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CALCULATIONS ON SOME SEQUENCE SPACES

BRUNO DE MALAFOSSE
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We deal with space of sequences generalizing the well-known spaces wﬁ(z\), Coo (A, ), TE-
placing the operators C(A) and A(u) by their transposes. We get generalizations of results
concerning the strong matrix domain of an infinite matrix A.

2000 Mathematics Subject Classification: 46A45, 40C05.

1. Notations and preliminary results. For a given infinite matrix A = (@nm)nm=1,
the operators A, are defined, for any integer n > 1, by

Ap(X) = Z AnmXm, (1.1)

m=1

where X = (x;,,)n=1, the series intervening in the second member being convergent. So
we are led to the study of the infinite linear system

An(X) =by, n=12,..., (1.2)

where B = (by)n>1 i a one-column matrix and X the unknown, see [1, 2, 3, 4, 5, 6, 7,
8, 10]. Equation (1.2) can be written in the form AX = B, where AX = (A;,(X))n>1.In
this paper, we will also consider A an operator from a sequence space into another
sequence space.

A Banach space E of complex sequences with the norm ||||r is a BK space if each
projection P, X = x, is continuous for all X € E. A BK space E is said to have AK, (see
[12, 13)),if B = >,,,_; bmem, for every B = (by)n=1 € E, (with e,, = (0,...,1,...), 1 being
in the nth position), that is,

— 0 (n— ). (1.3)
E

H Z bmem

m=N+1

We will write s for the set of all complex sequences, [, ¢, co for the sets of bounded,
convergent, and null sequences, respectively. We will denote by cs and [; the sets of
convergent and absolutely convergent series, respectively.

In all that follows we will use the set

U™ = {(Un) oy €5 | Un >0 Vn}. (1.4)
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From Wilansky’s notations [15], we define for any sequence
X = ((xn)nzl €U+*’ (15)

and for any set of sequences E, the set

() oo (2ot o

We will write & * E instead of (1/x)~! % E for short. So we get

se If E =y,

a*xE=1s ifE=c, (1.7)
So I E=le.
We have for instance
ko =Sy ={(xn)ys1 €5 | xn=0(0tn) N — oo}. (1.8)

Each of the spaces «* E, where E € {co,c,l}, is a BK space normed by

X115, = sup <M> o)
n=1 n
and s has AK.
Now let & = (&Xp)p=1 and B = (Bu)n=1 € U™*. Sup is the set of infinite matrices
A= (anm)n,mzl such that

(AnmCm) sy €11 V21, > (Janm|cm) =0(Bn) (n— ). (1.10)
m=1
S«,p 1s a Banach space with the norm
00 o
IAlls, s = sup( > lanm| ) (1.11)
nx=1 m=1 Bn

Let E and F be any subsets of s. When A maps E into F, we will write A € (E,F), see [11].
So for every X € E, AX € F, (AX € F will mean that for each n > 1 the series defined
by Vi = > 1 AnmXm is convergent and (¥y)n=1 € F). It has been proved in [9] that
A € (sy,5p) if and only if A € Sy p. So we can write that (S«,Sg) = S«.g-

When s, = sg, we obtain the unital Banach algebra Sy g = S«, (see [1, 2, 3, 5, 6, 10])
normed by [[Alls, = [[Allsyq-

We also have A € (s4,5«) if and only if A € S. If |[I - Alls, < 1, we will say that A € Ix.
Since the set S, is a unital algebra, we have the useful result that if A € Ty, A is bijective
from s, into itself.
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If x= ") p=1, las Sas Sar S&» and S&C) are replaced by I, Sy, sy, s;, and sﬁc), respec-

tively, (see [1, 2, 3, 5, 6, 10]). When r = 1, we obtain $; = l., S = ¢o, and S{C) = ¢, and

putting e = (1,1,...), we have §; = S,. It is well known, see [11], that
(s1,51) = (co,s1) = (¢,51) = S1. (1.12)
For any subset E of s, we put
AE={Yes|3IX€E, Y =AX}. (1.13)
If F is a subset of s, we will denote
F(A)=Fs={Xes|Y=AX€eF}. (1.14)
We can see that F(A) = A~!F.

2. Some properties of the operators A* and X*. Here we will deal with the operators
represented by C*(A) and A" (A).
Let

U={(tn)ps; €S| un+0Vn}. (2.1)

We define C(A) = (Cnm)nm=1, for A = (Ay)n=1 €U, by
1

— ifm<n,
Cnm =1 An (2.2)
0 otherwise.

So, we put C*(A) = C(A)L. It can be proved that the matrix A(A) = (Cy)nm=1 With

An if m =n,
Com=1-An1 ifm=n-1,n=2, (2.3)
0 otherwise,

is the inverse of C(A), see [12, 14]. Similarly, we put A*(A) = A(A)L. If A = e, we get
the well-known operator of first difference represented by A(e) = A and it is usually
written as X = C(e). Note that A = 7! and X belong to any given space Sg with R > 1.
Writing Dy = (A 6nm)nm=1, (Where &, = 0 for n = m and 6, = 1 otherwise), we have
A*(A) = DyA*. So for any given ox € U**, we see that if (o¢;,—1/0n) |1An/An-1] = O(1),
then A" (A) € (S(a/jA)),S«)- Since Ker A* (A) # 0, we are lead to define the set

Sa (A7) = sa (AT ) (N S@ian = 1X = (Xn) p1 € Swinn | AT Q)X €sa}. (2.4)
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It can easily be seen that
Stayap (AT (@) = sfyyia) (A7) =55 (AT (). (2.5)

2.1. Properties of the sequence C(x)x. We will use the following sets:

C]—‘|0(€UJr>|< %(Z(Xk) =0(1) (‘I’L—»oo)]»,
n\ k=1
@=<|an** 1 (20(;()6(:]»,
Cn \ k5
1 (2.6)
Cy =1an+*ﬂcs a—( > (xk) =0(1) (n — oo)},
n \k=n
r={acu | (L) <af,
F*:{an** llrl’olo((x;+1)<1}

Note that x e I'* if and only if 1/ € T. We will see in Proposition 2.1 that if x € a, 16
tends to infinity. On the other hand, we see that A € Iy implies x € T and « €T if and
only if there is an integer g > 1 such that

Ya(x) = sup (‘X"’l) <. 2.7)

n=q+1

We obtain the following results in which we put [C(&) o]y = (311 &)/ -

PROPOSITION 2.1. Let x € U™*. Then
(i) otp-1/0y — 0 ifand only if [C(x)x]y, — 1,
(i) (@) x e c implies that (&y-1/&n)n=1 € C,
(b) [C(x)x]y — L implies that &y—1/ Xy — 1-1/1,
(iii) ifx € a, there are K > 0 and y > 1 such that

oy = Ky"™ Vn, (2.8)

(iv) the condition x € T implies that x € CAl and there exists a real b > 0 such that

1
[C()«], < 1

+bx" fornz=qg+1, x=y.(x) €10,1[, (2.9)

(V) the condition x € Tt implies that x € a
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PROOF. Assume that &,-1/&y, — 0. Then there is an integer N such that

—

Kp—
nlS*.
o 2

n=N+1=

So there exists a real K > 0 such that «,, > K2" for all n and

n—k
Kk _ Kk ...L’Hg(l) forN<k<n-1.
Kn  Kk+1 Xn 2
Then
1 n-1 ) 1 (N—l ) n-1 X1 1 (N—l ) n-1 1\ "k
— | Do|== Do |+ = D +z(—) ,
Cn (k—l Cn \ 12 k=N &n K2n k=1 k=N 2

and since Y7 x(1/2)"k =1—-(1/2)" N — 1, (n — ), we deduce that

1 n-1
—( > (xk) =0(1)
Cn \ 5
and ([C(x)xlyn) € ls. Using the identity

K+ -+ -1 Kp-1

[C(a], = 1= [C(a)a]H(%) .y

Kn-1 Kn

we get [C(x)a], — 1. This proves the necessity.
Conversely, if [C(x)«],; — 1, then

Kn-1 [C(O()O(]n_l

= —0.
O [Cle)e]y 4
(ii) is a direct consequence of the identity (2.14).
(iii) We put X, = >}, &k. Then for areal M > 1,
Zn
[C(a],=—c—<M Vn.

B Zn _anl

S0%, > (M/(M-1))Z,_1 and =, = (M /(M — 1))"710(1Vn. Therefore, from

(M )"’1 _
cxn(M—l S[C((x)(x]n—(xnsM,

1657

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

we conclude that &, = Ky" for all n,withK = (M -1)ox; /M2 and y = M/(M —1) > 1.
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(iv) If x €T, there is an integer g > 1 for which

k > g + 1 implies %sx<l, with x = y,;(c0). (2.18)
k

So there is areal M’ > 0 for which

Oy =

vn=q+1. (2.19)

Writing oyq = (1/0(n)(ZZ:1 k) and dy, = [C(&) ]y — Ong, We get
1 (& nlo |
dn= (S )= T (T2 ) S pists @20
On \ kg4 ja+1 \k=1 Sn-k+1 ) T 1-Xx
Using (2.19), we get opq < (1/M")x™ (3}, o). So
[Cx)x],, <a+bx" (2.21)

witha=1/(1-x) and b = (1/M")(S]_, o).
(V) If x €T*, there are X’ € ]0,1[ and an integer q" > 1 such that

Kk
Kk-1

<x fork=q. (2.22)

Then for every n > q’, we have

0 0 k-n-1 ©
1 Kg—i
L Sa)- 3 (%) <as S I (i) Y xkr-om. @23
Cn (k—n ) k—n \ &n kentl ico  Kk-i-1 k=n
This gives the conclusion. O

REMARK 2.2. Note that as a direct consequence of Proposition 2.1, we have a N a =

INI* = .
REMARK 2.3. The condition « € a does not imply that « €T, see [8].

2.2. Some new properties of the operators A and A*. In the following we will use
some lemmas, the next one is well known, see [15].

LEMMA 2.4. The condition A € (co,co) is equivalent to

AEeS,

lirrlnanm =0 foreachm > 1. (2.24)

LEMMA 2.5. If A" is bijective from sy into itself, then x € cs.

PROOF. Assume that & ¢ cs, that is, >, &, = . Two cases are possible.

(1) e e KerA* N s4. Then A* cannot be bijective from s, into itself.

(2) e ¢ KerA*(\s«. Then 1/ ¢ s; and there is a sequence of integers (n;); strictly
increasing such that 1/, — c. Assume that the equation A*X = « has a solution
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X = (Xn,0)n>1 1n S« Then there is a unique scalar x; such that

n-1
Xno =X1— . Q. (2.25)
k=1
So
i—1
Xn;s 1 " ,
@= — | x1— K || — o0 asi— oo, (2.26)
Ky, Oy, Pl

and X ¢ s, which is contradictory.
We conclude that each of the properties e € Ker A"\ sy and e ¢ Ker A™ () s, is impos-
sible and A" is not bijective from s, into itself. This proves the lemma. O

LEMMA 2.6. For every X € co, X" (ATX) = X and for every X € cs, AT (Z*X) = X.

PROOF. It can easily be seen that

[Z+(A+X)]n = Z (Xm_xm+1) =Xn VXEC(),
" N (2.27)
[A+ (Z+X)]n = Z Xm — Z Xm =Xn VX ecs.

3
i
N

m=n+l

We can assert the following result, in which we put &* = (&n+1)n>1 and s3*(A*) =
sa(A*)(sa. Note that from (2.5) we have

sk(AT(e) = sE(AY) = sa(AT) [ Sa (2.28)

THEOREM 2.7. (i) (@) s«(A) = s« if and only if x € a
(b) s3(A) = s5 if and only if x € C,
© s$(A) =5 ifand only if x e C.
(i) (@) x e 6\1 if and only if su+ (AT) = s and A™ is surjective from sy into sy-+,
(b) xe EI? if and only if sk (A*) = sq and A* is bijective from sy into s,
(0 xe E‘IT implies that sg* (A1) = s; and A™ is bijective from sg into sg,.
(iil) x e 61: if and only if so(37) = sq and s (2) = s« implies s (E") = s5.

PROOF. (i) has been proved in [8].
(ii)(a) Sufficiency. If A" is surjective from s, into sy+, then for every B € sy+ the
solutions of A*™X = B in s, are given by

n
Xni1=X1— > by n=1.2,..., (2.29)
k=1
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where x is arbitrary. If we take B = a*, we get X, = X1 — > gy Xk. SO

n

ﬂ_ﬂ_i(zak> -0(1). (2.30)

On O O\ S

Taking x; = — 1, we conclude that (Zf;ll i)/, =0(1) and x € 6\1
Conversely, assume that « € C,. From the inequality

"‘"lsl(z(xk) -0(1), 2.31)

Cn Cn \ k5

we deduce that &;,—1/, = O(1) and A* € (s«,5«+). Then for any given B € s+, the
solutions of the equation A*X = B are given by x; = —u and

n-1
~Xp=u+ > by forn=2, (2.32)

k=1

where u is an arbitrary scalar. So there exists a real K > 0 such that

en] _ Jut SR b Jul +K (35 o)

=0(1) (2.33)
oy oy oy

and X € s4. We conclude that A* is surjective from s, into sy-.
(ii)(b) Necessity. Assume that & € Ci". Then A* € (54, S«), Since

M<L(Zak) ~0(1) (n—w). (2.34)

Cn Cn \ 5
Further, from s, C cs, we deduce, using Lemma 2.4, that for any given B € s,
A*(S*B) = B. (2.35)

On the other hand, 3*B = (3.}, bx)n=1 € Sq, since « € C;. So A" is surjective from s,
into s4. Finally, A* is injective because the equation

AtTX =0 (2.36)
admits the unique solution X = O in s4, since
KerA' = {ue' | ueC} (2.37)

t
and e! ¢ sq.
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Sufficiency. For every B € sy, the equation A*X = B admits a unique solution in
S« Then from Lemma 2.5, & € ¢s and since sy C ¢s, we deduce from Lemma 2.6 that
X =37*B € s4 is the unique solution of A*X = B. Taking B = «, we get X"« € s, that is,
xeCy.

(i) Ifx e E’l:, A™ is bijective from s, into itself. Indeed, we have Dy ;A" D € (co,¢o)
from (2.34) and Lemma 2.4. Furthermore, since «x € a we have s C cs and for every
B € sg,

A*(S*B) = B. (2.38)

From Lemma 2.4, we have X* € (s3,55%), so the equation A*X = B admits the solution
Xo = £*B in s; and we have proved that A* is surjective from sg into itself. Finally,
ES E’? implies that et ¢ s, so KerA™ (s = {0} and we conclude that A™ is bijective
from sg, into itself.

(iii) comes from (ii), since «x € a if and only if A™ is bijective from s, into itself and

SHATX) = AT (STX) =X VX E s, (2.39)
O

As a direct consequence of Theorem 2.7 we obtain the following results.

COROLLARY 2.8. Let R be any real > 0. Then
R>1 < sp(A) = sg <= sp(A) = sp = sg(A") = sg. (2.40)

PROOF. From (i) and (ii) in Theorem 2.7, we see that it is enough to prove that « =
(R™)p>1 € Cy if and only if R > 1. We have (R"),,»1 € C; if and only if R # 1 and

-n k) __~ p-n+l_ %
R (k_ElR ) 1—RR TR O(1) asn— oo. (2.41)
This means that R > 1 and the corollary is proved. O

Using the notation o~ = (1, xy, X2,..., Xn-1,...) We get the next result.

COROLLARY 2.9. Letxe U** and u € U. Then
(i) «/|ul € C if and only if

sa(AT () = S(a/1un-> (2.42)
(i) /|l €Cy if and only if
Sa (AT (W) = S/ - (2.43)
PROOF. First we have

Sa(AT () = Ss(ayqun (A7), (2.44)
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Indeed,
Xe SD((AJr (/J)) = D“AJrX Esa = A Xe S/ lu) = X € S(o(/|,,,|)(A+). (2.45)

Now, if «o/|u| € a, from (i) in Theorem 2.7, we have S/ u))(A") = S(xjjup- and
Sax(AT (1)) = S(ayu)-- Conversely, assume sy (A* () = S(a/ju-- Reasoning as above,
we get S/ jul) (AY) = S(a/|u)-, and using (i) in Theorem 2.7 we conclude that «/|u| € a
and (i) holds.

(i) x/|u| € 61: implies that A" is bijective from s,y into itself. Thus

Sa (AT () = 8y (A7) = St/ iup- (2.46)
This proves the necessity. Conversely, assume that s (A* () = S(x/|u))- Then 5 (/1) (A1)
= S(x/|u) and from Theorem 2.7(ii)(b), /|| € 61: and (ii) holds. O

2.3. Spaces w§ (A) and wa” (A) for given real p > 0. Here we will define sets gener-
alizing the well-known sets

wEQ) = (X es | CA(XIP) €L},
wl ) =X es | CA(IXIP) € col,

(2.47)

see [9, 12, 13, 14, 15]. It is proved that each of the sets wf = wf ((n),) and wk =
wl((n),)isa p-normed FK space for 0 < p < 1 (i.e., a complete linear metric space for
which each projection P, is continuous) and a BK space for 1 < p < co with respect to
the norm

2v+171
sup(zlv( > |xn|”)> ifo<p<l,

v n=2v

Xl = (2.48)

1 2v+log 1/p
sup(ZV( > |xn|p)> if 1 <p <.

n=2v
The set wé’ has the property AK, (i.e., every X = (Xy)n=1 € w(’)7 has a unique representa-
tion X = >_; xpel) and every sequence X = (xy)n>1 € wP has aunique representation

= z (2.49)

where [ € C is such that X —le! € w(’f, (see [4]). Now, let x e U** and A € U™ *. We have

wi(A) ={X es|CQA)(IXI?) € sa},
wa’ (A) ={X es [ CTA)(IXI|?) € sa},
wo’ (A) ={X es | CQA)(IXI") € 53},
wa P(A) ={Xes|CTA)(IXI7) €55}

(2.50)

We deduce from the previous section the following theorem.
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THEOREM 2.10. (i) () The condition «x € 61: is equivalent to
wa” (A) = S(a)ip-
M) Ifxe a, then
wa (A) = Stany -
(ii) (a) The condition xA € a is equivalent to
W& (A) = S(aa)1/p-
(b) If xA € C;, then
wa' P (A) = S50 10
PROOF. Assume that « € a Since C*(A) = £*Dy,a, we have
wo (A) = {X | (Z*D1ja) (IXI7) € sa} = {X | Dia(IXIP) € sa(E)},
and since x € a implies s, (%) = sy, we conclude that

wa’ (A) = {X | IX|” € Dasa = Saa} = S(a)i/r-

Conversely, we have (0A)Y? € s qa)1p = wa” (A). So

CT (M) [(xA)!P])? = (Z "‘;2") € Sus
nx=1

k=n

thatis, x € a and we have proved (i). We obtain (i)(b) by reasoning as above.

(ii) Assume that xA € CA] . Then

whk(Q) = {X | |XIP € AA)sq}-

1663

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)
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Since A(A) = ADj,, we get A(A)sqy = Asqa. Now, from oA € CAl we deduce that A is
bijective from sy, into itself and wh(A) = Sanip- Conversely, assume that wh) =
Siani/e- Then (&xA) /P € s4a1/» implies that

C(A)(xA) € Sq, (2.59)

and since D;,;4C(A)(xA) € 51 = L, we conclude that C(xA)(xA) € lo. The proof of
(ii)(b) follows the same lines as in the proof of the necessity in (ii) replacing saa by Sz, -
O

3. New sets of sequences of the form [A;,A;]. In this section, we will deal with the
sets

[A1(A), A ()] = {X €5 | AL (A) (| A2 ()X |) € sal}, (3.1)

where A; and A, are of the form C(&), CT (&), A(E), or AT(E) and we give necessary
conditions to get [A;(A),A>(u)] in the form s,,.
Let A and p € U™*. For simplification, we will write throughout this section

[A1,A2] = [A1 (D), A2 (W) ] = {X €5 | A1) (A2 () X]) € sa} 3.2)

for any matrices

A1 (A) € {A(A),A"(A),C(A),CT(A)},

3.3
Az () € {A(u), AT (), C(u),CH () }. -9

So we have for instance

[C,A]={Xes|CQ([AMX]) € sa} = (wa(A)) (3.4)

Ap)r=e

In all that follows, the conditions E elorl/nerl for any given sequences & and n can
be replaced by the conditions & € C1 and n e Cr T

3.1. Spaces [C,C], [C,A], [A,C], and [A,A]. For the convenience of the reader we
will write the following identities, where A;(A) and A, (u) are lower triangles and we
will use the convention iy = O:

[C,C]—<|Xes i(z L(zxk)‘)_anou)},
An m=1 | Hm \ ;53

n

[C,A] = {XGS )\1(2 |Ilkauk1Xk1|) = (XnO(l)},

1 n-1 1 n
(in) (in)‘ =0<n0(1)},
Hn-1\ ;5 n\ ko1

[AA] = {X es| A |Unflxn71 —Hn-2Xn-2 | +An|Uan_Un71Xn71 | = O(no(l)}-
(3.5)

[ACl= <|X€S —An-1
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Note that for « = e and A = u, [C,A] is the well-known set of sequences that are strongly
bounded, denoted by ¢« (A), see [9, 12, 13, 14, 15]. We get the following result.

THEOREM 3.1. (i) If xA and «xAu €T, then

[C,C] = St (3.6)
(ii) if xA €T, then
[C,A] = S(w@m), 3.7)
(iii) if @ and xu /A €T, then
[A,C] = S(a(u/an, (3.8)
(iv) if x and /A €T, then
[AA] = S(/an- 3.9
PROOF. We have for any given X
CA(|CWX]) € sa (3.10)

if and only if C(u)X € s4(C(A)) = $(an), Since xA €T. So we get
X € A(u)san (3.11)

and the condition Ay € T implies A(u)Saxn = S(xap), which permits us to conclude (i).
(ii) Now, for any given X, the condition C(A) (|A(u)X|) € sy is equivalent to

[A(U)X ] € AA)Sx = ASar = Saas (3.12)
since @A €T. Thus
X e C()Sar = D1/uZSar = S(a(A/p))- (3.13)
(iii) Similarly, A(A) (|C(u)X|) € s if and only if
[C()X| € sx(AA)) =C(A)Sy = D1/aZS = S(/a)» (3.14)
since x €T. So
X € A(H)S(x/n) = AS(au/a)- (3.15)
We conclude since apt/A €T implies that Asxu/a) = S(au/a)- (1v) Here,
AQ)(|A()X|) € s if and only if A(u)X € C(A)Sx = S(a/n)s (3.16)
if « €. Thus we have
X € C()S(a/a) = S(e/aw (3.17)

since /A €T. So (iv) holds. O
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REMARK 3.2. If we define

[ALAs]y={Xes | AN (|A(wX]|) €3}, (3.18)

we get the same results as in Theorem 3.1, replacing in each case (i), (ii), (iii), and (iv)
by ss.
13

3.2. Sets [AAY] [A,CH], [C,AT]L [AYAL [AY,CL [ATAT] [CH,CL [CH,AL [CT AT

and [C*,C"]. We get immediately from the definitions of the operators A(§), A*(n),
C(&), and C*(n), the following:

[AvA+] = {X [ An |Ivlnxn_lvln+1xn+1 | —An-1 |/Jn—lxn—l _IJan| = (Xno(l)},

s > X =o<n0<1>},
Hi o Hi
1 n
[C,A"] —{X ‘ A—(Z \ukxk—uk+1xk+1|) —anO(l)},
n\k=1

i-n
[A+;A] = {X | An |ann —Hn-1Xn-1 | —An+1 |Hn+1xn+1 — HnXn | = O(no(l)};

[N,c]:{x j 27” —anou)}
n i=1

[A+,A+] = {X [ An |ann_un+lxn+1 | —Ans1 |Un+1xn+l — Hn+2Xn+2 | = O(nO(l)},

[c*,C] :1){ > ( le ) :(an(l)},
k=n “kl 1
[C*,A] =‘|X p ()\ik“kak—ﬂk—lxk—ﬂ) =0(n0(1)},

= (1
[C*,a%] = 1X S (A—k [ = pa X |) = anou)},
k=n

[C*,C*] = {X i ( ) = (an(l)]».
o (3.19)

We can assert the following result, in which we do the convention &, =1 forn <0
THEOREM 3.3.

[A,CT]={X| Ay

i

?\ n+1
An+1

i z Xi
i=1 Hn+1

M

I
N

zi

i—k Hi

(i) Assume that x €T. Then

. X
[A,AT] = S(/am- lfm

\ (3.20)
[A,C+] = S(a(u/A)) lf& erl.

erl,

(ii) The conditions xA €T and xA/u €T together imply

[C,A"] = S((a/u)-- (3.21)
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(iii) The condition «/A €T implies
[AY AL = S(etp1 ftmAn-m = SA/u(a/N))- (3.22)
iv) If ¢/ A and pu(x/A)~ = (Un(0tn-1/An-1))n €T, then
[A",CT = (e~ (3.23)
W If /A and 1/pu(x/A)™ = (Xn-1/UndAn-1)n €T, then
[AY, AT ] = S(a/n)- 1~ = Sten-2/An-2bn-Dn- (3.24)

Vi) If 1/x and «Au €T, then

[C*,C] = S(aaw)- (3.25)
(vii) If 1/ x and «xA €T, then
[CHA] = s@am)- (3.26)
(viii) If 1/ and «x(A/u) €T, then
[C*,A"] = S@@/m)- (3.27)
(ix)If1/x and 1/xA €T, then
[C",C"] = S(ap- (3.28)

PROOF. (i) First, for any given X, the condition A(A) (|[A* (u)X]|) € s, is equivalent to
|A+(IJ)X| ESzx(A(A)) = S(x/A)s (3.29)

since x €T. So X € sqa (A" (u)) and applying Corollary 2.9, we conclude the first part
of the proof of (i).
We have A(A) (|CT(u)X]) € sy if and only if

|C* ()X | € C(A)sq = D1/aZ5a. (3.30)

Since « €T, we have 3sy = sy and D1/3Zsx = S(a/a)- Then, for «/A € T'*, X € [A,CH] if
and only if

X e wiyn (W) = Saumny- (3.31)
(ii) For any given X, C(A) (|A* (u)X]) € s« is equivalent to
AT (X ewl), (3.32)
and since @A € I' we have wl(A) = s4a. SO
X € saa (AT (1)) = S(aasm)- (3.33)

if xA/u €T. Then (ii) is proved.
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(iii) Here, A" (A) (JA(u) X|) € s« if and only if
[AGX] € sa(AT(Q)) = S(a/2)- (3.34)
since /A € I'. Thus
X € C(Wsn- = D1uZSon)- = Ston_1/An-14n) (3.35)

if (x/A)” €T, thatis, x/A €T.
(iv) If /A €T, we get

AT (|CX]) € sa = |CX| € sa(AT (D))

= S(a/n)- = X € A(U)S(o/n)-- (3:36)
Since pu(x/A)~ €T, we conclude that [A",C] = S(u(a/a)-)-
(v) One has
[A%,A*] = (X | AT ()X € sa(AT ()}, (3.37)
and since «/A €T, we get
Sa(AT(A)) = S(ayn)-- (3.38)
We deduce that if /A €T,
[AT,A7] = S(a)- (AT (1)). (3.39)
Then, from Corollary 2.9, if /A €T and (&/A) ™ /u = (Xp-1/An—1Hn)n €T,
Sarny~ (AT () = S(a/h) =~ = S(etn—2/An2ttn—1)n- (3.40)
(vi) We have
CrA)(|Cu)X]) €sq = C(X ewll(A), (3.41)

and since o« € I'*, we have w}!(A) = sqa. Then for xAu €T, X € [C*,C] if and only if
X e A(H)Sar = S(edp) - (3.42)
(vii) The condition C* (A) (|A(u)X|) € sy is equivalent to
AX ewit (), (3.43)
and since « € T'", we have w;!(A) = sqa. Thus
X € saa (A(H)) = D1/pZSar = S(aa /) (3.44)

since A €T. So (vii) holds.
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(viii) First, we have
[CH. A" ] ={X | AT (WX e w (V)] (3.45)
and the condition o« € I'* implies that w}!' (A) = sqa. Thus
[CHAY] = {X | A" ()X € seaa} = Saa (AT (1)), (3.46)

and we conclude since

Seaa (AT (1)) = S(aayy-  for "‘7)‘ er. (3.47)

(ix) fxel",
[CHCH ] ={X|CT (WX ewi'A) =sm} =wii(p). (3.48)
We conclude that w;){(u) = S(xap), Since @A e I'*. O

REMARK 3.4. Note that in Theorem 3.3, we have [A;,A>] = s4(A1A2) = (Sx(A1)) 4,
for A; € {A(A),AT(A),C(A),C*(A)} and A, € {A(u),A*(u),C(u),C*(u)}. For instance,
we have

n-1 %
[ACl= { ‘(Hn_Un 1)2361 xn—anO(l)} for v el (3.49)

Similarly, under the corresponding conditions given in Theorems 3.1 and 3.3, we get
[AA] = {X | —An—1Hn—2Xn_2 + Htn—1 (2\11 + Anfl)xnfl —AplnXn = O(nO(l)},

[A,C*]:{X‘ %xn+(?\nf/\n_1) > Xm —(an(l)}

m=n-1

(3.50)
[A;A+] = {X | —An—1Hn-1Xn—1 +Un()\n+)\n71)xn_/\nUn+lxn+l = ‘Xno(l)},
[A+;A] = {X | —Anbn-1Xpn-1+ (/\n+An+l)ﬂnxn_?\n+llln+1xn+l = (XnO(l)}-
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