CONVERGENCY OF THE FUZZY VECTORS IN THE PSEUDO-FUZZY VECTOR SPACE OVER $F_p^1(1)$

KWEIMEI WU

Received 24 March 2003

In 2003, we considered the pseudo-fuzzy vector space SFR over $F_p^1(1)$. Here, we further discuss the convergency of the fuzzy vectors in SFR.

2000 Mathematics Subject Classification: 08A72.

1. Introduction. In this paper, we discuss the convergency of the fuzzy space over $F_p^1(1)$ (see [4]). In [4, Section 2], we stated the pseudo-fuzzy vector space SFR over $F_p^1(1)$ as follows: for two points $P = (x^{(1)}, x^{(2)}, \dots, x^{(n)})$ and $Q = (y^{(1)}, y^{(2)}, \dots, y^{(n)})$ on \mathbb{R}^n , we have the crisp vector $\overrightarrow{PQ} = (y^{(1)} - x^{(1)}, y^{(2)} - x^{(2)}, \dots, y^{(n)} - x^{(n)})$ in a pseudo-fuzzy vector space $F_p^n(1) = \{(a^{(1)}, a^{(2)}, \dots, a^{(n)})_1 \forall (a^{(1)}, a^{(2)}, \dots, a^{(n)}) \in \mathbb{R}^n\}$.

There is a one-to-one onto mapping $P=(x^{(1)},x^{(2)},...,x^{(n)}) \leftrightarrow \widetilde{P}=(x^{(1)},x^{(2)},...,x^{(n)})_1$. Therefore, for the crisp vector \overrightarrow{PQ} , we can define the fuzzy vector $\overrightarrow{PQ}=(y^{(1)}-x^{(1)},y^{(2)}-x^{(2)},...,y^{(n)}-x^{(n)})_1=\widetilde{Q}\oplus\widetilde{P}$.

Let the family of the fuzzy sets on \mathbb{R}^n satisfying the definitions of *convex* and *normal* be F_c . Obviously, $F_p^n(1) \subset F_c$. Next, we extend the fuzzy vector $\overrightarrow{PQ} = \widetilde{Q} \ominus \widetilde{P}$ to F_c , and $\widetilde{X}, \widetilde{Y} \in F_c$, and define the fuzzy vector $\overrightarrow{XY} = \widetilde{Y} \ominus \widetilde{X}$. Let SFR = $\{\overrightarrow{XY} \forall \widetilde{X}, \widetilde{Y} \in F_c\}$. Then we have the pseudo-fuzzy vector space over $F_p^n(1) \ (= a_1 \forall a \in \mathbb{R})$. In Section 3, we will discuss the convergency of the fuzzy vectors in SFR.

2. Preparation. In [4], we discussed the pseudo-fuzzy vector space SFR over $F_p^1(1)$. In order to discuss the convergence of the fuzzy vectors in SFR, we need to know some definitions.

DEFINITION 2.1. (1°) The fuzzy set \widetilde{A} on $\mathbb{R} = (-\infty, \infty)$ is convex if and only if every ordinary set $A(\alpha) = \{x \mid \mu_{\widetilde{A}}(x) \geq \alpha \ \forall \alpha \in [0,1]\}$ is convex, and hence $A(\alpha)$ is a closed interval of \mathbb{R} .

(2°) The fuzzy set \widetilde{A} on \mathbb{R} is normal if and only if $\bigvee_{x \in \mathbb{R}} \mu_{\widetilde{A}}(x) = 1$.

Next, we extend this definition to \mathbb{R}^n by saying that the membership function of the fuzzy set \widetilde{D} on \mathbb{R}^n is $\mu_{\widetilde{D}}(x^{(1)}, x^{(2)}, ..., x^{(n)}) \in [0,1]$ for all $(x^{(1)}, x^{(2)}, ..., x^{(n)}) \in \mathbb{R}^n$.

DEFINITION 2.2. The α -cut $(0 \le \alpha \le 1)$ of the fuzzy set \widetilde{D} on \mathbb{R}^n is defined by $D(\alpha) = \{(x^{(1)}, x^{(2)}, \dots, x^{(n)}) \mid \mu_{\widetilde{D}}(x^{(1)}, x^{(2)}, \dots, x^{(n)}) \ge \alpha\}.$

DEFINITION 2.3. (1°) The fuzzy set \widetilde{D} on \mathbb{R}^n is convex if and only if every ordinary set $D(\alpha) = \{(x^{(1)}, x^{(2)}, \dots, x^{(n)}) \mid \mu_{\widetilde{D}}(x^{(1)}, x^{(2)}, \dots, x^{(n)}) \geq \alpha \ \forall \alpha \in [0,1] \}$ is a convex closed subset of \mathbb{R}^n .

(2°) The fuzzy set \widetilde{D} is normal if and only if $\bigvee_{(\chi^{(1)},\chi^{(2)},...,\chi^{(n)})\in\mathbb{R}^n}\mu_{\widetilde{D}}(\chi^{(1)},\chi^{(2)},...,\chi^{(n)})=1$.

Let the family of the fuzzy sets on \mathbb{R}^n satisfying Definition 2.3 (1°), (2°) be F_c .

DEFINITION 2.4 (Pu and Liu [3]). The fuzzy set a_{α} ($0 \le \alpha \le 1$) on \mathbb{R} is called a level α fuzzy point on \mathbb{R} if its membership function $\mu_{a_{\alpha}}(x)$ is

$$\mu_{a_{\alpha}}(x) = \begin{cases} \alpha, & x = a, \\ 0, & x \neq a. \end{cases}$$
 (2.1)

Let the family of all level α fuzzy points on \mathbb{R} be $F_p^{(1)}(\alpha) = \{a_\alpha \forall \alpha \in \mathbb{R}\}, 0 \le \alpha \le 1$.

DEFINITION 2.5. The fuzzy set $(a^{(1)}, a^{(2)}, \dots, a^{(n)})_{\alpha}$ $(0 \le \alpha \le 1)$ is called a level α fuzzy point on \mathbb{R}^n if its membership function is

$$\mu_{(a^{(1)},a^{(2)},\dots,a^{(n)})_{\alpha}}(x^{(1)},x^{(2)},\dots,x^{(n)})$$

$$=\begin{cases} \alpha, & \text{if } (x^{(1)},x^{(2)},\dots,x^{(n)}) = (a^{(1)},a^{(2)},\dots,a^{(n)}), \\ 0, & \text{elsewhere.} \end{cases}$$
(2.2)

Let the family of all level α fuzzy points on \mathbb{R}^n be

$$F_p^{(n)}(\alpha) = \{ (a^{(1)}, a^{(2)}, \dots, a^{(n)})_{\alpha} \forall (a^{(1)}, a^{(2)}, \dots, a^{(n)}) \in \mathbb{R}^n \}, \quad 0 \le \alpha \le 1,$$

$$F_p^{(n)} = \bigcup_{0 \le \alpha \le 1} F_p^{(n)}(\alpha). \tag{2.3}$$

For each $a_{\alpha} \in F_p^1(\alpha)$, regard $a_{\alpha} = (a, a, ..., a)_{\alpha}$ as a special level α fuzzy point on \mathbb{R}^n degenerated from a level α fuzzy point $(a^{(1)}, a^{(2)}, ..., a^{(n)})$ with $a^{(1)} = a^{(2)} = \cdots = a^{(n)} = a$. Hence, we have the following expression:

$$\mu_{(a,a,\dots,a)_{\alpha}}(x^{(1)},x^{(2)},\dots,x^{(n)}) = \begin{cases} \alpha, & (x^{(1)},x^{(2)},\dots,x^{(n)}) = (a,a,\dots,a), \\ 0, & (x^{(1)},x^{(2)},\dots,x^{(n)}) \neq (a,a,\dots,a), \end{cases}$$

$$= \mu_{a_{\alpha}}(x^{(1)},x^{(2)},\dots,x^{(n)}).$$
(2.4)

DEFINITION 2.6. For $D \subset \mathbb{R}^n$, call D_{α} , $0 \le \alpha \le 1$, a level α fuzzy domain on \mathbb{R}^n if its membership function is

$$\mu_{D_{\alpha}}(x^{(1)}, x^{(2)}, \dots, x^{(n)}) = \begin{cases} \alpha, & \text{if } (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \in D, \\ 0, & \text{if } (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \notin D. \end{cases}$$
(2.5)

Let the family of all the level α fuzzy domains on \mathbb{R}^n be $FD^* = \{E_\alpha \forall E \subset \mathbb{R}^n\}$, and let the family of all subsets of \mathbb{R}^n be $\mathcal{P}(\mathbb{R}^n) = \{E \forall E \subset \mathbb{R}^n\}$.

Then there is a one-to-one mapping η between $\mathcal{P}(\mathbb{R}^n)$ and FD^* :

$$E \in \mathcal{P}(\mathbb{R}^n) \longleftrightarrow \eta(E) = E_{\alpha} \in FD^*,$$

$$\eta^{(-1)}(E_{\alpha}) = E, \quad \alpha \in [0,1].$$
(2.6)

Since $\widetilde{D} \in F_c$, the α -cut $D(\alpha)$ $(0 \le \alpha \le 1)$ of \widetilde{D} can be mapped to $D(\alpha)_{\alpha}$. Thus, we have the following decomposition principle:

$$\forall \widetilde{D} \in F_c, \quad \widetilde{D} = \bigcup_{\alpha \in [0,1]} D(\alpha)_{\alpha}. \tag{2.7}$$

From Kaufmann and Gupta [2], we have for $D, E \subset \mathbb{R}^n$, $k \in \mathbb{R}$,

$$D(+)E = \{ (x^{(1)} + y^{(1)}, x^{(2)} + y^{(2)}, \dots, x^{(n)} + y^{(n)})$$

$$\forall (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \in D, (y^{(1)}, y^{(2)}, \dots, y^{(n)}) \in E \},$$
(2.8)

$$D(-)E = \{ (x^{(1)} - y^{(1)}, x^{(2)} - y^{(2)}, \dots, x^{(n)} - y^{(n)})$$

$$\forall (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \in D, (y^{(1)}, y^{(2)}, \dots, y^{(n)}) \in E \},$$
(2.9)

$$k(\cdot)D = \{(kx^{(1)}, kx^{(2)}, \dots, kx^{(n)}) \forall (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \in D\}.$$
 (2.10)

From (2.6), (2.7), (2.8), (2.9), (2.10), and the definition of the α -cut, we have that (i) the α -cut of $\widetilde{D}(+)\widetilde{E}$ is $D(\alpha) + E(\alpha)$,

$$\widetilde{D} \oplus \widetilde{E} = \bigcup_{0 \le \alpha \le 1} \left(D(\alpha)(+)E(\alpha) \right)_{\alpha}, \tag{2.11}$$

(ii) the α -cut of $\widetilde{D}(-)\widetilde{E}$ is $D(\alpha) - E(\alpha)$,

$$\widetilde{D} \ominus \widetilde{E} = \bigcup_{0 \le \alpha \le 1} (D(\alpha)(-)E(\alpha))_{\alpha}, \tag{2.12}$$

(iii) the α -cut of $k_1 \odot wtD$ is $k(\cdot)D(\alpha)$,

$$k_1 \circ \widetilde{D} = \bigcup_{0 < \alpha < 1} (k(\cdot)D(\alpha))_{\alpha}. \tag{2.13}$$

In the crisp case on \mathbb{R}^n , we can consider the *n*-dimensional vector space E^n over \mathbb{R} . Let $P = (p^{(1)}, p^{(2)}, \dots, p^{(n)}), Q = (q^{(1)}, q^{(2)}, \dots, q^{(n)}), A = (a^{(1)}, a^{(2)}, \dots, a^{(n)}), B = (b^{(1)}, b^{(2)}, \dots, b^{(n)}) \in \mathbb{R}^n; k \in \mathbb{R}$.

Define the crisp vectors \overrightarrow{PQ} , $\overrightarrow{AB} + \overrightarrow{PQ}$, and $k \cdot \overrightarrow{PQ}$ as follows:

$$\overrightarrow{PQ} = (q^{(1)} - p^{(1)}, q^{(2)} - p^{(2)}, \dots, q^{(n)} - p^{(n)}) = Q(-)P,$$
 (2.14)

$$\overrightarrow{AB} + \overrightarrow{PQ} = (b^{(1)} + q^{(1)} - a^{(1)} - p^{(1)}, b^{(2)} + q^{(2)} - a^{(2)} - p^{(2)}, \dots, b^{(n)} + q^{(n)} - a^{(n)} - p^{(n)}),$$
(2.15)

$$k \cdot \overrightarrow{PQ} = (kq^{(1)} - kp^{(1)}, kq^{(2)} - kp^{(2)}, \dots, kq^{(n)} - kp^{(n)}).$$
 (2.16)

Let $O = (0,0,...,0) \in \mathbb{R}^n$, $\overrightarrow{OP} = (p^{(1)},p^{(2)},...,p^{(n)})$, $\overrightarrow{OO} = (0,0,...,0)$, and let $E^n = \{\overrightarrow{PQ} = (q^{(1)} - p^{(1)},q^{(2)} - p^{(2)},...,q^{(n)} - p^{(n)}) \, \forall P,Q \in \mathbb{R}^n \}$. This is a n-dimensional vector space over \mathbb{R} . There is a one-to-one onto mapping between the point $(a^{(1)},a^{(2)},...,a^n)$ on \mathbb{R}^n and the level 1 fuzzy point $(a^{(1)},a^{(2)},...,a^n)_1$ on $F_p^n(1)$:

$$\rho: (a^{(1)}, a^{(2)}, \dots, a^{(n)}) \in \mathbb{R}^n \longleftrightarrow \rho(a^{(1)}, a^{(2)}, \dots, a^{(n)})$$

$$= (a^{(1)}, a^{(2)}, \dots, a^{(n)})_1 \in F_v^n(1).$$
(2.17)

Let $\widetilde{P} = (p^{(1)}, p^{(2)}, ..., p^{(n)})_1$, $\widetilde{Q} = (q^{(1)}, q^{(2)}, ..., q^{(n)})_1 \in F_p^n(1)$. From (2.14) and (2.17), we have the following definition:

$$\overrightarrow{\widetilde{P}} \widetilde{\widetilde{Q}} = (q^{(1)} - p^{(1)}, q^{(2)} - p^{(2)}, \dots, q^{(n)} - p^{(n)})_1 = \widetilde{Q} \ominus \widetilde{P}.$$
(2.18)

Let $FE^n = \{\widetilde{\widetilde{PQ}} \forall \widetilde{P}, \widetilde{Q} \in F_p^n(1)\}$. From (2.14) and (2.18), we have the one-to-one onto mappings

$$\overrightarrow{PQ} = (q^{(1)} - p^{(1)}, q^{(2)} - p^{(2)}, \dots, q^{(n)} - p^{(n)})$$

$$\longleftrightarrow \rho(\overrightarrow{PQ}) = (q^{(1)} - p^{(1)}, q^{(2)} - p^{(2)}, \dots, q^{(n)} - p^{(n)})_{1}$$

$$= \overrightarrow{P}\widetilde{Q} \in FE^{n},$$

$$\overrightarrow{AB} + \overrightarrow{PQ} = (b^{(1)} + q^{(1)} - a^{(1)} - p^{(1)}, b^{(2)} + q^{(2)} - a^{(2)} - p^{(2)},$$

$$\dots, b^{(n)} + q^{(n)} - a^{(n)} - p^{(n)})$$

$$\longleftrightarrow (b^{(1)} + q^{(1)} - a^{(1)} - p^{(1)}, b^{(2)} + q^{(2)} - a^{(2)} - p^{(2)},$$

$$\dots, b^{(n)} + q^{(n)} - a^{(n)} - p^{(n)})_{1}$$

$$= \overrightarrow{AB} \oplus \overrightarrow{P}\widetilde{Q},$$

$$k \cdot \overrightarrow{PQ} = (kq^{(1)} - kp^{(1)}, kq^{(2)} - kp^{(2)}, \dots, kq^{(n)} - kp^{(n)})$$

$$\longleftrightarrow (kq^{(1)} - kp^{(1)}, kq^{(2)} - kp^{(2)}, \dots, kq^{(n)} - kp^{(n)})_{1}$$

$$= k_{1} \odot \overrightarrow{P}\widetilde{Q}.$$

Therefore, $FE^n = \{\overrightarrow{\widetilde{PQ}} \forall \widetilde{P}, \widetilde{Q} \in F_p^n(1)\}$ is a vector space over $F_p^n(1)$ in fuzzy sense.

In [4], we further extend FE^n as follows. For $\widetilde{X}, \widetilde{Y} \in F_c$, define $\overline{\widetilde{X}}\widetilde{Y} = \widetilde{Y} \ominus \widetilde{X}$ and call $\overline{\widetilde{X}}\widetilde{Y}$ a fuzzy vector. Let SFR = $\{\overline{\widetilde{X}}\widetilde{Y} \forall \widetilde{X}, \widetilde{Y} \in F_c\}$. In [4], we proved that the following properties hold.

PROPERTY 2.7. For $\overrightarrow{X}\widetilde{Y}$, $\overrightarrow{W}\widetilde{Z} \in SFR$.

$$\overrightarrow{\widetilde{X}\widetilde{Y}} = \overrightarrow{\widetilde{W}}\widetilde{\widetilde{Z}} \Longleftrightarrow \widetilde{Y} \ominus \widetilde{X} = \widetilde{Z} \ominus \widetilde{W}. \tag{2.20}$$

PROPERTY 2.8. For $\overrightarrow{\widetilde{X}\widetilde{Y}}$, $\overrightarrow{\widetilde{W}\widetilde{Z}} \in SFR$, $k \in \mathbb{R}$,

$$(1^{\circ}) \ \overrightarrow{\widetilde{X}\widetilde{Y}} \oplus \overrightarrow{\widetilde{W}\widetilde{Z}} = \overrightarrow{\widetilde{A}\widetilde{B}}, \text{ where } \widetilde{A} = \widetilde{X} \oplus \widetilde{W}, \ \widetilde{B} = \widetilde{Y} \oplus \widetilde{Z};$$

(2°)
$$k_1 \odot \overrightarrow{\widetilde{X}} \widetilde{\widetilde{Y}} = \overrightarrow{\widetilde{C}} \widetilde{D}$$
, where $\widetilde{C} = k_1 \odot \widetilde{X}$, $\widetilde{D} = k_1 \odot \widetilde{Y}$.

PROPERTY 2.9. For $\overrightarrow{\widetilde{X}\widetilde{Y}}, \overrightarrow{\widetilde{W}\widetilde{Z}}, \overrightarrow{\widetilde{U}\widetilde{V}} \in SFR, k, t \in \mathbb{R}$,

 $(1^{\circ}) \overrightarrow{\widetilde{X}\widetilde{Y}} \oplus \overrightarrow{\widetilde{W}\widetilde{Z}} = \overrightarrow{\widetilde{W}}\widetilde{Z} \oplus \overrightarrow{\widetilde{X}\widetilde{Y}}:$

$$(1^{\circ}) \ XY \oplus WZ = WZ \oplus XY;$$

$$(2^{\circ}) \ (\widetilde{X}\widetilde{Y} \oplus \widetilde{W}\widetilde{Z}) \oplus \widetilde{U}\widetilde{V} = \widetilde{X}\widetilde{Y} \oplus (\widetilde{W}\widetilde{Z} \oplus \widetilde{U}\widetilde{V});$$

(3°)
$$\overrightarrow{\widetilde{X}\widetilde{Y}} \oplus \overrightarrow{\widetilde{O}\widetilde{O}} = \overrightarrow{\widetilde{X}\widetilde{Y}}$$
, where $\overrightarrow{\widetilde{O}\widetilde{O}} = (0,0,\ldots,0)_1$;

$$(4^{\circ}) \ k_1 \odot (t_1 \odot \widetilde{X} \widetilde{Y}) = (kt)_1 \odot \widetilde{X} \widetilde{Y};$$

$$(4^{\circ}) \quad k_{1} \odot (\underbrace{t_{1} \circ \widetilde{X} \widetilde{Y}}_{1}) = (kt)_{1} \circ \widetilde{X} \widetilde{Y};$$

$$(5^{\circ}) \quad k_{1} \odot (\widetilde{X} \widetilde{Y} \oplus \widetilde{W} \widetilde{Z}) = (k_{1} \circ \widetilde{X} \widetilde{Y}) \oplus (k_{1} \circ \widetilde{W} \widetilde{Z});$$

(6°)
$$1 \odot \overrightarrow{\widetilde{X}} \overrightarrow{\widetilde{Y}} = \overrightarrow{\widetilde{X}} \overrightarrow{\widetilde{Y}}$$
.

In SFR, the following do not hold.

(7°) $\overrightarrow{For} \overrightarrow{\widetilde{XY}} \in SFR \text{ and } \overrightarrow{\widetilde{XY}} \neq \overrightarrow{\widetilde{OO}}, \text{ there exists } \overrightarrow{\widetilde{WZ}} \ (\neq \overrightarrow{\widetilde{OO}}) \in SFR \text{ such that } \overrightarrow{\widetilde{XY}} \oplus \overrightarrow{\widetilde{WZ}} =$

$$(8^{\circ}) \ (k+t)_{1} \odot \overrightarrow{\widetilde{X}\widetilde{Y}} = (k_{1} \odot \overrightarrow{\widetilde{X}\widetilde{Y}}) \oplus (t_{1} \odot \overrightarrow{\widetilde{X}\widetilde{Y}}).$$

From Property 2.9, we know that SFR satisfies all the conditions that the vector space required, except (7°) and (8°). Therefore, in [4], we called SFR a pseudo-fuzzy vector space over $F_p^1(1)$.

EXAMPLE 2.10 (a moving station carrying a missile on it). This car left from point P = (2,5) passing through point Q = (4,6), arrived at R = (8,9), and aiming at the target Z = (100, 200). As we can see, the missile usually falls in the vicinity of Z, say \widetilde{Z} , instead of hitting at *Z* exactly.

Let the membership function of \tilde{Z} be

$$\mu_{\widetilde{Z}}(x^{(1)}, x^{(2)}) = \begin{cases} \frac{1}{25} (25 - (x^{(1)} - 100)^2 - (x^{(2)} - 200)^2), \\ \text{if } (x^{(1)} - 100)^2 + (x^{(2)} - 200)^2) \le 25, \\ 0, & \text{elsewhere.} \end{cases}$$
 (2.21)

Consider the level 1 fuzzy points $\widetilde{P} = (2,5)_1$, $\widetilde{Q} = (4,6)_1$, and $\widetilde{R} = (8,9)_1$. We have the fuzzy routes

$$\widetilde{P} \longrightarrow \widetilde{Q} \longrightarrow \widetilde{R} \longrightarrow \widetilde{Z}$$
 (2.22)

and hence the fuzzy vectors $\overrightarrow{\widetilde{P}}\widetilde{\widetilde{Q}} = (2,1)_1$, $\overrightarrow{\widetilde{Q}}\widetilde{R} = (4,3)_1$, $\overrightarrow{\widetilde{R}}\widetilde{Z} = \widetilde{Z} \ominus \widetilde{R}$, and $\overrightarrow{\widetilde{P}}\widetilde{Z} = \widetilde{Z} \ominus \widetilde{P}$. By extension theory, the membership function of $\widetilde{R}\widetilde{Z} = \widetilde{Z} \ominus \widetilde{R}$ is

$$\mu_{\widetilde{R}\widetilde{Z}}(z^{(1)}, z^{(2)}) = \sup_{z^{(j)} = v^{(j)} - u^{(j)}, j = 1, 2} \mu_{\widetilde{R}}(u^{(1)}, u^{(2)}) \wedge \mu_{\widetilde{Z}}(v^{(1)}, v^{(2)})$$

$$= \mu_{\widetilde{Z}}(z^{(1)} + 8, z^{(2)} + 9)$$

$$= \begin{cases} \frac{1}{25} (25 - (z^{(1)} - 92)^2 - (z^{(2)} - 191)^2), \\ \text{if } (z^{(1)} - 92)^2 + (z^{(2)} - 191)^2 \leq 25, \\ 0, & \text{elsewhere.} \end{cases}$$

$$(2.23)$$

Similarly,

$$\mu_{\widetilde{P}\widetilde{Z}}(z^{(1)}, z^{(2)}) = \begin{cases} \frac{1}{25} (25 - (z^{(1)} - 98)^2 - (z^{(2)} - 195)^2), \\ \text{if } (z^{(1)} - 98)^2 + (z^{(2)} - 195)^2 \le 25, \\ 0, & \text{elsewhere.} \end{cases}$$
 (2.24)

Let S=(98,202). It is clear that (98,202) is within the circle of center (100,200) and radius 5. The crisp vector which starts with the point P=(2,5) and ends at S=(98,202) is $\overrightarrow{PS}=(96,197)$. Its grade of membership in \overrightarrow{PZ} from (2.23) is $\mu_{\widetilde{PZ}}(96,197)=(1/25)(25-2^2-2^2)=0.68$, that is, the grade of membership of the fuzzy vector \overrightarrow{PZ} for the crisp vector \overrightarrow{PS} is 0.68. Let the aim be T=(100,200). The crisp vector beginning at P=(2,5) and aiming at P=(100,200) is PT=(98,195). Its grade of membership in PZ, again from (2.23), is $\mu_{PZ}(98,195)=(1/25)(25-0^2-0^2)=1$, that is, the grade of membership of the fuzzy vector PZ for the crisp vector PZ is 1.

EXAMPLE 2.11. In a shooting practice, let $C((10,30),1+1/m) = \{(x,y) \mid (x-10)^2 + (y-30)^2 \le (1+1/m)^2\}$, always shooting at (1,2) and aiming at Z=(10,30). At the first time, the bullet was falling in C((10,30),2(=1+1)). At the second time, it was falling in C((10,30),1+1/2). At the mth time, it was falling in C((10,30),1+1/m). In other words, the bullet was more and more closer to C((10,30),1), that is, more and more accurate.

Let the fuzzy aim be \widetilde{Z}_m , its membership function is

$$\mu_{\widetilde{Z}_{m}} = \begin{cases} \frac{1}{(1+1/m)^{2}} \left[\left(1 + \frac{1}{m} \right)^{2} - (x-10)^{2} - (y-30)^{2} \right], \\ \text{if } (x-10)^{2} + (y-30)^{2} \le \left(1 + \frac{1}{m} \right)^{2}, \\ 0, & \text{elsewhere.} \end{cases}$$
 (2.25)

Thus, we have the mth fuzzy vector $\widetilde{Q}\widetilde{Z}_m$, $m=1,2,\ldots$, where $\widetilde{Q}=(1,2)_1$. In the next section, we will discuss the convergency of the fuzzy vectors in SFR and find out the limit fuzzy vector $\lim_{n\to\infty}\widetilde{\widetilde{Q}}\widetilde{Z}_m$.

3. The convergency of the vectors in SFR. Before we try to investigate the convergency of the fuzzy vectors in SFR, we first define the following open set in \mathbb{R}^n and discuss some properties (Properties 3.4, 3.7, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, and 3.17). Let

$$O((a^{(1,1)}, a^{(1,2)}), \dots, (a^{(n,1)}, a^{(n,2)}))$$

$$= \{(x^{(1)}, x^{(2)}, \dots, x^{(n)}) \mid a^{(j,1)} < x^{(j)} < a^{(j,2)}, \ j = 1, 2, \dots, n\}.$$
(3.1)

From (2.8), (2.9), and (2.10), we have

$$O((a^{(1,1)},a^{(1,2)}),...,(a^{(n,1)},a^{(n,2)}))(+)O((b^{(1,1)},b^{(1,2)}),...,(b^{(n,1)},b^{(n,2)}))$$

$$= \{(z^{(1)},z^{(2)},...,z^{(n)}) \mid z^{(j)} = x^{(j)} + y^{(j)}, a^{(j,1)} < x^{(j)} < a^{(j,2)},$$

$$b^{(j,1)} < y^{(j)} < b^{(j,2)}, j = 1,2,...,n\}$$

$$= O((a^{(1,1)} + b^{(1,1)},a^{(1,2)} + b^{(1,2)}),...,(a^{(n,1)} + b^{(n,1)},a^{(n,2)} + b^{(n,2)})),$$

$$O((a^{(1,1)},a^{(1,2)}),...,(a^{(n,1)},a^{(n,2)}))(-)O((b^{(1,1)},b^{(1,2)}),...,(b^{(n,1)},b^{(n,2)}))$$

$$= \{(z^{(1)},z^{(2)},...,z^{(n)}) \mid z^{(j)} = x^{(j)} - y^{(j)}, a^{(j,1)} < x^{(j)} < a^{(j,2)},$$

$$b^{(j,1)} < y^{(j)} < b^{(j,2)}, j = 1,2,...,n\}$$

$$= O((a^{(1,1)} - b^{(1,1)},a^{(1,2)} - b^{(1,2)}),...,(a^{(n,1)} - b^{(n,1)},a^{(n,2)} - b^{(n,2)})).$$

$$(3.2)$$

If k > 0,

$$k(\cdot)O((a^{(1,1)},a^{(1,2)}),...,(a^{(n,1)},a^{(n,2)}))$$

$$= \{(z^{(1)},z^{(2)},...,z^{(n)}) \mid z^{(j)} = kx^{(j)},a^{(j,1)} < x^{(j)} < a^{(j,2)}, \ j = 1,2,...,n\}$$

$$= O((ka^{(1,1)},ka^{(1,2)}),...,(ka^{(n,1)},ka^{(n,2)})).$$
(3.4)

If k < 0,

$$k(\cdot)O((a^{(1,1)},a^{(1,2)}),...,(a^{(n,1)},a^{(n,2)}))$$

$$= \{(z^{(1)},z^{(2)},...,z^{(n)}) \mid z^{(j)} = kx^{(j)}, a^{(j,1)} < x^{(j)} < a^{(j,2)}, j = 1,2,...,n\}$$

$$= O((ka^{(1,2)},ka^{(1,1)}),...,(ka^{(n,2)},ka^{(n,1)})).$$
(3.5)

Let $\mathcal{B} = \{O((a^{(1,1)}, a^{(1,2)}), \dots, (a^{(n,1)}, a^{(n,2)}))_{\alpha} \forall a^{(j,1)} < a^{(j,2)}, a^{(j,1)}, a^{(j,2)} \in \mathbb{R}, j = 1, 2, \dots, n; 0 \le \alpha \le 1\}.$

Let \Re^* be the family of fuzzy sets in \Re or any arbitrary unions of these fuzzy sets.

REMARK 3.1. Any intersection of two fuzzy sets in \Re belongs to \Re , and when two fuzzy sets in \Re have no intersection, we call their intersection \emptyset .

From (2.3), let $F = F_p^n \cup F_c \cup \mathbb{R}^*$. In order to consider the problem of convergency, we first consider the topology for F.

DEFINITION 3.2. $\widetilde{Q} \in F$ is an open fuzzy set if and only if for each $(x^{(1)}, x^{(2)}, ..., x^{(n)})_{\alpha} \subset \widetilde{Q}$, there exists $\widetilde{O} \in \mathcal{B}$ such that $(x^{(1)}, x^{(2)}, ..., x^{(n)})_{\alpha} \subset \widetilde{O} \subset \widetilde{Q}$.

Let T_F be the family of all open fuzzy sets satisfying Definition 3.2. Obviously, $\mathfrak{B}^* \subset T_F$.

DEFINITION 3.3 (Chang [1]). T is a family of fuzzy sets in the space X satisfying the following:

- $(1^{\circ}) \varnothing, X \in T$,
- (2°) $\widetilde{A}, \widetilde{B} \in T$, then $\widetilde{A} \cap \widetilde{B} \in T$,
- (3°) $\widetilde{A}_j \in T$, $j \in I$ (any index set), then $\bigcup_{j \in I} \widetilde{A}_j \in T$.

T is called a fuzzy topology for X and (X,T) is called a fuzzy topological space (abbreviated as FTS).

PROPERTY 3.4. T_F is a fuzzy topology for \mathbb{R}^n , (\mathbb{R}^n, T_F) are fuzzy topological sets in \mathbb{R}^n that are restricted in F.

PROOF. (1°) It is obvious that $\mathbb{R}^n \in T_F$. Definition 3.3(1°) is fulfilled.

- (2°) For $\widetilde{D},\widetilde{E} \in T_F$ and $(x^{(1)},x^{(2)},...,x^{(n)})_{\alpha} \subset \widetilde{D} \cap \widetilde{E}$, we have $(x^{(1)},x^{(2)},...,x^{(n)})_{\alpha} \subset \widetilde{D}$ and $(x^{(1)},x^{(2)},...,x^{(n)})_{\alpha} \subset \widetilde{E}$. From Definition 3.2, there exist $\widetilde{I},\widetilde{J} \in \mathfrak{B}$ such that $(x^{(1)},x^{(2)},...,x^{(n)})_{\alpha} \subset \widetilde{I} \subset \widetilde{D}$ and $(x^{(1)},x^{(2)},...,x^{(n)})_{\alpha} \subset \widetilde{J} \subset \widetilde{E}$. Therefore, $(x^{(1)},x^{(2)},...,x^{(n)})_{\alpha} \subset \widetilde{I} \cap \widetilde{J}$. Hence, $\widetilde{I} \cap \widetilde{J} \subset \widetilde{D} \cap \widetilde{E}$. Thus, $\widetilde{D} \cap \widetilde{E} \in T_F$. Definition 3.3(2°) is fulfilled.
- (3°) For $\widetilde{D}_j \in T_F$, $j \in I$, and each $(x^{(1)}, x^{(2)}, ..., x^{(n)})_{\alpha} \subset \bigcup_{j \in I} \widetilde{D}_j$, there exists $m \in I$ such that $(x^{(1)}, x^{(2)}, ..., x^{(n)})_{\alpha} \subset \widetilde{D}_m$. By Definition 3.2, there is a $\widetilde{J} \in \mathbb{R}$ such that $(x^{(1)}, x^{(2)}, ..., x^{(n)})_{\alpha} \subset \widetilde{J} \subset \widetilde{D}_m \subset \bigcup_{j \in I} \widetilde{D}_j \subset T_F$. Thus, Definition 3.3(3°) is fulfilled.

Hence, from Definition 3.3, T_F is a fuzzy topology for \mathbb{R}^n and (\mathbb{R}^n, T_F) is a fuzzy topological space, that is, if we set $X = \mathbb{R}^n$, $T = T_F$ in Definition 3.3, then the definition holds. Therefore, Definitions 3.5, 3.6 and Property 3.7 can all be applied.

DEFINITION 3.5 (Chang [1, Definition 2.3]). A fuzzy set \widetilde{U} in an FTS (X,T) is a neighborhood of a fuzzy set \widetilde{A} if and only if there exists a fuzzy set $\widetilde{O} \in T$ such that $\widetilde{A} \subset \widetilde{O} \subset \widetilde{U}$.

DEFINITION 3.6 (Chang [1, Definition 3]). If a sequence of fuzzy sets $\{\widetilde{A}_n, n = 1, 2, ...\}$ is in an FTS (X,T), then this sequence converges to a fuzzy set \widetilde{A} if and only if it is eventually contained in each neighborhood of \widetilde{A} (i.e., if \widetilde{B} is any neighborhood of \widetilde{A} , there is a positive integer m such that whenever $n \geq m$, $\widetilde{A}_n \subset \widetilde{B}$).

PROPERTY 3.7. $\{\widetilde{A}_n\}$ are increasing fuzzy sets, $\widetilde{A}_1 \subset \widetilde{A}_2 \subset \cdots \subset \widetilde{A}$, and

$$\lim_{n \to \infty} \mu_{\widetilde{A}_n}(x^{(1)}, x^{(2)}, \dots, x^{(n)}) = \mu_{\widetilde{A}}(x^{(1)}, x^{(2)}, \dots, x^{(n)})$$
(3.6)

for all $(x^{(1)}, x^{(2)}, ..., x^{(n)}) \in \mathbb{R}^n$. Then the sequence $\{\widetilde{A}_n, n = 1, 2, ...\}$ converges to \widetilde{A} , denoted by $\lim_{n \to \infty} \widetilde{A}_n = \widetilde{A}$.

PROOF. The proof follows from Definition 3.6 easily.

DEFINITION 3.8. $\bigcup_{\alpha \in [0,1]} O((a^{(1,1)}(\alpha), a^{(1,2)}(\alpha)), ..., (a^{(n,1)}(\alpha), a^{(n,2)}(\alpha)))_{\alpha} (\in T_F)$ is a neighborhood of $\widetilde{D} = \bigcup_{\alpha \in [0,1]} D(\alpha)_{\alpha} \in F_c$ if and only if for each $\alpha \in [0,1]$, there exists $O((a^{(1,1)}(\alpha), a^{(1,2)}(\alpha)), \dots, (a^{(n,1)}(\alpha), a^{(n,2)}(\alpha)))_{\alpha} \in \mathcal{B}$ such that $D(\alpha)_{\alpha} \subset O((a^{(1,1)}(\alpha), a^{(n,2)}(\alpha)))_{\alpha}$ $a^{(1,2)}(\alpha)$ $(a^{(n,1)}(\alpha), a^{(n,2)}(\alpha))$...

DEFINITION 3.9. In F_c , the sequence of fuzzy sets $\widetilde{D}_k = \bigcup_{\alpha \in [0,1]} D_k(\alpha)_{\alpha}, k = 1,2,...$, converges to $\widetilde{D}=\bigcup_{\alpha\in[0,1]}D(\alpha)_{\alpha}, k=1,2,\dots$ $(\in F_{\alpha})$ if and only if for each neighborhood $\bigcup_{\alpha \in [0,1]} O((a^{(1,1)}(\alpha), a^{(1,2)}(\alpha)), \dots, (a^{(n,1)}(\alpha), a^{(n,2)}(\alpha)))_{\alpha}$ of \widetilde{D} , there exists a natural number m such that whenever $k \ge m$, $D_k(\alpha)_{\alpha} \subset O((a^{(1,1)}(\alpha), a^{(1,2)}(\alpha)), \dots, (a^{(n,1)}(\alpha), a^{(n,1)}(\alpha))$ $a^{(n,2)}(\alpha))_{\alpha}$, denoted by $\lim_{k\to\infty} \widetilde{D}_k = \widetilde{D}$.

Since $D \subset \mathbb{R}^n$ and D_{α} ($\in FD^*$) is a one-to-one onto mapping, from Definition 3.9, we can get the following property.

PROPERTY 3.10. In F_c , the sequence of fuzzy sets $\widetilde{D}_k = \bigcup_{\alpha \in [0,1]} D_k(\alpha)_{\alpha}, k = 1,2,...$, converges to $\widetilde{D} = \bigcup_{\alpha \in [0,1]} D(\alpha)_{\alpha}$ if and only if for each $\alpha \in [0,1]$ and every neighborhood $O((a^{(1,1)},a^{(1,2)}),...,(a^{(n,1)},a^{(n,2)}))_{\alpha}$ of $D(\alpha)_{\alpha}$, there exists a natural number msuch that whenever $k \ge m$, $D_k(\alpha)_{\alpha} \subset O((a^{(1,1)}, a^{(1,2)}), ..., (a^{(n,1)}, a^{(n,2)}))$ if and only if for each $\alpha \in [0,1]$ and every neighborhood $O((a^{(1,1)},a^{(1,2)}),...,(a^{(n,1)},a^{(n,2)}))_{\alpha}$ of $D(\alpha)$, there exists m such that whenever $k \ge m$, $D_k(\alpha)_\alpha \subset O((a^{(1,1)},a^{(1,2)}),\ldots,(a^{(n,1)},a^{(n,1)})$ $a^{(n,2)})$).

The convergency of fuzzy vectors needs the following property.

PROPERTY 3.11. For each $\alpha \in [0,1]$, the α -cuts $D_k(\alpha)$, $E_k(\alpha)$, k = 1,2,...,m, of \widetilde{D}_k , \widetilde{E}_k in F_c satisfy the following:

- $(1^{\circ}) (D_k(\alpha)(+)E_k(\alpha))_{\alpha} = D_k(\alpha)_{\alpha} \oplus E_k(\alpha)_{\alpha},$
- (2°) $(D_k(\alpha)(-)E_k(\alpha))_{\alpha} = D_k(\alpha)_{\alpha} \ominus E_k(\alpha)_{\alpha}$,
- (3°) each α -cut of $\bigcup_{k=1}^{m} [\widetilde{D}_k \oplus \widetilde{E}_k]$ is $\bigcup_{k=1}^{m} [\widetilde{D}_k(\alpha)(+)\widetilde{E}_k(\alpha)]$,
- $(3^{\circ}-1) (\bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha)))_{\alpha} = \bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha))_{\alpha} = \bigcup_{k=1}^{m} (D_k(\alpha)_{\alpha} \oplus E_k(\alpha)_{\alpha}) = \bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha))_{\alpha} = \bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)_{\alpha} = \bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)_{\alpha} = \bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)(+)E_k(\alpha)($ $(\bigcup_{k=1}^m D_k(\alpha)_{\alpha}) \oplus (\bigcup_{k=1}^m D_k(\alpha)_{\alpha}),$
- $(3^{\circ}-2) \bigcup_{k=1}^{m} (\widetilde{D}_k \oplus \widetilde{E}_k) = (\bigcup_{k=1}^{m} \widetilde{D}_k) \oplus (\bigcup_{k=1}^{m} \widetilde{E}_k),$
 - (4°) the α -cut of $\bigcup_{k=1}^{m} (\widetilde{D}_k \ominus \widetilde{E}_k)$ is $\bigcup_{k=1}^{m} [D_k(\alpha)(-)E_k(\alpha)]$,
- $(4^{\circ}\text{-}1)\ (\bigcup_{k=1}^{m}(D_{k}(\alpha)(-)E_{k}(\alpha)))_{\alpha}=\bigcup_{k=1}^{m}(D_{k}(\alpha)(-)E_{k}(\alpha))_{\alpha}=\bigcup_{k=1}^{m}(D_{k}(\alpha)_{\alpha}\ominus E_{k}(\alpha)_{\alpha})=0$ $(\bigcup_{k=1}^{m} D_k(\alpha)_{\alpha}) \ominus (\bigcup_{k=1}^{m} D_k(\alpha)_{\alpha}),$ $(4^{\circ}-2) \bigcup_{k=1}^{m} (\widetilde{D}_k \ominus \widetilde{E}_k) = (\bigcup_{k=1}^{m} D_k) \ominus (\bigcup_{k=1}^{m} E_k).$

PROOF. By extension principle (1°)

$$\begin{split} \mu_{D_{k}(\alpha)_{\alpha} \oplus E_{k}(\alpha)_{\alpha}} & (z^{(1)}, z^{(2)}, \dots, z^{(n)}) \\ &= \sup_{\substack{z^{(j)} = x^{(j)} + y^{(j)} \\ j = 1, 2, \dots, n}} \mu_{D_{k}(\alpha)_{\alpha}} (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \\ &\wedge \mu_{E_{k}(\alpha)_{\alpha}} (y^{(1)}, y^{(2)}, \dots, y^{(n)}) \\ &= \sup_{(x^{(1)}, x^{(2)}, \dots, x^{(n)})} \mu_{D_{k}(\alpha)_{\alpha}} (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \\ &\wedge \mu_{E_{k}(\alpha)_{\alpha}} (z^{(1)} - x^{(1)}, z^{(2)} - x^{(2)}, \dots, z^{(n)} - x^{(n)}) \end{split}$$

$$= \alpha, \quad \text{if } (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \in D_k(\alpha),$$

$$(z^{(1)} - x^{(1)}, z^{(2)} - x^{(2)}, \dots, z^{(n)} - x^{(n)}) \in E_k(\alpha),$$

$$= \alpha, \quad \text{if } (z^{(1)}, z^{(2)}, \dots, z^{(n)}) \in D_k(\alpha)(+)E_k(\alpha),$$

$$= \mu_{(D_k(\alpha) + E_k(\alpha))_{\alpha}}(z^{(1)}, z^{(2)}, \dots, z^{(n)}) \quad \forall (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \in \mathbb{R}^n.$$

$$(3.7)$$

- (2°) The proof is similar to that of (1°) .
- (3°) Let $\widetilde{S}_k = \widetilde{D}_k \oplus \widetilde{E}_k$; from (2.11), we have

$$\bigcup_{k=1}^{m} \widetilde{S}_{k} = \bigcup_{k=1}^{m} \bigcup_{\alpha \in [0,1]} \left(D_{k}(\alpha)(+) E_{k}(\alpha) \right)_{\alpha} = \bigcup_{\alpha \in [0,1]} \bigcup_{k=1}^{m} \left(D_{k}(\alpha)(+) E_{k}(\alpha) \right)_{\alpha}. \tag{3.8}$$

Therefore, the α -cut of $\bigcup_{k=1}^{m} (\widetilde{D}_k \oplus \widetilde{E}_k) = \bigcup_{k=1}^{m} \widetilde{S}_k$ is $\bigcup_{k=1}^{m} S_k(\alpha) = \bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha))$. (3°-1) For each $\alpha \in [0,1]$, the subset $\bigcup_{k=1}^{m} S_k(\alpha)$ of \mathbb{R}^n corresponds to the fuzzy set $\bigcup_{k=1}^{m} S_k(\alpha)_{\alpha} = \bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha))_{\alpha}$. We first prove

$$\left(\bigcup_{k=1}^{m} S_k(\alpha)\right)_{\alpha} = \bigcup_{k=1}^{m} S_k(\alpha)_{\alpha}.$$
 (3.9)

We have

$$\mu_{\bigcup_{k=1}^{m} S_{k}(\alpha)_{\alpha}}(z^{(1)}, z^{(2)}, \dots, z^{(n)})
= \bigvee_{k=1}^{m} \mu_{S_{k}(\alpha)_{\alpha}}(z^{(1)}, z^{(2)}, \dots, z^{(n)})
= \alpha, \quad \text{if } (z^{(1)}, z^{(2)}, \dots, z^{(n)}) \in S_{k}(\alpha) \text{ for some } k \in \{1, 2, \dots, m\},
= \alpha, \quad \text{if } (z^{(1)}, z^{(2)}, \dots, z^{(n)}) \in \bigcup_{k=1}^{m} S_{k}(\alpha),
= \mu_{(\bigcup_{k=1}^{m} S_{k}(\alpha))_{\alpha}}(z^{(1)}, z^{(2)}, \dots, z^{(n)}) \quad \forall (z^{(1)}, z^{(2)}, \dots, z^{(n)}) \in \mathbb{R}^{n}.$$
(3.10)

Therefore, $(\bigcup_{k=1}^m S_k(\alpha))_{\alpha} = \bigcup_{k=1}^m S_k(\alpha)_{\alpha}$. Hence

$$\left(\bigcup_{k=1}^{m} \left(D_k(\alpha)(+)E_k(\alpha)\right)\right)_{\alpha} = \bigcup_{k=1}^{m} \left(D_k(\alpha)(+)E_k(\alpha)\right)_{\alpha}.$$
(3.11)

For each $\alpha \in [0,1]$ and each k, (1°) holds. Therefore,

$$\bigcup_{k=1}^{m} (D_k(\alpha)(+)E_k(\alpha))_{\alpha} = \bigcup_{k=1}^{m} (D_k(\alpha)_{\alpha} \oplus E_k(\alpha)_{\alpha}).$$
 (3.12)

Finally, we will prove

$$\bigcup_{k=1}^{m} \left(D_k(\alpha)_{\alpha} \oplus E_k(\alpha)_{\alpha} \right) = \bigcup_{k=1}^{m} \left(D_k(\alpha)_{\alpha} \right) \oplus \bigcup_{k=1}^{m} \left(E_k(\alpha)_{\alpha} \right). \tag{3.13}$$

We have

$$\mu_{\bigcup_{k=1}^{m}(D_{k}(\alpha)_{\alpha}\oplus E_{k}(\alpha)_{\alpha})}(z^{(1)},z^{(2)},...,z^{(n)})$$

$$= \bigvee_{k=1}^{m} \mu_{D_{k}(\alpha)_{\alpha}\oplus E_{k}(\alpha)_{\alpha}}(z^{(1)},z^{(2)},...,z^{(n)})$$

$$= \bigvee_{k=1}^{m} \sup_{z^{(j)}=x^{(j)}+y^{(j)}} \mu_{D_{k}(\alpha)_{\alpha}}(x^{(1)},x^{(2)},...,x^{(n)})$$

$$\wedge \mu_{E_{k}(\alpha)_{\alpha}}(y^{(1)},y^{(2)},...,y^{(n)})$$

$$= \bigvee_{k=1}^{m} \bigvee_{(y^{(1)},y^{(2)},...,y^{(n)})} [\mu_{D_{k}(\alpha)_{\alpha}}(z^{(1)}-y^{(1)},z^{(2)}-y^{(2)},...,z^{(n)}-y^{(n)})$$

$$\wedge \mu_{E_{k}(\alpha)_{\alpha}}(y^{(1)},y^{(2)},...,y^{(n)})]$$

$$= \bigvee_{(y^{(1)},y^{(2)},...,y^{(n)})} [\mu_{\bigcup_{k=1}^{m}D_{k}(\alpha)_{\alpha}}(z^{(1)}-y^{(1)},z^{(2)}-y^{(2)},...,z^{(n)}-y^{(n)})$$

$$\wedge \mu_{\bigcup_{k=1}^{m}E_{k}(\alpha)_{\alpha}}(y^{(1)},y^{(2)},...,y^{(n)})]$$

$$= \mu_{(\bigcup_{k=1}^{m}D_{k}(\alpha)_{\alpha})\oplus(\bigcup_{k=1}^{m}E_{k}(\alpha)_{\alpha})}(z^{(1)},z^{(2)},...,z^{(n)}) \quad \forall (z^{(1)},z^{(2)},...,z^{(n)})\in\mathbb{R}^{n}.$$
(3.14)

(3 $^{\circ}$ -2) By decomposition theorem and (3 $^{\circ}$ -1), we have

$$\bigcup_{k=1}^{m} (\widetilde{D}_{k} \oplus \widetilde{E}_{k}) = \bigcup_{k=1}^{m} \bigcup_{\alpha \in [0,1]} (D_{k}(\alpha)(+)E_{k}(\alpha))_{\alpha}$$

$$= \bigcup_{\alpha \in [0,1]} \bigcup_{k=1}^{m} (D_{k}(\alpha)(+)E_{k}(\alpha))\alpha$$

$$= \bigcup_{\alpha \in [0,1]} \left[\left(\bigcup_{k=1}^{m} D_{k}(\alpha)_{\alpha} \right) \oplus \left(\bigcup_{k=1}^{m} E_{k}(\alpha)_{\alpha} \right) \right].$$
(3.15)

Let $\widetilde{A} = \bigcup_{k=1}^{m} \widetilde{D}_k$, $\widetilde{B} = \bigcup_{k=1}^{m} \widetilde{E}_k$. From (3.9),

$$A(\alpha)_{\alpha} = \bigcup_{k=1}^{m} \widetilde{D}_{k}(\alpha)_{\alpha}, \quad B(\alpha)_{\alpha} = \bigcup_{k=1}^{m} \widetilde{E}_{k}(\alpha)_{\alpha}, \quad \forall \alpha \in [0,1],$$

$$\widetilde{A} \oplus \widetilde{B} = \bigcup_{\alpha \in [0,1]} \left[A(\alpha)(+)B(\alpha) \right]_{\alpha} = \bigcup_{\alpha \in [0,1]} \left[A(\alpha)_{\alpha} \oplus B(\alpha)_{\alpha} \right]$$

$$= \bigcup_{\alpha \in [0,1]} \left[\left(\bigcup_{k=1}^{m} D_{k}(\alpha)_{\alpha} \right) \oplus \left(\bigcup_{k=1}^{m} E_{k}(\alpha)_{\alpha} \right) \right].$$

$$(3.16)$$

From (3.15), (3.17), we have

$$\bigcup_{k=1}^{m} (\widetilde{D}_{k} \oplus \widetilde{E}_{k}) = \bigcup_{\alpha \in [0,1]} \left[\left(\bigcup_{k=1}^{m} D_{k}(\alpha)_{\alpha} \right) \oplus \left(\bigcup_{k=1}^{m} E_{k}(\alpha)_{\alpha} \right) \right] \\
= \left(\bigcup_{k=1}^{m} \widetilde{D}_{k} \right) \oplus \left(\bigcup_{k=1}^{m} \widetilde{E}_{k} \right).$$
(3.18)

Properties (4°) , $(4^\circ-1)$, and $(4^\circ-2)$ can be proved similarly as (3°) , $(3^\circ-1)$, and $(3^\circ-2)$.

PROPERTY 3.12. $\widetilde{D}_k \in F_c$, k = 1, 2, ..., m, and $q \neq 0$; then

- (1°) the α -cut of $\bigcup_{k=1}^m (q_1 \odot \widetilde{D}_k)$ is $\bigcup_{k=1}^m (q(\cdot)D_k(\alpha))$,
- $(2^{\circ}) \bigcup_{k=1}^{m} (q(\odot)D_{k}(\alpha))_{\alpha} = q_{1} \odot (\bigcup_{k=1}^{m} D_{k}(\alpha)_{\alpha}),$ $(3^{\circ}) \bigcup_{k=1}^{m} (q_{1} \odot \widetilde{D}_{k}) = q_{1} \odot (\bigcup_{k=1}^{m} \widetilde{D}_{k}).$

PROOF. The proof goes on the lines of the proof of Property 3.11.

PROPERTY 3.13. $\widetilde{D}_m, \widetilde{E}_m, \widetilde{D}, \widetilde{E} \in F_c, m = 1, 2, ..., \text{ and } \lim_{m \to \infty} \widetilde{D}_m = \widetilde{D}, \lim_{m \to \infty} \widetilde{E}_m = \widetilde{E},$ then

- (1°) $\lim_{m\to\infty} (\widetilde{D}_m \oplus \widetilde{E}_m) = \widetilde{D} \oplus \widetilde{E} = \lim_{m\to\infty} (\widetilde{D}_m) \oplus \lim_{m\to\infty} (\widetilde{E}_m)$,
- (2°) $\lim_{m\to\infty} (\widetilde{D}_m \ominus \widetilde{E}_m) = \widetilde{D} \ominus \widetilde{E} = \lim_{m\to\infty} (\widetilde{D}_m) \ominus \lim_{m\to\infty} (\widetilde{E}_m)$
- (3°) $\lim_{m\to\infty} (k_1 \odot \widetilde{D}_m) = k_1 \odot \widetilde{D} = k_1 \odot (\lim_{m\to\infty} (\widetilde{D}_m)), k \neq 0.$

PROOF. (1°) Since $\lim_{m\to\infty} \widetilde{D}_m = \widetilde{D}$, $\lim_{m\to\infty} \widetilde{E}_m = \widetilde{E}$, by Property 3.10, for each $\alpha \in$ [0,1] and every neighborhood $O((a^{(1,1)}, a^{(1,2)}), \dots, (a^{(n,1)}, a^{(n,2)}))$ of $D(\alpha)$, there exists a natural number $m^{(1)}$ such that when $k \ge m^{(1)}$, $D_k(\alpha) \subset O((a^{(1,1)}, a^{(1,2)}), ..., (a^{(n,1)}, a^{(n,1)})$ $a^{(n,2)}$)). Also, for every neighborhood $O((b^{(1,1)},b^{(1,2)}),...,(b^{(n,1)},b^{(n,2)}))$ of $E(\alpha)$, there exists a natural number $m^{(2)}$ such that when $k \ge m^{(2)}$, $E_k(\alpha) \subset O((b^{(1,1)},b^{(1,2)}),...$ $(b^{(n,1)},b^{(n,2)})$.

Let $m = \max(m^{(1)}, m^{(2)})$. Then, for each $\alpha \in [0, 1]$, when $k \ge m$, by (3.2), we have $D_k(\alpha)(+)E_k(\alpha) \subset O((a^{(1,1)}+b^{(1,1)},a^{(1,2)}+b^{(1,2)}),...,(a^{(n,1)}+b^{(n,1)},a^{(n,2)}+b^{(n,2)})) \in$ T_F), and $O((a^{(1,1)} + b^{(1,1)}, a^{(1,2)} + b^{(1,2)}), \dots, (a^{(n,1)} + b^{(n,1)}, a^{(n,2)} + b^{(n,2)}))$ is the neighborhood of $D(\alpha)(+)E(\alpha)$. By decomposition theorem,

$$\widetilde{D}_{k} \oplus \widetilde{E}_{k} = \bigcup_{\alpha \in [0,1]} \left[D_{k}(\alpha) + E_{k}(\alpha) \right]_{\alpha},$$

$$\widetilde{D} \oplus \widetilde{E} = \bigcup_{\alpha \in [0,1]} \left[D(\alpha) + E(\alpha) \right]_{\alpha}.$$
(3.19)

Hence, by Property 3.10, we have $\lim_{m\to\infty} \widetilde{D}_m \oplus \widetilde{E}_m = \widetilde{D} \oplus \widetilde{E}$. Properties (2°) and (3°) can be proved the same way as (1°) .

PROPERTY 3.14. $\widetilde{D}_k, \widetilde{E}_k, \widetilde{D}, \widetilde{E} \in F_c, k = 1, 2, ...,$ and

$$\lim_{m \to \infty} \mu_{\bigcup_{k=1}^{m} \widetilde{D}_{k}}(x^{(1)}, x^{(2)}, \dots, x^{(n)}) = \mu_{\widetilde{D}}(x^{(1)}, x^{(2)}, \dots, x^{(n)}),$$

$$\lim_{m \to \infty} \mu_{\bigcup_{k=1}^{m} \widetilde{E}_{k}}(x^{(1)}, x^{(2)}, \dots, x^{(n)})$$

$$= \mu_{\widetilde{E}}(x^{(1)}, x^{(2)}, \dots, x^{(n)}) \quad \forall (x^{(1)}, x^{(2)}, \dots, x^{(n)}) \in \mathbb{R}^{n},$$

$$\mu_{\bigcup_{k=1}^{m} \widetilde{D}_{k}} \subset \widetilde{D}, \quad \mu_{\bigcup_{k=1}^{m} \widetilde{E}_{k}} \subset \widetilde{E}, \quad \forall m = 1, 2, \dots,$$
(3.20)

then

- $(1^{\circ}) \lim_{m \to \infty} \bigcup_{k=1}^{m} (\widetilde{D}_{k} \oplus \widetilde{E}_{k}) = \widetilde{D} \oplus \widetilde{E} = (\lim_{m \to \infty} \bigcup_{k=1}^{m} \widetilde{D}_{k}) \oplus (\lim_{m \to \infty} \bigcup_{k=1}^{m} \widetilde{E}_{k}),$
- (2°) $\lim_{m\to\infty}\bigcup_{k=1}^m (\widetilde{D}_k \ominus \widetilde{E}_k) = \widetilde{D} \ominus \widetilde{E} = (\lim_{m\to\infty}\bigcup_{k=1}^m \widetilde{D}_k) \ominus (\lim_{m\to\infty}\bigcup_{k=1}^m \widetilde{E}_k),$ (3°) when $q \neq 0$, $\lim_{m\to\infty}\bigcup_{k=1}^m (q_1 \odot \widetilde{D}_k) = q_1 \odot \widetilde{D}.$

PROOF. (1°) Since $\widetilde{D}_1 \subset \widetilde{D}_1 \cup \widetilde{D}_2 \subset \cdots \subset \bigcup_{k=1}^m \widetilde{D}_k \subset \cdots \subseteq \widetilde{D}$ and

$$\lim_{m \to \infty} \mu_{\bigcup_{k=1}^{m} \tilde{D}_{k}}(x^{(1)}, x^{(2)}, \dots x^{(n)}) = \mu_{\tilde{D}}(x^{(1)}, x^{(2)}, \dots, x^{(n)})$$
(3.21)

for all $(x^{(1)}, x^{(2)}, ..., x^{(n)}) \in \mathbb{R}^n$, hence, by Property 3.7, we have $\lim_{m \to \infty} \bigcup_{k=1}^m \widetilde{D}_k = \widetilde{D}$. Similarly, $\lim_{m\to\infty}\bigcup_{k=1}^m \widetilde{E}_k = \widetilde{E}$. By Property 3.11(3°-2),

$$\bigcup_{k=1}^{m} (\widetilde{D}_k \oplus \widetilde{E}_k) = \left(\bigcup_{k=1}^{m} \widetilde{D}_k\right) \oplus \left(\bigcup_{k=1}^{m} \widetilde{E}_k\right). \tag{3.22}$$

From Property 3.13(1°),

$$\lim_{m \to \infty} \bigcup_{k=1}^{m} (\widetilde{D}_k \oplus \widetilde{E}_k) = \left(\lim_{m \to \infty} \bigcup_{k=1}^{m} (\widetilde{D}_k)\right) \oplus \left(\lim_{m \to \infty} \bigcup_{k=1}^{m} (\widetilde{E}_k)\right) = \widetilde{D} \oplus \widetilde{E}, \tag{3.23}$$

and (2°) , (3°) can be proved as (1°) .

Next, we will discuss the convergency of the fuzzy vectors in SFR.

PROPERTY 3.15. For \widetilde{D}_m , \widetilde{E}_m , \widetilde{D} , $\widetilde{E} \in F_c$, $m = 1, 2, ..., \lim_{m \to \infty} \widetilde{D}_m = \widetilde{D}$, $\lim_{m \to \infty} \widetilde{E}_m = \widetilde{E}$, then the fuzzy vectors $\widetilde{E}_m \widetilde{D}_m$, m = 1, 2, ..., converge to the fuzzy vectors $\widetilde{E} \widetilde{D}$.

PROOF. Since $\overrightarrow{\widetilde{E}_m \widetilde{D}_m} = \widetilde{D}_m \ominus \widetilde{E}_m$, $\overrightarrow{\widetilde{E}\widetilde{D}} = \widetilde{D} \ominus \widetilde{E}$, then, by Property 3.13(2°).

$$\lim_{m \to \infty} \overrightarrow{\widetilde{E}_m \widetilde{D}_m} = \widetilde{D} \ominus \widetilde{E} = \overline{\widetilde{E}} \widetilde{\widetilde{D}}. \tag{3.24}$$

PROPERTY 3.16. $\widetilde{D}_{k}, \widetilde{E}_{k}, \widetilde{D}, \widetilde{E} \in F_{c}, k = 1, 2...; \text{let } \widetilde{Q}_{m} = \bigcup_{k=1}^{m} \widetilde{D}_{k}, \widetilde{S}_{m} = \bigcup_{k=1}^{m} \widetilde{E}_{k}, \text{ and let } \lim_{m \to \infty} \mu_{\widetilde{Q}_{m}}(x^{(1)}, x^{(2)}, ..., x^{(n)}) = \mu_{\widetilde{D}}(x^{(1)}, x^{(2)}, ..., x^{(n)}) \text{ and } \lim_{m \to \infty} \mu_{\widetilde{S}_{m}}(x^{(1)}, x^{(2)}, ..., x^{(n)})$ $\boldsymbol{x}^{(n)}) = \mu_{\widetilde{E}}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(n)}) \text{ for all } (\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(n)}) \in \mathbb{R}^n, \text{ and } \widetilde{Q}_m \subset \widetilde{D}, \ \widetilde{S}_m \subset \widetilde{E}.$ Then the sequence of fuzzy vectors $\widetilde{S}_m \widetilde{Q}_m$, m = 1, 2, ..., converges to the fuzzy vector

PROOF. Similar to Property 3.14, $\lim_{m\to\infty}\bigcup_{k=1}^m \widetilde{D}_k = \widetilde{D}$ and $\lim_{m\to\infty}\bigcup_{k=1}^m \widetilde{E}_k = \widetilde{E}$. By Property 3.13(2°), $\lim_{m\to\infty} \widetilde{S}_m \widetilde{Q}_m = (\lim_{m\to\infty} \bigcup_{k=1}^m \widetilde{D}_k) \ominus (\lim_{m\to\infty} \bigcup_{k=1}^m \widetilde{E}_k) = \widetilde{D} \ominus \widetilde{E} = \overline{\widetilde{E}}\widetilde{D}$. For convenience, we denote $(q_1^{(1)} \odot \widetilde{E}_1 \widetilde{\widetilde{D}_1}) \oplus (q_1^{(2)} \odot \widetilde{\widetilde{E}_2 \widetilde{D}_2}) \oplus \cdots \oplus (q_1^{(r)} \odot \widetilde{\widetilde{E}_r \widetilde{D}_r})$ by $\sum_{k=1}^r \oplus \widetilde{E}_r \widetilde{D}_r \otimes \widetilde{E}_r \widetilde{D}$ $(q_1^{(k)} \odot \overline{\widetilde{E}_k \widetilde{D}_k}).$

PROPERTY 3.17. $\widetilde{D}_{m,k}, \widetilde{E}_{m,k}, \widetilde{D}_k, \widetilde{E}_k \in F_c, m = 1, 2, ..., k = 1, 2, ..., r$, and for each $k \in$ $\{1,2,\ldots,r\}$, $\lim_{m\to\infty}\widetilde{D}_{k,m}=\widetilde{D}_k$, $\lim_{m\to\infty}\widetilde{D}_{k,m}=\widetilde{D}_k$, $q^k\neq 0$. The sequence of the fuzzy vectors $\sum_{k=1}^{r} \oplus (q_1^{(k)} \odot \widetilde{E}_{m,k} \widetilde{D}_{m,k})$, $m = 1, 2, \ldots$, converges to the fuzzy vector $\sum_{k=1}^{r} \oplus (q_1^{(k)} \odot \widetilde{E}_{m,k})$ $\widetilde{E}_k\widetilde{D}_k$).

PROOF. Since $\sum_{k=1}^{r} \oplus (q_1^{(k)} \odot \widetilde{\widetilde{E}}_{m,k} \widetilde{D}_{m,k}) = \sum_{k=1}^{r} \oplus (q_1^{(k)} \odot (\widetilde{D}_{m,k} \ominus \widetilde{E}_{m,k})), \ m = 1, 2, ...,$ for each k, by Property 3.13(2°), $\lim_{m \to \infty} \widetilde{D}_{m,k} \ominus \widetilde{E}_{m,k} = \widetilde{D}_k \ominus \widetilde{E}_k$. By Property 3.13(1°), (3°), we have

$$\lim_{m \to \infty} \sum_{k=1}^{r} \oplus (q_1^{(k)} \odot (\widetilde{D}_{m,k} \ominus \widetilde{E}_{m,k}))$$

$$= \sum_{k=1}^{r} \oplus (q_1^{(k)} \odot (\widetilde{D}_k \ominus \widetilde{E}_k)) = \sum_{k=1}^{r} \oplus (q_1^{(k)} \odot \overline{\widetilde{E}_k \widetilde{D}_k}).$$

$$(3.25)$$

EXAMPLE 3.18. Consider the fuzzy vectors $\lim_{m\to\infty} \widetilde{\widetilde{Q}}\widetilde{Z}_m$ in Example 2.11. Let

$$\mu_{\widetilde{Z}}(x,y) = \begin{cases} 1 - (x - 10)^2 - (y - 30)^2, & \text{if } (x - 10)^2 + (y - 30)^2 \le 1, \\ 0, & \text{elsewhere.} \end{cases}$$
(3.26)

We will prove $\lim_{m\to\infty} \widetilde{Z}_m = \widetilde{Z}$. Since $C((10,30),1+1/m) \subset C((10,30),1+1/(m-1))$ and for any $(x,y) \in \mathbb{R}^2$, the following holds:

$$\frac{1}{(1+1/m)^2} \left[\left(1 + \frac{1}{m} \right)^2 - (x-10)^2 - (y-30)^2 \right] \\
\leq \frac{1}{(1+1/(m-1))^2} \left[\left(1 + \frac{1}{m-1} \right)^2 - (x-10)^2 - (y-30)^2 \right], \tag{3.27}$$

therefore, $\mu_{\widetilde{Z}_m}(x,y) \leq \mu_{\widetilde{Z}_{m-1}}(x,y)$ for all $(x,y) \in \mathbb{R}^2$, and hence $\widetilde{Z}_1 \supset \widetilde{Z}_2 \supset \cdots \supset \widetilde{Z}_m \supset \cdots \supset \widetilde{Z}$, and obviously, $\lim_{m \to \infty} \mu_{\widetilde{Z}_m}(x,y) = \mu_{\widetilde{Z}}(x,y)$ for all $(x,y) \in \mathbb{R}^2$. Let $\widetilde{Z}_m', \widetilde{Z}'$ be the complement fuzzy sets of $\widetilde{Z}_m, \widetilde{Z}$, respectively. We have $\lim_{m \to \infty} \mu_{\widetilde{Z}_m'}(x,y) = \mu_{\widetilde{Z}'}(x,y)$ for all $(x,y) \in \mathbb{R}^2$ and $\widetilde{Z}_1' \subset \widetilde{Z}_2' \subset \cdots \subset \widetilde{Z}_m' \subset \cdots \subset \widetilde{Z}'$. By Property 3.7, $\lim_{m \to \infty} \widetilde{Z} + m' = \widetilde{Z}'$. Thus, $\lim_{m \to \infty} \widetilde{Z}_m = \widetilde{Z}$. Therefore, from Property 3.15, $\lim_{m \to \infty} \widetilde{Q}_m' = \widetilde{Z}_m'$. Thus, the membership function of \widetilde{Q}_m' is

$$\begin{split} \mu_{\widetilde{Q}\widetilde{Z}}(x,y) &= \mu_{\widetilde{Z} \ominus \widetilde{Q}}(x,y) \\ &= \sup_{\substack{x = x^{(1)} - y^{(1)} \\ y = x^{(2)} - y^{(2)}}} \mu_{\widetilde{Z}}(x^{(1)}, x^{(2)}) \wedge \mu_{\widetilde{Q}}(y^{(1)}, y^{(2)}) \\ &= \mu_{\widetilde{Z}}(x + 1, y + 2) \\ &= \begin{cases} 1 - (x - 9)^2 - (y - 28)^2, & \text{if } (x - 9)^2 - (y - 28)^2 \le 1, \\ 0, & \text{elsewhere.} \end{cases} \end{split}$$
(3.28)

In the crisp case, starting from Q=(1,2), aiming at Z=(10,30), we could have the vector $\overrightarrow{QZ}=(9,28)$. The grade of membership of \overrightarrow{QZ} which belongs to the fuzzy vector $\overrightarrow{\widetilde{QZ}}$ is $\mu_{\overrightarrow{\widetilde{QZ}}}(9,28)=1$, that is, the grade of membership function of the fuzzy vector \overrightarrow{PZ} for the crisp vector \overrightarrow{PS} is 1, and the point R=(9.5,29.5) is in the circle of center (9,28) and radius 1. The crisp vector of Q to \mathbb{R} is $\overrightarrow{QR}=(8.5,27.5)$. The grade of membership

function of $\overrightarrow{\widetilde{Q}}\widetilde{\widetilde{Z}}$ is $\mu_{\overline{\widetilde{Q}}\widetilde{\widetilde{Z}}}(8.5,27.5)=0.5$, that is, the grade of membership function of the fuzzy vector $\overrightarrow{\widetilde{P}}\widetilde{\widetilde{Z}}$ for the crisp vector \overrightarrow{QR} is 0.5.

REFERENCES

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [2] A. Kaufmann and M. M. Gupta, *Introduction to Fuzzy Arithmetic. Theory and Applications*, Van Nostrand Reinhold, New York, 1991.
- [3] P. M. Pu and Y. M. Liu, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergence, J. Math. Anal. Appl. **76** (1980), no. 2, 571–599.
- [4] K. Wu, Extension of n-dimensional Euclidean vector space E^n over \mathbb{R} to pseudo-fuzzy vector space over $F_p^1(1)$, Int. J. Math. Sci. **2003** (2003), no. 37, 2349–2373.

Kweimei Wu: Department of Mathematics, National Taiwan University, Taipei, Taiwan