linearly according

to ≺, C1,C2, . . . ,Cf(ρ) (see [12, Lemma 3]). Let dj be the size of Cj . For example, let

π = 67382451 with kernel permutation ρ = 1423, then d1 = 2, d2 = 1, d3 = 0, and

d4 = 1 (see Figure 2.1).

We denote by lj(ρ) the number of the entries of ρ that lie to the north-west from

Cj or lie to the south-east from Cj . For example, let ρ = 1423, as on Figure 2.1, then

l1(ρ) = 3, l2(ρ) = 2, l3(ρ) = 3, and l4(ρ) = 4. Clearly, l1(ρ) = s(ρ)−1 and lf(ρ) = s(ρ)
for any nonempty kernel permutation ρ. Define sign(C)= (−1)21(C) for any cell C .
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Figure 2.1. Kernel cell decomposition for π = 67382451∈ S(1423).

Lemma 2.1. For any permutation π with a kernel permutation ρ,

sign(π)= (−1)(
∑

1≤i≤j≤f(ρ) didj+
∑f(ρ)
j=1 djlj(ρ)) ·sign(ρ)·

f(ρ)∏
j=1

sign
(
Cj
)
. (2.1)

Proof. To verify this formula, we count the number of occurrences of the pattern

21 in π . There are four possibilities for an occurrence of 21 in π . The first possibility is

an occurrence in one of the cells Cj , so in this case there are
∑f(ρ)
j=1 21(Cj) occurrences.

The second possibility is an occurrence in kerπ , so there are 21(ρ) occurrences. The

third possibility is an occurrence of two elements, of which the first belongs to kerπ
and the second belongs to Ci, so there are

∑f(ρ)
j=1 djlj(ρ) occurrences (see [12, Lemmas

4 and 5]). The fourth possibility is an occurrence of two elements, of which the first

belongs to Ci and the second belongs to Cj where i < j (see [12, Lemmas 4 and 5]), so

there are
∑

1≤i<j≤f(ρ) didj occurrences. Therefore,

sign(π)= (−1)
∑f(ρ)
j=1 21(Cj)(−1)21(ρ)(−1)

∑f(ρ)
j=1 djlj(ρ)(−1)

∑
1≤i<j≤f(ρ) didj , (2.2)

equivalently, sign(π)= (−1)(
∑

1≤i≤j≤f(ρ) didj+
∑f(ρ)
j=1 djlj(ρ)) ·sign(ρ)·∏f(ρ)

j=1 sign(Cj).

We say that the vector v = (v1,v2, . . . ,vn) is a binary vector if vi ∈ {0,1} for all i,
1 ≤ i ≤ n. We denote the set of all binary vectors of length n by �n. For any v ∈ �n,

we define |v| = v1 +v2 + ··· +vn. For example, �2 = {(0,0),(0,1),(1,0),(1,1)} and

|(1,1,0,0,1)| = 3.

For any kernel permutation ρ and for a=±1, we denote by Xa(ρ) (resp., Yρa ) the set

of all the binary vectors v∈�f(ρ) such that (−1)|v|+s(ρ) = a (resp., (−1)|v| = a). For any

v∈�f(ρ), we define

zρ(v)= (−1)
∑

1≤i<j≤f(ρ) vivj+
∑f(ρ)
j=1 lj(ρ)vj sign(ρ). (2.3)

Letting ρ be any kernel permutation and v = (v1,v2, . . . ,vf(ρ)) ∈ �f(ρ), we denote by

S(ρ;v) the set of all permutations of all sizes with kernel permutation ρ such that the
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corresponding cells Cj satisfy (−1)dj = (−1)vj ; in such a context v is called a length

argument vector of ρ. By definitions, the following result holds immediately.

Lemma 2.2. For any kernel permutation ρ,

S(ρ)=
⋃

v∈�f(ρ)

S(ρ;v). (2.4)

Letting ρ be any kernel permutation and letting

v= (v1,v2, . . . ,vf(ρ)
)
, u= (u1,u2, . . . ,uf(ρ)

)∈�f(ρ), (2.5)

we denote by S(ρ;v,u) the set of all permutations in S(ρ;v) such that the corresponding

cells Cj satisfy sign(Cj)= 1 if and only ifuj = 0; in such a context u is called a signature

argument vector of ρ. By Lemma 2.2, the following result holds immediately.

Lemma 2.3. For any kernel permutation ρ,

S(ρ)=
⋃

v∈�f(ρ)

S(ρ;v)=
⋃

v∈�f(ρ)

⋃
u∈�f(ρ)

S(ρ;v,u). (2.6)

For any a,b ∈ {0,1} we define

Hr(a,b)=


1
2

(
Er (x)+(−1)aEr (−x)

)
, if b = 0,

1
2

(
Or(x)+(−1)aOr (−x)

)
, if b = 1.

(2.7)

By definitions, the following result holds immediately.

Lemma 2.4. Let a,b ∈ {0,1}. Then the generating function for all permutations π
such that 132(π)= r , (−1)|π| = (−1)a, and sign(π)= (−1)b is given byHr(a,b), where

|π| denotes the length of the permutation π .

3. Main theorem. The main result of this note can be formulated as follows. Denote

by K the set of all kernel permutations, and by Kt the set of all kernel shapes for

permutations in St . Letting ρ be any kernel permutation, for any a,b ∈ {0,1} and any

r1, . . . ,rf(ρ), we define

Lρr1,...,rf (ρ)(a,b)=
∑

v∈Xρ(−1)a

∑
u∈Yρ

(−1)bzρ(v)

f (ρ)∏
j=1

Hrj
(
vj,uj

)
. (3.1)

Theorem 3.1. Let r ≥ 1. For any a,b ∈ {0,1},

Hr(a,b)=
∑

ρ∈K2r+1

∑
r1+···+rf(ρ)=r−c(ρ), rj≥0

Lρr1,...,rf (ρ)(a,b). (3.2)

Proof. We fix a kernel permutation ρ ∈K2r+1, a length argument vector v= (v1, . . . ,
vf(ρ)) ∈ X(−1)a(ρ), and a signature argument vector u = (u1, . . . ,uf(ρ)) ∈ Yf(ρ)(−1)bzρ(v)

.
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Recall that the kernel ρ of any π contains exactly c(ρ) occurrences of 132. The remain-

ing r −c(ρ) occurrences of 132 are distributed among the feasible cells of the kernel

cell decomposition of π . By [12, Theorem 2], each occurrence of 132 belongs entirely

to one feasible cell, and the occurrences of 132 in different cells do not influence one

another.

Let π be any permutation such that 132(π) = r , sign(π) = (−1)b, and (−1)|π| =
(−1)a, together with a kernel permutation ρ, length argument vector v, and signature

argument vector u. Then by Lemma 2.3, the cells Cj satisfy the following conditions:

(1) vj = 0 if and only if dj is an even number,

(2) uj = 0 if and only if sign(Cj)= 1,

(3) (−1)v1+···+vf(ρ)+s(ρ) = (−1)a,

(4) (−1)u1+···+uf(ρ)zρ(v)= (−1)b.

Therefore, by Lemma 2.4, this contribution gives

xs(ρ)
∑

r1+···+rf(ρ)=r−c(ρ), rj≥0

f(ρ)∏
j=1

Hrj
(
vj,uj

)
. (3.3)

Hence by Lemma 2.3 and [12, Theorem 1], summing over all the kernel permutations

ρ ∈ K2r+1, length argument vectors v ∈ X(−1)a(ρ), and signature argument vectors

u∈ Yf(ρ)(−1)bzρ(v)
, then we get the desired result.

Theorem 3.1 provides a finite algorithm for finding Er (x) and Or(x) for any given

r ≥ 0, since we only have to consider all permutations in S2r+1 and to perform certain

routine operations with all shapes found so far. Moreover, the amount of search can be

decreased substantially due to the following theorem.

Theorem 3.2. The only kernel permutation of capacity r ≥ 1 and size 2r +1 is

ρ = 2r −1,2r +1,2r −3,2r , . . . ,2r −2j−3,2r −2j, . . . ,1,4,2. (3.4)

Its parameters are given by s(ρ) = 2r +1, c(ρ) = r , f(ρ) = r +2, sign(ρ) = −1, and

zρ(v1, . . . ,vr+2)= (−1)(1+vr+2+
∑

1≤i<j≤r+2vivj).

Proof. The first part of the theorem holds by [12, Proposition]. Besides, by us-

ing the form of ρ we get s(ρ) = 2r + 1, c(ρ) = r , f(ρ) = r + 2, sign(ρ) = −1, and

lj(ρ) = 2r for all j = 1,2, . . . ,r +1 and lr+2(ρ) = 2r +1. Therefore, zρ(v1, . . . ,vr+2) =
(−1)(1+vr+2+

∑
1≤i<j≤r+2vivj).

By this theorem, it suffices to search only permutations in S2r . Below we present

several explicit calculations.

3.1. The case r = 0. We start from the case r = 0. Observe that Theorem 3.1 re-

mains valid for r = 0, provided that the left-hand side of (3.2) for a = b = 0 is re-

placed by Hr(0,0)−1= (1/2)(Er (x)+Er (−x))−1; subtracting 1 here accounts for the

empty permutation. So, we begin with finding kernel shapes for all permutations in S1.
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The only shape obtained is ρ1 = 1, and it is easy to see that s(ρ1) = 1, c(ρ1) = 0,

f(ρ1)= 2,

X1
(
ρ1
)= Y−1 =

{
(1,0),(0,1)

}
, X−1

(
ρ1
)= Y1 =

{
(0,0),(1,1)

}
,

zρ1(0,0)= zρ1(1,0)= zρ1(1,1)=−zρ1(0,1)= 1.
(3.5)

Therefore, (3.2) for a= b = 0 gives

1
2

(
E0(x)+E0(−x)

)−1= xH0(1,0)H0(0,0)+xH0(1,1)H0(0,1)

+xH0(1,0)H0(0,1)+xH0(1,1)H0(0,0);
(3.6)

(3.2) for a= 1 and b = 0 gives

1
2

(
E0(x)−E0(−x)

)= xH2
0(0,0)+xH2

0(0,1)+xH2
0(1,0)+xH2

0(1,1); (3.7)

(3.2) for a= 0 and b = 1 gives

1
2

(
O0(x)+O0(−x)

)= xH0(1,1)H0(0,0)+xH0(1,0)H0(0,1)

+xH0(0,0)H0(1,0)+xH0(0,1)H0(1,1);
(3.8)

and (3.2) for a= b = 1 gives

1
2

(
O0(x)−O0(−x)

)= 2xH0(0,1)H0(0,0)+2xH0(1,1)H0(1,0). (3.9)

Our present aim is to find explicitly E0(x) and O0(x), thus we need the following no-

tation. We define

Mr(x)= Er (x)−Or(x), Fr (x)= Er (x)+Or(x) (3.10)

for all r ≥ 0. Clearly,

Hr(0,0)−Hr(0,1)= 1
2

(
Mr(x)+Mr(−x)

)
,

Hr (0,0)+Hr(0,1)= 1
2

(
Fr (x)+Fr (−x)

)
,

Hr (1,0)−Hr(1,1)= 1
2

(
Mr(x)−Mr(−x)

)
,

Hr (1,0)+Hr(1,1)= 1
2

(
Fr (x)−Fr (−x)

)
,

(3.11)

for all r ≥ 0. Therefore, by subtracting (resp., adding) (3.8) and (3.6), and by subtracting

(resp., adding) (3.9) and (3.7), we get

M0(x)+M0(−x)= 2,

M0(x)−M0(−x)= x
(
M2

0 (x)+M2
0 (−x)

)
,

F0(x)+F0(−x)= 2+x(F2
0 (x)−F2

0 (−x)
)
,

F0(x)−F0(−x)= x
(
F2

0 (x)+F2
0 (−x)

)
.

(3.12)
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Hence,

M0(x)= 1+ 1−√1−4x2

2x
, F0(x)= 1−√1−4x

2x
. (3.13)

Theorem 3.3. (i) The generating function for the number of even permutations avoid-

ing 132 is given by (see [16])

E0(x)= 1
2

(
1−√1−4x

2x
+1+ 1−√1−4x2

2x

)
. (3.14)

(ii) The generating function for the number of odd permutations avoiding 132 is given

by (see [16])

O0(x)= 1
2

(
1−√1−4x

2x
−1− 1−√1−4x2

2x

)
. (3.15)

(iii) The generating function for the number of permutations avoiding 132 is given by

(see [9])

F0(x)= 1−√1−4x
2x

. (3.16)

3.2. The case r = 1. Since permutations in S2 do not exhibit kernel shapes distinct

from ρ1, the only possible new shape is the exceptional one, ρ2 = 132. Calculation of

the parameters of ρ2 gives s(ρ2)= 3, c(ρ2)= 1, f(ρ2)= 3,

X1
(
ρ2
)= Y−1 =

{
(1,0,0),(0,1,0),(0,0,1),(1,1,1)

}
,

X−1
(
ρ2
)= Y1 =

{
(0,0,0),(1,1,0),(1,0,1),(1,1,0)

}
,

zρ2(0,0,0)= zρ2(1,0,0)= zρ2(0,1,0)=−zρ2(1,1,0)= 1,

−zρ2(0,0,1)= zρ2(1,0,1)= zρ2(0,1,1)= zρ2(1,1,1)= 1.

(3.17)

Therefore, by Theorem 3.1, we have

2
(
H1(0,0)−H1(0,1)

)
=M1(x)+M1(−x)= x

3

2

(
M0(−x)−M0(x)

)(
M2

0 (−x)+M2
0 (x)

)
,

2
(
H1(1,0)−H1(1,1)

)
=M1(x)−M1(−x)
= 2x

(
M0(x)M1(x)+M0(−x)M1(−x)

)
− x

3

2

(
M0(−x)+M0(x)

)(
M2

0 (−x)+M2
0 (x)

)
.

(3.18)

Using the expression for M0(x) (see the case r = 0) we get

M1(x)= 1
2

(−1+3x+2x2)+ 1−3x−4x2+4x3

2

(
1−4x2)−1/2. (3.19)
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Similarly, considering the expressions for H1(0,0)+H1(0,1) and H1(1,0)+H1(1,1)
we get

F1(x)= 1
2
(x−1)+ 1−3x

2
(1−4x)−1/2. (3.20)

Theorem 3.4. (i) The generating function for the number of even permutations con-

taining 132 exactly once is given by

E1(x)=−1
2

(
1−2x−x2)

+ 1−3x
4

(1−4x)−1/2+ 1−3x−4x2+4x3

4

(
1−4x2)−1/2.

(3.21)

(ii) The generating function for the number of odd permutations containing 132 exactly

once is given by

O1(x)=−1
2

(
x+x2)+ 1−3x

4
(1−4x)−1/2− 1−3x−4x2+4x3

4

(
1−4x2)−1/2. (3.22)

(iii) The generating function for the number of permutations containing 132 exactly

once is given by (see [6])

F1(x)= 1
2
(x−1)+ 1−3x

2
(1−4x)−1/2. (3.23)

3.3. The case r = 2. We have to check the kernel shapes of permutations in S4.

Exhaustive search adds four new shapes to the previous list; these are 1243, 1342, 1423,

and 2143; besides, there is the exceptional 35142 ∈ S5. Calculation of the parameters

s, c, f , z, Xa, Ya is straightforward, and we get the following theorem.

Theorem 3.5. (i) The generating function for the number of even permutations con-

taining 132 exactly twice is given by

E2(x)= 1
2
x
(
x3+3x2−4x−1

)+ 1
4

(
2x4−4x3+29x2−15x+2

)
(1−4x)−3/2

− 1
4

(
16x7−48x6−76x5+64x4+36x3−21x2−5x+2

)(
1−4x2)−3/2.

(3.24)

(ii) The generating function for the number of odd permutations containing 132 exactly

once is given by

O2(x)=−1
2

(
x4+3x3−5x2−4x+2

)
+ 1

4

(
2x4−4x3+29x2−15x+2

)
(1−4x)−3/2

+ 1
4

(
16x7−48x6−76x5+64x4+36x3−21x2−5x+2

)(
1−4x2)−3/2.

(3.25)

(iii) The generating function for the number of permutations containing 132 exactly

twice is given by (see [12])

F2(x)= 1
2

(
x2+3x−2

)+ 1
2

(
2x4−4x3+29x2−15x+2

)
(1−4x)−3/2. (3.26)
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3.4. The cases r = 3,4,5,6. Let r = 3,4,5,6; exhaustive search in S6, S8, S10, and S12

reveals 20, 104, 503, and 2576 new nonexceptional kernel shapes, respectively, and we

get the following theorem.

Theorem 3.6. Let r = 3,4,5,6, then

Mr(x)= 1
2

(
Ar(x)+Br (x)

(
1−4x2)−r+1/2),

Fr (x)= 1
2

(
Cr (x)+Dr(x)(1−4x)−r+1/2), (3.27)

where

A3(x)= 2x6+10x5−24x4−30x3+23x2+7x−2,

A4(x)= 2x8+14x7−46x6−90x5+117x4+85x3−42x2−8x+1,

A5(x)= 2x10+18x9−76x8−198x7+360x6+440x5−355x4

−171x3+62x2+10x−2,

A6(x)= 256x13−446x12−618x11+194x10−140x9+798x8

+1404x7−1702x6−1430x5+815x4+302x3−88x2−15x+4,

B3(x)= 64x11−320x10−800x9+1216x8+1124x7−972x6

−524x5+312x4+100x3−43x2−7x+2,

B4(x)=−256x15+1792x14+6112x13−13120x12−19840x11

+22224x10+19054x9−14780x8−8328x7+4772x6

+1840x5−775x4−197x3+56x2+8x−1,

B5(x)= 1024x19−9216x18−40064x17+111744x16+228896x15

−343264x14−404056x13+398712x12+321058x11

−234686x10−137468x9+78480x8+33896x7

−15400x6−4780x5+1723x4+351x3−98x2−10x+2,

B6(x)= 524288x24+1175552x23−1593344x22−2324992x21

+1162752x20+298112x19+2696448x18+4856864x17

−7020288x16−7464568x15+6981056x14+5445696x13

−3868942x12−2335450x11+1324884x10+627306x9

−290536x8−106510x7+40772x6+11046x5−3543x4

−632x3+176x2+15x−4,

C3(x)= 2x3−5x2+7x−2,

C4(x)= 5x4−7x3+2x2+8x−3,
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C5(x)= 14x5−17x4+x3−16x2+14x−2,

C6(x)= 42x6−44x5+5x4+4x3−20x2+19x−4,

D3(x)=−22x6−106x5+292x4−302x3+135x2−27x+2,

D4(x)= 2x9+218x8+1074x7−1754x6+388x5+1087x4,

D5(x)=−50x11−2568x10−10826x9+16252x8−12466x7+16184x6

−16480x5+9191x4−2893x3+520x2−50x+2,

D6(x)= 4x14+820x13+32824x12+112328x11−205530x10+141294x9

−30562x8−67602x7+104256x6−74090x5+30839x4−7902x3

+1230x2−107x+4.

(3.28)

Moreover, for r = 3,4,5,6,

Er (x)= 1
4

(
Ar(x)+Cr (x)+Dr(x)(1−4x)−r+1/2+Br (x)

(
1−4x2)−r+1/2),

Or (x)= 1
4

(
Ar(x)−Cr (x)+Dr(x)(1−4x)−r+1/2−Br (x)

(
1−4x2)−r+1/2). (3.29)

4. Further results and open questions. First of all, we simplify the expression

Lρr1,...,rf (ρ)(a,0)−Lρr1,...,rf (ρ)(a,1), (4.1)

where a= 0,1, rj ≥ 0 for all j.

Lemma 4.1. Let v∈ {0,1}n be any vector and let a∈ {1,−1}. Then

∑
x∈Ya

n∏
j=1

Hr
(
vj,xj

)− ∑
y∈Y−a

n∏
j=1

Hr
(
vj,yj

)= a n∏
j=1

gr (j), (4.2)

where gr (j)=Hr(vj,0)−Hr(vj,1)= (1/2)(Mr (x)+(−1)vjMr (−x)) for all j.

Proof. For any two vectors u,v ∈ �n, define uv = 1 if ui = vi for all i ≠ j and

uj + vj = 1, otherwise uv = 0. Using the standard reflected Gray code, with each

of the standard Gray-code vectors reflected left-for-right (for more details, see [20]),

we get that there exists an arrangement of the binary vectors of �n, say (0, . . . ,0) =
u1,u2, . . . ,u2n , such that the first 2m vectors in the sequence, say v1, . . . ,v2m , when re-

stricted to their first m coordinates, satisfy that vjvj+1 = 1 for all j. In such a context

this arrangement is called Gray-code arrangement.

Now we are ready to prove the lemma. Without loss of generality we can assume

that (0,0, . . . ,0) ∈ Yna (which means a = 1); otherwise it is enough to replace a by −a.

Let x1, . . . ,x2n be all the vectors of �n with the Gray-code arrangement. Thus, using

(0,0, . . . ,0)∈ Yna , we get that x2i−1 ∈ Yna and x2i ∈ Yn−a for all i= 1,2, . . . ,2n−1. Therefore,
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for all i= 1,2, . . . ,2n−1,

2n−1∑
i=1

 n∏
j=1

Hr
(
vj,x2i−1

j

)
−

n∏
j=1

Hr
(
vj,x2i

j

)
=

2n−1∑
i=1

(−1)i−1gr (1)
n∏
j=2

Hr
(
vj,x2i−1

j

)
= gr (1)

2n−2∑
i=1

n−1∏
j=1

Hr
(
ṽj ,y2i−1

j

)
−
n−1∏
j=1

Hr
(
ṽj ,y2i

j

),
(4.3)

where yp = (x2p
2 , . . . ,x

2p
n ) for all p = 1,2, . . . ,2n−1, and ṽ = (v2,v3, . . . ,vn). The Gray-code

arrangement for x1, . . . ,x2n implies that the vectors y1, . . . ,y2n−1
are arranged as Gray-

code arrangement in �n−1. Hence, by induction on n (by definitions, the lemma holds

for n= 1), we get that the expression equals a
∏n
j=1gr (j).

As a remark, the vector (0, . . . ,0) ∈ Yρzρ(v) if and only if zρ(v) = 1 for any kernel

permutation ρ and vector v. Therefore, by Theorem 3.1 and Lemma 4.1 we get the

following theorem.

Theorem 4.2. Let a∈ {0,1} and r ≥ 0. Then

1
2

(
Mr(x)+(−1)aMr (−x)

)−δr+a,0
=

∑
ρ∈K2r+1

xs(ρ)
∑

r1,...,rf (ρ)=r−c(ρ)

 ∑
v∈X(−1)a (ρ)

2−f(ρ)zρ(v)
f(ρ)∏
j=1

(
Mrj (x)+(−1)vjMrj (−x)

).
(4.4)

As a remark, the above theorem yields two equations (for a = 0 and a = 1) that are

linear on Mr(x) and Mr(−x). So, Theorem 4.2 provides a finite algorithm for finding

Mr(x) for any given r ≥ 0, since we have to consider all permutations in S2r+1 and to

perform certain routine operations with all shapes found so far. Moreover, the amount

of search can be decreased substantially due to the following proposition which holds

immediately by Theorems 3.2 and 4.2.

Proposition 4.3. Let r ≥ 1, a∈ {0,1}, and

ρ = 2r −1,2r +1,2r −3,2r , . . . ,2r −2j−3,2r −2j, . . . ,1,4,2. (4.5)

Then the expression

xs(ρ)
∑

r1,...,rf (ρ)=r−c(ρ), rj≥0

 ∑
v∈X(−1)a (ρ)

2−f(ρ)zρ(v)
f(ρ)∏
j=1

(
Mrj (x)+(−1)vjMrj (−x)

)
(4.6)
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is given by

[(r+2)/2]∑
j=a

(−1)j−a+12−r−2

(
r +2

2j+1−a

)
x2r+1(M0(x)−M0(−x)

)j(M0(x)+M0(−x)
)r+2−j.

(4.7)

By this proposition, it is sufficient to search only permutations in S2r . Besides, using

Theorem 4.2 and the case r = 0, together with induction on r , we get the following

result.

Theorem 4.4. Mr(x) is a rational function on x and
√

1−4x2 for any r ≥ 0.

In view of our explicit results, we have an even stronger conjecture.

Conjecture 4.5. For any r ≥ 1, there exist polynomials Ar(x), Br (x), Cr (x), and

Dr(x) with integer coefficients such that

Er (x)= 1
4

(
Ar(x)+Br (x)

)+ 1
4
Cr (x)(1−4x)−r+1/2+ 1

4
Dr(x)

(
1−4x2)−r+1/2,

Or (x)= 1
4

(
Ar(x)−Br (x)

)+ 1
4
Cr (x)(1−4x)−r+1/2− 1

4
Dr(x)

(
1−4x2)−r+1/2.

(4.8)
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