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We consider the following condition (*) on an associative ring R : (*). There exists a function
f from R into R such that f is a group homomorphism of (R,+), f is injective on R2, and
f(xy) = (xy)n(x,y) for some positive integer n(x,y) > 1. Commutativity and structure
are established for Artinian rings R satisfying (*), and a counterexample is given for non-
Artinian rings. The results generalize commutativity theorems found elsewhere. The case
n(x,y)= 2 is examined in detail.
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Let R be an associative ring, not necessarily with unity, and let R+ denote the additive

group of R. In [3], it was shown that R is commutative if it satisfies the following

condition.

(I) For each x and y in R, there exists n=n(x,y) > 1 such that (xy)n = xy .

We generalize this result by considering the condition below.

(II) There exists a function f from R into R such that f is a group homomorphism

of R+, f is injective on R2, and f(xy) = (xy)n(x,y) for some positive integer n =
n(x,y) > 1 depending on x and y .

An example of a ring satisfying (II) for n(x,y) = 2 is given by R = B⊕N, where B is

a Boolean ring and N is a zero ring (a ring with trivial product, xy = 0 for all x and y).

In this case, we may take f to be the identity mapping. It was shown in [2] that a ring

which is product-idempotent (i.e., (xy)2 = xy for every x and y) must be of the form

B⊕N. We will see that Artinian rings R for which (II) is true are not far removed from

this structure.

In this paper, we give the structure of an Artinian ring R satisfying (II) without invok-

ing the commutativity theorems of Bell [1]. We then exhibit an infinite noncommutative

ring for which f is surjective but not injective. Throughout this paper, the notation

J(R) denotes the Jacobson radical of the ring R. If r is in R, the symbol r̄ denotes the

coset r +J(R).
The proposition below states that rings satisfying (II) obey the central-idempotent

property.

Proposition 1 (see [3]). Let R be a ring satisfying (II). If e is an idempotent in R, then

e is central.

Proof. Since f(yx) = (yx)n(y,x) = y(xy)x ···yx, we have that xy = 0 in R im-

plies yx = 0, for any x and y in R. Now, for every r in R, (e2−e)r = e(er − r) = 0.

Thus, (er −r)e= 0 or ere= re. Similarly, ere= er . Hence, er = re.
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Theorem 2. Let R be an Artinian ring satisfying (II). If (xy)m = 0 for some positive

integer m, then xy = 0.

Proof. Suppose that (xy)m = 0 and (xy)m−1 ≠ 0, m > 1. Then, f[(xy)m−1] =
[(xy)m−1]n = 0. Since f is injective on R2, (xy)m−1 = 0, a contradiction.

Corollary 3. If R is an Artinian ring satisfying (II), then R ·J(R)= J(R)·R = (0).

Proof. Since R is Artinian, the ideal J(R) is nilpotent.

Corollary 4. For an Artinian ring R satisfying (II), J(R) is a zero ring.

Corollary 5. For an Artinian ring R satisfying (II), R/J(R) is commutative.

Proof. If not, there is a direct summand of R/J(R) isomorphic to a full matrix

ring over a division ring. Hence, there exist ū and v̄ in R/J(R) such that ūv̄ ≠ 0 and

ūv̄ū = 0. It follows that uv ≠ 0 in R and that uvu is in J(R). But then f(uv) =
(uv)n(u,v) =uv · uv ···uv = (uvu)v ···uv = 0. Thus, by the injective property of f
on R2, uv = 0, a contradiction.

We now obtain the structure of an Artinian ring R satisfying (II).

Theorem 6. If R is an Artinian ring satisfying (II), then R decomposes as a direct sum

of rings eR⊕N, where e is an idempotent in R and N is a zero ring.

Proof. By Corollary 5, the ring S = R/J(R) is a direct sum of fields; hence S has

an identity t̄, which lifts to a central idempotent e in R such that e− t is in J(R). Let

N = {r −er : r ∈ R}. It is easy to see that N is an ideal of R, and that the intersection

of N with eR is (0). Clearly, R = eR+N, and so we may write R = eR⊕N. Now, e−t in

J(R) implies that (e−t)2 = 0 or e= 2et−t2. Hence, if r is in R, (2ē· t̄− t̄2)r̄ = ē· r̄ = er
or 2ē· t̄ · r̄− t̄2 · r̄ = 2ē· r̄− r̄ = er , since t̄ is the identity of S. Thus, er− r̄ = 0 or r−er
is in J(R). Therefore, N is a zero subring of J(R).

Corollary 7. If R is an Artinian ring satisfying (II), then R is a direct sum F ⊕N,

where F is a direct sum of fields and N is a zero ring.

Proof. By Theorem 2, the ring eR in Theorem 6 has no nonzero nilpotent elements,

and hence is a direct sum of fields by Corollary 5.

Corollary 8. Let R be as in Theorem 2. Then R is commutative.

Corollary 9. Let R be as in Theorem 2. Then J(R) consists precisely of the nilpotent

elements {x : x2 = 0}.

Remark 10. The function f maps the ideal eR of Theorem 6 into itself, since f(ex)=
(ex)n=enxn = exn.

Remark 11. The specific fields in the direct sum F of Corollary 7 depend, of course,

on the integers n(x,y). A Boolean ring is acceptable for any value of n. The prime

field with p elements, p a prime, is acceptable for n = (p − 1)m+ 1, m a positive
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integer. A finite field of order pk is acceptable for n= p. Of course, an infinite field of

characteristic p need not be a pth root field.

We now exhibit an infinite noncommutative ring R for which f(xy)= (xy)2 on R2.

Let Z4 be the ring of integers modulo 4. Let R be the free Z4-module with countable

base A = {ai : i = 1,2,3, . . .}. On A, define the multiplication a1a2 = a3, a2a1 = −a3,

aiaj = 0 otherwise. One may verify that this yields an associative multiplication which

extends to a ring multiplication on R considered as an abelian group. Clearly, the ring

R is noncommutative. Define f : A→ A∪{0} via f(a1) = f(a3) = 0 and f(ai) = aρ(i),
i ≠ 1,3, where ρ is any bijection of {2,4,5, . . .} onto the set of positive integers. The

map f extends to a group homomorphism of R+. Now, f(aiaj) = f(0) = 0 = (aiaj)2
for (i,j) ≠ (1,2) or (2,1). Moreover, f(a1a2) = f(a3) = 0 = (a1a2)2 = a2

3. Similarly,

f(a2a1)= 0= (a2a1)2. It is then easy to check that f(xy)= (xy)2 for every x and y
in R, since aiajak = 0 for all ai,aj,ak in A.

The function f above is not injective. We prove the following theorem which insures

the commutativity of any ring S, given injectivity of f on the subring S2 alone.

Theorem 12. Let f be a function from a ring S into S such that f(x+y) = f(x)+
f(y) and f(xy)= (xy)2. Assume further that f is injective on s2. Then S is commuta-

tive.

Proof. Let x, y , z, and t be arbitrary elements of S. Now, f(2xy) = 2(xy)2 =
(2xy)2 = 4(xy)2, so 2(xy)2 = f(2xy) = 0. Hence, 2xy = 0 by injectivity. Moreover,

if xy = 0, then f(yx) = y(xy)x = 0 implies yx = 0. From (xy)2+(zy)2 = f(xy)+
f(zy)= f((x+z)y)= [(x+z)y]2 = (xy+zy)2 = (xy)2+xyzy+zyxy+(zy)2, we

obtain xyzy = zyxy . Now, f(xtyz+yzxt) = f(xtyz)+f(yzxt) = xtyz ·xtyz+
yzxt ·yzxt = (xt)y(zxt)yz+yzxt ·yzxt = xtyzy(zxt)+yzxt ·yzxt. Hence,

xtyz(xtyz+yzxt) = 0. Thus, (xtyz+yzxt)xtyz = xtyz ·xtyz+yzxt ·xtyz =
xtyz ·xtyz+yz ·x(t)x(tyz) = xtyz ·xtyz+yzx(tyz)xt = f(xtyz+yzxt) = 0.

Therefore, xtyz+yzxt = 0 or (xt)(yz)= (yz)(xt). Hence, S2 is commutative.

Now, f(xyz) = (xyz)(xyz) = x(yzx)(yz) = x(yz)2x. Similarly, f(yzx) =
x(yz)2x. So, xyz =yzx.

Finally, f(xy) = (xy)(xy) = x(yxy) = x2y2 = y2x2 = (yx)(yx) = f(yx). Thus,

xy =yx, and S is commutative. This completes the proof.

Remark 13. The ring R in the example preceding Theorem 12 does not have a unity.

It can be shown that if S is any ring in which every element is a square, and squaring is

an endomorphism of S+, then S is commutative. It follows that a ring R satisfying (II)

for n= 2 and having a right or left identity is commutative.

In view of Remark 13 and Theorem 12, we make the following conjecture and leave

it as a problem.

Conjecture 14. Let S be a ring and n≥ 2 a positive integer. If the function f(x)=
xn on S is surjective (injective) and f is a group endomorphism of S+, then S is com-

mutative.
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