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CALCULATIONS ON SOME SEQUENCE SPACES
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We deal with space of sequences generalizing the well-known spaces wp∞(λ), c∞(λ,µ), re-
placing the operators C(λ) and ∆(µ) by their transposes. We get generalizations of results
concerning the strong matrix domain of an infinite matrix A.
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1. Notations and preliminary results. For a given infinite matrix A = (anm)n,m≥1,

the operators An are defined, for any integer n≥ 1, by

An(X)=
∞∑
m=1

anmxm, (1.1)

where X = (xn)n≥1, the series intervening in the second member being convergent. So

we are led to the study of the infinite linear system

An(X)= bn, n= 1,2, . . . , (1.2)

where B = (bn)n≥1 is a one-column matrix and X the unknown, see [1, 2, 3, 4, 5, 6, 7,

8, 10]. Equation (1.2) can be written in the form AX = B, where AX = (An(X))n≥1. In

this paper, we will also consider A an operator from a sequence space into another

sequence space.

A Banach space E of complex sequences with the norm ‖‖E is a BK space if each

projection PnX = xn is continuous for all X ∈ E. A BK space E is said to have AK, (see

[12, 13]), if B =∑∞m=1bmem, for every B = (bn)n≥1 ∈ E, (with en = (0, . . . ,1, . . .), 1 being

in the nth position), that is,

∥∥∥∥∥
∞∑

m=N+1

bmem

∥∥∥∥∥
E
�→ 0 (n �→∞). (1.3)

We will write s for the set of all complex sequences, l∞, c, c0 for the sets of bounded,

convergent, and null sequences, respectively. We will denote by cs and l1 the sets of

convergent and absolutely convergent series, respectively.

In all that follows we will use the set

U+∗ = {(un)n≥1 ∈ s | un > 0 ∀n}. (1.4)
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From Wilansky’s notations [15], we define for any sequence

α= (αn)n≥1 ∈U+∗, (1.5)

and for any set of sequences E, the set

(
1
α

)−1

∗E =
{(
xn
)
n≥1 ∈ s

∣∣∣∣ (xnαn
)
n
∈ E
}
. (1.6)

We will write α∗E instead of (1/α)−1∗E for short. So we get

α∗E =


s◦α if E = c0,

s(c)α if E = c,
sα if E = l∞.

(1.7)

We have for instance

α∗c0 = s◦α =
{(
xn
)
n≥1 ∈ s | xn = o

(
αn
)
n �→∞}. (1.8)

Each of the spaces α∗E, where E ∈ {c0,c,l∞}, is a BK space normed by

‖X‖sα = sup
n≥1

(∣∣xn∣∣
αn

)
, (1.9)

and s◦α has AK.

Now let α = (αn)n≥1 and β = (βn)n≥1 ∈ U+∗. Sα,β is the set of infinite matrices

A= (anm)n,m≥1 such that

(
anmαm

)
m≥1 ∈ l1 ∀n≥ 1,

∞∑
m=1

(∣∣anm∣∣αm)=O(βn) (n �→∞). (1.10)

Sα,β is a Banach space with the norm

‖A‖Sα,β = sup
n≥1

 ∞∑
m=1

∣∣anm∣∣αmβn
. (1.11)

Let E and F be any subsets of s. When Amaps E into F , we will write A∈ (E,F), see [11].

So for every X ∈ E, AX ∈ F , (AX ∈ F will mean that for each n ≥ 1 the series defined

by yn =
∑∞
m=1anmxm is convergent and (yn)n≥1 ∈ F ). It has been proved in [9] that

A∈ (sα,sβ) if and only if A∈ Sα,β. So we can write that (sα,sβ)= Sα,β.

When sα = sβ, we obtain the unital Banach algebra Sα,β = Sα, (see [1, 2, 3, 5, 6, 10])

normed by ‖A‖Sα = ‖A‖Sα,α .

We also have A∈ (sα,sα) if and only ifA∈ Sα. If ‖I−A‖Sα < 1, we will say that A∈ Γα.

Since the set Sα is a unital algebra, we have the useful result that if A ∈ Γα, A is bijective

from sα into itself.
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If α = (rn)n≥1, Γα, Sα, sα, s◦α, and s(c)α are replaced by Γr , Sr , sr , s◦r , and s(c)r , respec-

tively, (see [1, 2, 3, 5, 6, 10]). When r = 1, we obtain s1 = l∞, s◦1 = c0, and s(c)1 = c, and

putting e= (1,1, . . .), we have S1 = Se. It is well known, see [11], that

(
s1,s1
)= (c0,s1

)= (c,s1
)= S1. (1.12)

For any subset E of s, we put

AE = {Y ∈ s | ∃X ∈ E, Y =AX}. (1.13)

If F is a subset of s, we will denote

F(A)= FA = {X ∈ s | Y =AX ∈ F}. (1.14)

We can see that F(A)=A−1F .

2. Some properties of the operators∆+ and Σ+. Here we will deal with the operators

represented by C+(λ) and ∆+(λ).
Let

U = {(un)n≥1 ∈ s | un ≠ 0 ∀n}. (2.1)

We define C(λ)= (cnm)n,m≥1, for λ= (λn)n≥1 ∈U , by

cnm =


1
λn

if m≤n,
0 otherwise.

(2.2)

So, we put C+(λ)= C(λ)t . It can be proved that the matrix ∆(λ)= (c′nm)n,m≥1 with

c′nm =


λn if m=n,
−λn−1 if m=n−1, n≥ 2,

0 otherwise,

(2.3)

is the inverse of C(λ), see [12, 14]. Similarly, we put ∆+(λ) = ∆(λ)t . If λ = e, we get

the well-known operator of first difference represented by ∆(e) = ∆ and it is usually

written as Σ = C(e). Note that ∆ = Σ−1 and Σ belong to any given space SR with R > 1.

Writing Dλ = (λnδnm)n,m≥1, (where δnm = 0 for n≠m and δnn = 1 otherwise), we have

∆+(λ) = Dλ∆+. So for any given α ∈ U+∗, we see that if (αn−1/αn)|λn/λn−1| = O(1),
then ∆+(λ)∈ (s(α/|λ|),sα). Since Ker∆+(λ)≠ 0, we are lead to define the set

s∗α
(
∆+(λ)

)= sα(∆+(λ))⋂s(α/|λ|) = {X = (xn)n≥1 ∈ s(α/|λ|) | ∆+(λ)X ∈ sα
}
. (2.4)
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It can easily be seen that

s∗(α/|λ|)
(
∆+(e)

)= s∗(α/|λ|)(∆+)= s∗α(∆+(λ)). (2.5)

2.1. Properties of the sequence C(α)α. We will use the following sets:

Ĉ1 =
α∈U+∗

∣∣∣∣ 1
αn

 n∑
k=1

αk

=O(1) (n �→∞)
,

Ĉ =
α∈U+∗

∣∣∣∣ 1
αn

 n∑
k=1

αk

∈ c
,

Ĉ+1 =
α∈U+∗⋂cs

∣∣∣∣ 1
αn

 ∞∑
k=n

αk

=O(1) (n �→∞)
,

Γ =
{
α∈U+∗

∣∣∣∣ lim
n→∞

(
αn−1

αn

)
< 1
}
,

Γ+ =
{
α∈U+∗

∣∣∣∣ lim
n→∞

(
αn+1

αn

)
< 1
}
.

(2.6)

Note that α ∈ Γ+ if and only if 1/α∈ Γ . We will see in Proposition 2.1 that if α∈ Ĉ1, α
tends to infinity. On the other hand, we see that ∆∈ Γα implies α ∈ Γ and α ∈ Γ if and

only if there is an integer q ≥ 1 such that

γq(α)= sup
n≥q+1

(
αn−1

αn

)
< 1. (2.7)

We obtain the following results in which we put [C(α)α]n = (
∑n
k=1αk)/αn.

Proposition 2.1. Let α∈U+∗. Then

(i) αn−1/αn→ 0 if and only if [C(α)α]n→ 1,

(ii) (a) α∈ Ĉ implies that (αn−1/αn)n≥1 ∈ c,

(b) [C(α)α]n→ l implies that αn−1/αn→ 1−1/l,
(iii) if α∈ Ĉ1, there are K > 0 and γ > 1 such that

αn ≥Kγn ∀n, (2.8)

(iv) the condition α∈ Γ implies that α∈ Ĉ1 and there exists a real b > 0 such that

[
C(α)α

]
n ≤

1
1−χ +bχ

n for n≥ q+1, χ = γq(α)∈ ]0,1[, (2.9)

(v) the condition α∈ Γ+ implies that α∈ Ĉ+1 .
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Proof. Assume that αn−1/αn→ 0. Then there is an integer N such that

n≥N+1 �⇒αn−1

αn
≤ 1

2
. (2.10)

So there exists a real K > 0 such that αn ≥K2n for all n and

αk
αn

= αk
αk+1

··· αn−1

αn
≤
(

1
2

)n−k
for N ≤ k≤n−1. (2.11)

Then

1
αn

n−1∑
k=1

αk

= 1
αn

N−1∑
k=1

αk

+n−1∑
k=N

αk
αn

≤ 1
K2n

N−1∑
k=1

αk

+n−1∑
k=N

(
1
2

)n−k
, (2.12)

and since
∑n−1
k=N(1/2)n−k = 1−(1/2)n−N → 1, (n→∞), we deduce that

1
αn

n−1∑
k=1

αk

=O(1) (2.13)

and ([C(α)α]n)∈ l∞. Using the identity

[
C(α)α

]
n =

α1+···+αn−1

αn−1

αn−1

αn
+1= [C(α)α]n−1

(
αn−1

αn

)
+1, (2.14)

we get [C(α)α]n→ 1. This proves the necessity.

Conversely, if [C(α)α]n→ 1, then

αn−1

αn
=
[
C(α)α

]
n−1[

C(α)α
]
n−1

�→ 0. (2.15)

(ii) is a direct consequence of the identity (2.14).

(iii) We put Σn =
∑n
k=1αk. Then for a real M > 1,

[
C(α)α

]
n =

Σn
Σn−Σn−1

≤M ∀n. (2.16)

So Σn ≥ (M/(M−1))Σn−1 and Σn ≥
(
M/(M−1)

)n−1α1∀n. Therefore, from

α1

αn

(
M

M−1

)n−1

≤ [C(α)α]n = Σn
αn

≤M, (2.17)

we conclude that αn ≥Kγn for all n, with K = (M−1)α1/M2 and γ =M/(M−1) > 1.
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(iv) If α∈ Γ , there is an integer q ≥ 1 for which

k≥ q+1 implies
αk−1

αk
≤ χ < 1, with χ = γq(α). (2.18)

So there is a real M′ > 0 for which

αn ≥ M
′

χn
∀n≥ q+1. (2.19)

Writing σnq = (1/αn)(
∑q
k=1αk) and dn = [C(α)α]n−σnq, we get

dn = 1
αn

 n∑
k=q+1

αk

= 1+
n−1∑
j=q+1

n−j∏
k=1

αn−k
αn−k+1

≤ n∑
j=q+1

χn−j ≤ 1
1−χ . (2.20)

Using (2.19), we get σnq ≤ (1/M′)χn(
∑q
k=1αk). So

[
C(α)α

]
n ≤ a+bχn (2.21)

with a= 1/(1−χ) and b = (1/M′)(
∑q
k=1αk).

(v) If α∈ Γ+, there are χ′ ∈ ]0,1[ and an integer q′ ≥ 1 such that

αk
αk−1

≤ χ′ for k≥ q′. (2.22)

Then for every n≥ q′, we have

1
αn

 ∞∑
k=n

αk

= ∞∑
k=n

(
αk
αn

)
≤ 1+

∞∑
k=n+1

k−n−1∏
i=0

(
αk−i
αk−i−1

)
≤

∞∑
k=n

χ′k−n =O(1). (2.23)

This gives the conclusion.

Remark 2.2. Note that as a direct consequence of Proposition 2.1, we have Ĉ1
⋂
Ĉ+1 =

Γ
⋂
Γ+ =φ.

Remark 2.3. The condition α∈ Ĉ1 does not imply that α∈ Γ , see [8].

2.2. Some new properties of the operators ∆ and ∆+. In the following we will use

some lemmas, the next one is well known, see [15].

Lemma 2.4. The condition A∈ (c0,c0) is equivalent to

A∈ S1,

lim
n
anm = 0 for each m≥ 1. (2.24)

Lemma 2.5. If ∆+ is bijective from sα into itself, then α∈ cs.
Proof. Assume that α ∉ cs, that is,

∑
nαn =∞. Two cases are possible.

(1) e∈ Ker∆+
⋂
sα. Then ∆+ cannot be bijective from sα into itself.

(2) e ∉ Ker∆+
⋂
sα. Then 1/α ∉ s1 and there is a sequence of integers (ni)i strictly

increasing such that 1/αni → ∞. Assume that the equation ∆+X = α has a solution



CALCULATIONS ON SOME SEQUENCE SPACES 1659

X = (xn,0)n≥1 in sα. Then there is a unique scalar x1 such that

xn,0 = x1−
n−1∑
k=1

αk. (2.25)

So

∣∣xni ,0∣∣
αni

=
∣∣∣∣∣∣ 1
αni

x1−
ni−1∑
k=1

αk

∣∣∣∣∣∣ �→∞ as i �→∞, (2.26)

and X ∉ sα, which is contradictory.

We conclude that each of the properties e∈ Ker∆+
⋂
sα and e ∉ Ker∆+

⋂
sα is impos-

sible and ∆+ is not bijective from sα into itself. This proves the lemma.

Lemma 2.6. For every X ∈ c0, Σ+(∆+X)=X and for every X ∈ cs, ∆+(Σ+X)=X.

Proof. It can easily be seen that

[
Σ+
(
∆+X
)]
n =

∞∑
m=n

(
xm−xm+1

)= xn ∀X ∈ c0,

[
∆+
(
Σ+X
)]
n =

∞∑
m=n

xm−
∞∑

m=n+1

xm = xn ∀X ∈ cs.
(2.27)

We can assert the following result, in which we put α+ = (αn+1)n≥1 and s◦∗α (∆+) =
s◦α(∆+)

⋂
s◦α. Note that from (2.5) we have

s∗α
(
∆+(e)

)= s∗α(∆+)= sα(∆+)⋂sα. (2.28)

Theorem 2.7. (i) (a) sα(∆)= sα if and only if α∈ Ĉ1,

(b) s◦α(∆)= s◦α if and only if α∈ Ĉ1,

(c) s(c)α (∆)= s(c)α if and only if α∈ Ĉ .

(ii) (a) α∈ Ĉ1 if and only if sα+(∆+)= sα and ∆+ is surjective from sα into sα+ ,

(b) α∈ Ĉ+1 if and only if s∗α(∆+)= sα and ∆+ is bijective from sα into sα,

(c) α∈ Ĉ+1 implies that s◦∗α (∆+)= s◦α and ∆+ is bijective from s◦α into s◦α.

(iii) α∈ Ĉ+1 if and only if sα(Σ+)= sα and sα(Σ+)= sα implies s◦α(Σ+)= s◦α.

Proof. (i) has been proved in [8].

(ii)(a) Sufficiency. If ∆+ is surjective from sα into sα+ , then for every B ∈ sα+ the

solutions of ∆+X = B in sα are given by

xn+1 = x1−
n∑
k=1

bk n= 1,2, . . . , (2.29)
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where x1 is arbitrary. If we take B =α+, we get xn = x1−
∑n
k=2αk. So

xn
αn

= x1

αn
− 1
αn

 n∑
k=2

αk

=O(1). (2.30)

Taking x1 =−α1, we conclude that (
∑n−1
k=1 αk)/αn =O(1) and α∈ Ĉ1.

Conversely, assume that α∈ Ĉ1. From the inequality

αn−1

αn
≤ 1
αn

 n∑
k=1

αk

=O(1), (2.31)

we deduce that αn−1/αn = O(1) and ∆+ ∈ (sα,sα+). Then for any given B ∈ sα+ , the

solutions of the equation ∆+X = B are given by x1 =−u and

−xn =u+
n−1∑
k=1

bk for n≥ 2, (2.32)

where u is an arbitrary scalar. So there exists a real K > 0 such that

∣∣xn∣∣
αn

=
∣∣u+∑n−1

k=1 bk
∣∣

αn
≤ |u|+K

(∑n
k=2αk

)
αn

=O(1) (2.33)

and X ∈ sα. We conclude that ∆+ is surjective from sα into sα+ .

(ii)(b) Necessity. Assume that α∈ Ĉ+1 . Then ∆+ ∈ (sα,sα), since

αn+1

αn
≤ 1
αn

 ∞∑
k=n

αk

=O(1) (n �→∞). (2.34)

Further, from sα ⊂ cs, we deduce, using Lemma 2.4, that for any given B ∈ sα,

∆+
(
Σ+B
)= B. (2.35)

On the other hand, Σ+B = (∑∞k=nbk)n≥1 ∈ sα, since α∈ Ĉ+1 . So ∆+ is surjective from sα
into sα. Finally, ∆+ is injective because the equation

∆+X =O (2.36)

admits the unique solution X =O in sα, since

Ker∆+ = {uet | u∈ C} (2.37)

and et ∉ sα.
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Sufficiency. For every B ∈ sα, the equation ∆+X = B admits a unique solution in

sα. Then from Lemma 2.5, α ∈ cs and since sα ⊂ cs, we deduce from Lemma 2.6 that

X = Σ+B ∈ sα is the unique solution of ∆+X = B. Taking B =α, we get Σ+α∈ sα, that is,

α∈ Ĉ+1 .

(ii)(c) Ifα∈ Ĉ+1 ,∆+ is bijective from s◦α into itself. Indeed, we haveD1/α∆+Dα ∈ (c0,c0)
from (2.34) and Lemma 2.4. Furthermore, since α ∈ Ĉ+1 we have s◦α ⊂ cs and for every

B ∈ s◦α,

∆+
(
Σ+B
)= B. (2.38)

From Lemma 2.4, we have Σ+ ∈ (s◦α,s◦α), so the equation ∆+X = B admits the solution

X0 = Σ+B in s◦α and we have proved that ∆+ is surjective from s◦α into itself. Finally,

α ∈ Ĉ+1 implies that et ∉ s◦α, so Ker∆+
⋂
s◦α = {0} and we conclude that ∆+ is bijective

from s◦α into itself.

(iii) comes from (ii), since α∈ Ĉ+1 if and only if ∆+ is bijective from sα into itself and

Σ+
(
∆+X
)=∆+(Σ+X)=X ∀X ∈ sα. (2.39)

As a direct consequence of Theorem 2.7 we obtain the following results.

Corollary 2.8. Let R be any real > 0. Then

R > 1⇐⇒ sR(∆)= sR ⇐⇒ s◦R(∆)= s◦R ⇐⇒ sR
(
∆+
)= sR. (2.40)

Proof. From (i) and (ii) in Theorem 2.7, we see that it is enough to prove that α =
(Rn)n≥1 ∈ Ĉ1 if and only if R > 1. We have (Rn)n≥1 ∈ Ĉ1 if and only if R ≠ 1 and

R−n
 n∑
k=1

Rk
= 1

1−RR
−n+1− R

1−R =O(1) as n �→∞. (2.41)

This means that R > 1 and the corollary is proved.

Using the notation α− = (1,α1,α2, . . . ,αn−1, . . .) we get the next result.

Corollary 2.9. Let α∈U+∗ and µ ∈U . Then

(i) α/|µ| ∈ Ĉ1 if and only if

sα
(
∆+(µ)

)= s(α/|µ|)− , (2.42)

(ii) α/|µ| ∈ Ĉ+1 if and only if

s∗α
(
∆+(µ)

)= s(α/|µ|). (2.43)

Proof. First we have

sα
(
∆+(µ)

)= s(α/|µ|)(∆+). (2.44)
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Indeed,

X ∈ sα
(
∆+(µ)

)⇐⇒Dµ∆+X ∈ sα ⇐⇒∆+X ∈ s(α/|µ|)⇐⇒X ∈ s(α/|µ|)(∆+). (2.45)

Now, if α/|µ| ∈ Ĉ1, from (i) in Theorem 2.7, we have s(α/|µ|)(∆+) = s(α/|µ|)− and

sα(∆+(µ)) = s(α/|µ|)− . Conversely, assume sα(∆+(µ)) = s(α/|µ|)− . Reasoning as above,

we get s(α/|µ|)(∆+)= s(α/|µ|)− , and using (i) in Theorem 2.7 we conclude that α/|µ| ∈ Ĉ1

and (i) holds.

(ii) α/|µ| ∈ Ĉ+1 implies that ∆+ is bijective from s(α/|µ|) into itself. Thus

s∗α
(
∆+(µ)

)= s∗(α/|µ|)(∆+)= s(α/|µ|). (2.46)

This proves the necessity. Conversely, assume that s∗α(∆+(µ))=s(α/|µ|). Then s∗(α/|µ|)(∆+)

= s(α/|µ|) and from Theorem 2.7(ii)(b), α/|µ| ∈ Ĉ+1 and (ii) holds.

2.3. Spaces wp
α(λ) and w+p

α (λ) for given real p > 0. Here we will define sets gener-

alizing the well-known sets

wp
∞(λ)=

{
X ∈ s | C(λ)(|X|p)∈ l∞},

wp
0 (λ)=

{
X ∈ s | C(λ)(|X|p)∈ c0

}
,

(2.47)

see [9, 12, 13, 14, 15]. It is proved that each of the sets wp
0 = wp

0 ((n)n) and wp
∞ =

wp
∞((n)n) is a p-normed FK space for 0<p < 1 (i.e., a complete linear metric space for

which each projection Pn is continuous) and a BK space for 1 ≤ p <∞ with respect to

the norm

‖X‖ =


sup
ν≥1

(
1
2ν

(2ν+1−1∑
n=2ν

∣∣xn∣∣p
))

if 0<p < 1,

sup
ν≥1

(
1
2ν

(2ν+1−1∑
n=2ν

∣∣xn∣∣p
))1/p

if 1≤ p <∞.
(2.48)

The setwp
0 has the property AK, (i.e., every X = (xn)n≥1 ∈wp

0 has a unique representa-

tionX =∑∞n=1xnetn) and every sequence X = (xn)n≥1 ∈wp has a unique representation

X = let+
∞∑
n=1

(
xn−l

)
etn, (2.49)

where l∈ C is such that X−let ∈wp
0 , (see [4]). Now, let α∈U+∗ and λ∈U+∗. We have

wp
α(λ)=

{
X ∈ s | C(λ)(|X|p)∈ sα},

w+p
α (λ)= {X ∈ s | C+(λ)(|X|p)∈ sα},
w◦p
α (λ)=

{
X ∈ s | C(λ)(|X|p)∈ s◦α},

w◦+p
α (λ)= {X ∈ s | C+(λ)(|X|p)∈ s◦α}.

(2.50)

We deduce from the previous section the following theorem.
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Theorem 2.10. (i) (a) The condition α∈ Ĉ+1 is equivalent to

w+p
α (λ)= s(αλ)1/p . (2.51)

(b) If α∈ Ĉ+1 , then

w◦p
α (λ)= s◦(αλ)1/p . (2.52)

(ii) (a) The condition αλ∈ Ĉ1 is equivalent to

wp
α(λ)= s(αλ)1/p . (2.53)

(b) If αλ∈ Ĉ1, then

w◦+p
α (λ)= s◦(αλ)1/p . (2.54)

Proof. Assume that α∈ Ĉ+1 . Since C+(λ)= Σ+D1/λ, we have

w+p
α (λ)= {X | (Σ+D1/λ

)(|X|p)∈ sα}= {X | D1/λ
(|X|p)∈ sα(Σ+)}, (2.55)

and since α∈ Ĉ+1 implies sα(Σ+)= sα, we conclude that

w+p
α (λ)= {X | |X|p ∈Dλsα = sαλ}= s(αλ)1/p . (2.56)

Conversely, we have (αλ)1/p ∈ s(αλ)1/p =w+p
α (λ). So

C+(λ)
[
(αλ)1/p

]p =
 ∞∑
k=n

αkλk
λk


n≥1

∈ sα, (2.57)

that is, α∈ Ĉ+1 and we have proved (i). We obtain (i)(b) by reasoning as above.

(ii) Assume that αλ∈ Ĉ1. Then

wp
α(λ)=

{
X | |X|p ∈∆(λ)sα

}
. (2.58)
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Since ∆(λ) = ∆Dλ, we get ∆(λ)sα = ∆sαλ. Now, from αλ ∈ Ĉ1 we deduce that ∆ is

bijective from sαλ into itself and wp
α(λ) = s(αλ)1/p . Conversely, assume that wp

α(λ) =
s(αλ)1/p . Then (αλ)1/p ∈ s(αλ)1/p implies that

C(λ)(αλ)∈ sα, (2.59)

and since D1/αC(λ)(αλ) ∈ s1 = l∞, we conclude that C(αλ)(αλ) ∈ l∞. The proof of

(ii)(b) follows the same lines as in the proof of the necessity in (ii) replacing sαλ by s◦αλ.

3. New sets of sequences of the form [A1,A2]. In this section, we will deal with the

sets

[
A1(λ),A2(µ)

]= {X ∈ s | A1(λ)
(∣∣A2(µ)X

∣∣)∈ sα}, (3.1)

where A1 and A2 are of the form C(ξ), C+(ξ), ∆(ξ), or ∆+(ξ) and we give necessary

conditions to get [A1(λ),A2(µ)] in the form sγ .

Let λ and µ ∈U+∗. For simplification, we will write throughout this section

[
A1,A2

]= [A1(λ),A2(µ)
]= {X ∈ s | A1(λ)

(∣∣A2(µ)X
∣∣)∈ sα} (3.2)

for any matrices

A1(λ)∈
{
∆(λ),∆+(λ),C(λ),C+(λ)

}
,

A2(µ)∈
{
∆(µ),∆+(µ),C(µ),C+(µ)

}
.

(3.3)

So we have for instance

[C,∆]= {X ∈ s | C(λ)(∣∣∆(µ)X∣∣)∈ sα}= (wα(λ)
)
∆(µ), . . . . (3.4)

In all that follows, the conditions ξ ∈ Γ , or 1/η∈ Γ for any given sequences ξ and η can

be replaced by the conditions ξ ∈ Ĉ1 and η∈ Ĉ+1 .

3.1. Spaces [C,C], [C,∆], [∆,C], and [∆,∆]. For the convenience of the reader we

will write the following identities, where A1(λ) and A2(µ) are lower triangles and we

will use the convention µ0 = 0:

[C,C]=
X ∈ s

∣∣∣∣ 1
λn

 n∑
m=1

∣∣∣∣∣∣ 1
µm

 m∑
k=1

xk

∣∣∣∣∣∣
=αnO(1)

,
[C,∆]=

X ∈ s
∣∣∣∣ 1
λn

 n∑
k=1

∣∣µkxk−µk−1xk−1

∣∣=αnO(1)
,

[∆,C]=
X ∈ s

∣∣∣∣ −λn−1

∣∣∣∣∣∣ 1
µn−1

n−1∑
k=1

xi

∣∣∣∣∣∣+λn
∣∣∣∣∣∣ 1
µn

 n∑
k=1

xi

∣∣∣∣∣∣=αnO(1)
,

[∆,∆]= {X ∈ s | −λn−1

∣∣µn−1xn−1−µn−2xn−2

∣∣+λn∣∣µnxn−µn−1xn−1

∣∣=αnO(1)}.
(3.5)
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Note that forα= e and λ= µ, [C,∆] is the well-known set of sequences that are strongly

bounded, denoted by c∞(λ), see [9, 12, 13, 14, 15]. We get the following result.

Theorem 3.1. (i) If αλ and αλµ ∈ Γ , then

[C,C]= s(αλµ), (3.6)

(ii) if αλ∈ Γ , then

[C,∆]= s(α(λ/µ)), (3.7)

(iii) if α and αµ/λ∈ Γ , then

[∆,C]= s(α(µ/λ)), (3.8)

(iv) if α and α/λ∈ Γ , then

[∆,∆]= s(α(µ/λ)). (3.9)

Proof. We have for any given X

C(λ)
(∣∣C(µ)X∣∣)∈ sα (3.10)

if and only if C(µ)X ∈ sα
(
C(λ)
)= s(αλ), since αλ∈ Γ . So we get

X ∈∆(µ)sαλ (3.11)

and the condition αλµ ∈ Γ implies ∆(µ)sαλ = s(αλµ), which permits us to conclude (i).

(ii) Now, for any given X, the condition C(λ)(|∆(µ)X|)∈ sα is equivalent to∣∣∆(µ)X∣∣∈∆(λ)sα =∆sαλ = sαλ, (3.12)

since αλ∈ Γ . Thus

X ∈ C(µ)sαλ =D1/µΣsαλ = s(α(λ/µ)). (3.13)

(iii) Similarly, ∆(λ)(|C(µ)X|)∈ sα if and only if∣∣C(µ)X∣∣∈ sα(∆(λ))= C(λ)sα =D1/λΣsα = s(α/λ), (3.14)

since α∈ Γ . So

X ∈∆(µ)s(α/λ) =∆s(αµ/λ). (3.15)

We conclude since αµ/λ∈ Γ implies that ∆s(αµ/λ) = s(αµ/λ). (iv) Here,

∆(λ)
(∣∣∆(µ)X∣∣)∈ sα if and only if ∆(µ)X ∈ C(λ)sα = s(α/λ), (3.16)

if α∈ Γ . Thus we have

X ∈ C(µ)s(α/λ) = s(α/λµ) (3.17)

since α/λ∈ Γ . So (iv) holds.
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Remark 3.2. If we define

[
A1,A2

]
0 =
{
X ∈ s | A1(λ)

(∣∣A2(µ)X
∣∣)∈ s◦α}, (3.18)

we get the same results as in Theorem 3.1, replacing in each case (i), (ii), (iii), and (iv) sξ
by s◦ξ .

3.2. Sets [∆,∆+], [∆,C+], [C,∆+], [∆+∆], [∆+,C], [∆+∆+], [C+,C], [C+,∆], [C+,∆+],
and [C+,C+]. We get immediately from the definitions of the operators ∆(ξ), ∆+(η),
C(ξ), and C+(η), the following:[

∆,∆+
]= {X | λn∣∣µnxn−µn+1xn+1

∣∣−λn−1

∣∣µn−1xn−1−µnxn
∣∣=αnO(1)},

[
∆,C+

]=
X | λn

∣∣∣∣∣∣
∞∑
i=n

xi
µi

∣∣∣∣∣∣−λn−1

∣∣∣∣∣∣
∞∑

i=n−1

xi
µi

∣∣∣∣∣∣=αnO(1)
,

[
C,∆+

]=
X
∣∣∣∣ 1
λn

 n∑
k=1

∣∣µkxk−µk+1xk+1

∣∣=αnO(1)
,[

∆+,∆
]= {X | λn∣∣µnxn−µn−1xn−1

∣∣−λn+1

∣∣µn+1xn+1−µnxn
∣∣=αnO(1)},

[
∆+,C

]=
X
∣∣∣∣ λnµn
∣∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣∣− λn+1

µn+1

∣∣∣∣∣∣
n+1∑
i=1

xi

∣∣∣∣∣∣=αnO(1)
,[

∆+,∆+
]= {X | λn∣∣µnxn−µn+1xn+1

∣∣−λn+1

∣∣µn+1xn+1−µn+2xn+2

∣∣=αnO(1)},
[
C+,C

]=
X
∣∣∣∣ ∞∑
k=n

 1
λk

∣∣∣∣∣∣ 1
µk

k∑
i=1

xi

∣∣∣∣∣∣
=αnO(1)

,
[
C+,∆

]=
X
∣∣∣∣ ∞∑
k=n

(
1
λk

∣∣µkxk−µk−1xk−1

∣∣)=αnO(1)
,

[
C+,∆+

]=
X
∣∣∣∣ ∞∑
k=n

(
1
λk

∣∣µkxk−µk+1xk+1

∣∣)=αnO(1)
,

[
C+,C+

]=
X
∣∣∣∣ ∞∑
k=n

 1
λk

∣∣∣∣∣∣
∞∑
i=k

xi
µi

∣∣∣∣∣∣
=αnO(1)

.
(3.19)

We can assert the following result, in which we do the convention αn = 1 for n≤ 0.

Theorem 3.3. (i) Assume that α∈ Γ . Then

[
∆,∆+

]= s(α/λµ)− if
α
λµ

∈ Γ ,
[
∆,C+

]= s(α(µ/λ)) if
λ
α
∈ Γ .

(3.20)

(ii) The conditions αλ∈ Γ and αλ/µ ∈ Γ together imply

[
C,∆+

]= s(α(λ/µ))− . (3.21)
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(iii) The condition α/λ∈ Γ implies[
∆+,∆

]= s(αn−1/µnλn−1)n = s(1/µ(α/λ)−). (3.22)

(iv) If α/λ and µ(α/λ)− = (µn(αn−1/λn−1))n ∈ Γ , then[
∆+,C

]= sµ(α/λ)− . (3.23)

(v) If α/λ and 1/µ(α/λ)− = (αn−1/µnλn−1)n ∈ Γ , then[
∆+,∆+

]= s((α/λ)−/µ)− = s(αn−2/λn−2µn−1)n . (3.24)

(vi) If 1/α and αλµ ∈ Γ , then [
C+,C

]= s(αλµ). (3.25)

(vii) If 1/α and αλ∈ Γ , then [
C+,∆

]= s(α(λ/µ)). (3.26)

(viii) If 1/α and α(λ/µ)∈ Γ , then[
C+,∆+

]= s(α(λ/µ))− . (3.27)

(ix) If 1/α and 1/αλ∈ Γ , then [
C+,C+

]= s(αλµ). (3.28)

Proof. (i) First, for any given X, the condition ∆(λ)(|∆+(µ)X|)∈ sα is equivalent to∣∣∆+(µ)X∣∣∈ sα(∆(λ))= s(α/λ), (3.29)

since α ∈ Γ . So X ∈ sαλ(∆+(µ)) and applying Corollary 2.9, we conclude the first part

of the proof of (i).

We have ∆(λ)(|C+(µ)X|)∈ sα if and only if∣∣C+(µ)X∣∣∈ C(λ)sα =D1/λΣsα. (3.30)

Since α ∈ Γ , we have Σsα = sα and D1/λΣsα = s(α/λ). Then, for α/λ ∈ Γ+, X ∈ [∆,C+] if

and only if

X ∈w+1
(α/λ)(µ)= s(α(µ/λ)). (3.31)

(ii) For any given X, C(λ)(|∆+(µ)X|)∈ sα is equivalent to

∆+(µ)X ∈w1
α(λ), (3.32)

and since αλ∈ Γ we have w1
α(λ)= sαλ. So

X ∈ sαλ
(
∆+(µ)

)= s(α(λ/µ))− (3.33)

if αλ/µ ∈ Γ . Then (ii) is proved.
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(iii) Here, ∆+(λ)(|∆(µ)X|)∈ sα if and only if

∣∣∆(µ)X∣∣∈ sα(∆+(λ))= s(α/λ)− , (3.34)

since α/λ∈ Γ . Thus

X ∈ C(µ)s(α/λ)− =D1/µΣs(α/λ)− = s(αn−1/λn−1µn) (3.35)

if (α/λ)− ∈ Γ , that is, α/λ∈ Γ .
(iv) If α/λ∈ Γ , we get

∆+(λ)
(∣∣C(µ)X∣∣)∈ sα ⇐⇒ ∣∣C(µ)X∣∣∈ sα(∆+(λ))

= s(α/λ)− ⇐⇒X ∈∆(µ)s(α/λ)− .
(3.36)

Since µ(α/λ)− ∈ Γ , we conclude that [∆+,C]= s(µ(α/λ)−).
(v) One has

[
∆+,∆+

]= {X |∆+(µ)X ∈ sα(∆+(λ))}, (3.37)

and since α/λ∈ Γ , we get

sα
(
∆+(λ)

)= s(α/λ)− . (3.38)

We deduce that if α/λ∈ Γ ,
[
∆+,∆+

]= s(α/λ)−(∆+(µ)). (3.39)

Then, from Corollary 2.9, if α/λ∈ Γ and (α/λ)−/µ = (αn−1/λn−1µn)n ∈ Γ ,

s(α/λ)−
(
∆+(µ)

)= s((α/λ)−/µ)− = s(αn−2/λn−2µn−1)n . (3.40)

(vi) We have

C+(λ)
(∣∣C(µ)X∣∣)∈ sα ⇐⇒ C(µ)X ∈w+1

α (λ), (3.41)

and since α∈ Γ+, we have w+1
α (λ)= sαλ. Then for αλµ ∈ Γ , X ∈ [C+,C] if and only if

X ∈∆(µ)sαλ = s(αλµ). (3.42)

(vii) The condition C+(λ)(|∆(µ)X|)∈ sα is equivalent to

∆(µ)X ∈w+1
α (λ), (3.43)

and since α∈ Γ+, we have w+1
α (λ)= sαλ. Thus

X ∈ sαλ
(
∆(µ)
)=D1/µΣsαλ = s(α(λ/µ)), (3.44)

since αλ∈ Γ . So (vii) holds.
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(viii) First, we have

[
C+,∆+

]= {X | ∆+(µ)X ∈w+1
α (λ)

}
, (3.45)

and the condition α∈ Γ+ implies that w+1
α (λ)= sαλ. Thus

[
C+,∆+

]= {X | ∆+(µ)X ∈ sαλ}= sαλ(∆+(µ)), (3.46)

and we conclude since

sαλ
(
∆+(µ)

)= s(αλ/µ)− for
αλ
µ
∈ Γ . (3.47)

(ix) If α∈ Γ+,

[
C+,C+

]= {X | C+(µ)X ∈w+1
α (λ)= sαλ

}=w+1
αλ(µ). (3.48)

We conclude that w+1
αλ(µ)= s(αλµ), since αλ∈ Γ+.

Remark 3.4. Note that in Theorem 3.3, we have [A1,A2] = sα(A1A2) = (sα(A1))A2

for A1 ∈ {∆(λ),∆+(λ),C(λ),C+(λ)} and A2 ∈ {∆(µ),∆+(µ),C(µ),C+(µ)}. For instance,

we have

[∆,C]=
X
∣∣∣∣ (λnµn − λn−1

µn−1

)n−1∑
i=1

xi+ λnµn xn =αnO(1)
 for

αµ
λ
∈ Γ . (3.49)

Similarly, under the corresponding conditions given in Theorems 3.1 and 3.3, we get

[∆,∆]= {X | −λn−1µn−2xn−2+µn−1
(
λn+λn−1

)
xn−1−λnµnxn =αnO(1)

}
,

[
∆,C+

]=
X
∣∣∣∣ λnµn xn+(λn−λn−1

) ∞∑
m=n−1

xm
µm

=αnO(1)
,[

∆,∆+
]= {X | −λn−1µn−1xn−1+µn

(
λn+λn−1

)
xn−λnµn+1xn+1 =αnO(1)

}
,[

∆+,∆
]= {X | −λnµn−1xn−1+

(
λn+λn+1

)
µnxn−λn+1µn+1xn+1 =αnO(1)

}
.

(3.50)
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