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The aim of this paper is to construct a generalized Fourier analysis for certain Hermitian
operators. When A, B are entire functions, then H(A,B) will be the associated reproducing
kernel Hilbert spaces of Cn×n-valued functions. In that case, we will construct the expansion
theorem forH(A,B) in a comprehensive manner. The spectral functions for the reproducing
kernel Hilbert spaces will also be constructed.
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1. Introduction. Let H be the Hilbert space over C with inner product [·,·] defined

by [f ,g] = ∫ b
a g(t)f (t)dt, f ,g ∈ H, where denotes the complex conjugate. Let H2

be the Hilbert space of all ordered pairs {f ,g}, where f ,g ∈H with the inner product

〈·,·〉 defined by 〈{f ,g},{h,k}〉 = [f ,h]+[g,k], {f ,g},{h,k} ∈H2. T is called a closed

linear relation in H2 if T is a (closed) linear manifold in H2. Such T is often considered

as a graph of (closed) linear (multivalued) operator. To any matrix-valued Nevanlinna

function, there is associated in a natural way a reproducing kernel Hilbert space. This

Hilbert space provides a model for a simple symmetric not necessarily densely defined

operator (see [5]).

We define the CnB to be the range R(B) in Cn×1 endowed with the inner product

[Bc,Bd]= d∗Bc, where B is an entire function and c,d∈ C. We note that CnB is equal to

the space L(B�). As usual, L2(dσ) is the Hilbert space of all n×1 vector functions f de-

fined onR such that ‖f‖2
Σ =

∫
Rf(t)∗dΣ(t)f (t) <∞ (see [5]). The theory of Hilbert space

of entire functions is a detailed description of eigenfunction expansions associated with

formally selfadjoint differential operators, then one can construct the expansion the-

orem for the reproducing kernels associated with the Hilbert space. In Section 2, we

collect some basic and essential observations (see [5, 6]), while in Section 3, we give the

main idea of de Branges space. In Section 4, we define theH(A,B) spaces when A and B
are entire functions. Finally, in Section 5, we give a description of the spectral functions

for the case we study.

2. Preliminaries. Let H be a Hilbert space, then L[H] is a set of bounded linear

operators from H to H. Furthermore, U is unitary if U−1 = U∗ ⇒ U unitary operator,

D(U) = R(U) = H, V is isometric if V−1 ⊂ V∗ → V operator, S is symmetric if S ⊂ S∗,

A is selfadjoint if A = A∗, T is closed ρ(T) = {� ∈ C | (T −�)−1 ∈ L(H)} resolvent set

(closed), σ(T)= C\ρ(T) spectrum (open), and RT(�)= (T −�)−1, � ∈ ρ(T).
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When A=A∗, put

H0 =H
A(0),
A∞ = {0}×A(0)=

{{f ,g} ∈A | f = 0
}
,

A0 =A
A∞.
(2.1)

Then

A=A0⊕A∞, (2.2)

A0 is a selfadjoint operator (hence densely defined) in H0:

H0

A(0)
A0������������������������������������������������������������������������������������������������������→ H0

A(0)

0
A∞�������������������������������������������������������������������������������→ all of A(0).

(2.3)

Hence

(A−�)−1 = (A0−�
)−1⊕0, where 0 is a zero operator on A(0)

= (A0−�
)−1P0, P0 = orth. proj. of H onto H0,

ρ(A)= ρ(A0
)⊃ C0.

(2.4)

Let (E0
t ) be the orthogonal spectral family for A0 on H0. Put

Et = E0
t ⊕0= E0

t P0, (2.5)

Et is called the orthogonal spectral family for A in H.

For a 2×2 matrix M = (α βγ δ), MT ≡ {{αf +βg,γf +δg} | {f ,g} ∈ T}. The matrix M
is called a multiplier if α,β,γ,δ∈ C. Then

T −λ=
(

1 0

−λ 1

)
, αT =

(
1 0

0 α

)
T , T−1 =

(
0 1

1 0

)
T . (2.6)

Observe E∞ = P0,

RA(�)=
∫
dEt
t−� =

∫
dE0

t P0

t−� −RA0(�)P0,

RA(�)∗ = RA
(
�
)
,

RA(�)−RA(λ)= (�−λ)RA(�)RA(λ),
−�RA(�) �→ P0, � �→∞ along imaginary axis.

(2.7)

Now, consider S ⊂ S∗. Put M� = M�(S∗) = {{f ,g} ∈ S∗ | g = �f}. Note that D(M�) =
R(M�)= γ(S∗−�)= R(S−�)⊥. See [1, 2, 4, 25, 26, 27, 28, 29].

Now, the aim of this part is to associate to certain Hermitian operators a generalized

Fourier analysis. Let A and B be entire functions, Cn×n-valued such that the

KN(λ,u)= A(λ)B
∗(ω)+B(λ)A∗(ω)
πi
(
λ−ω∗) (2.8)
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is positive such that, on R,

A(λ)B∗(λ)+B(λ)A∗(λ)= 0,
A(0)= I, B(0)= 0,

(2.9)

and letH(A,B) be the associated reproducing kernel Hilbert space of Cn×n-valued func-

tions. The operator z H
���������������→ zf(z) is a closed symmetric operator in H(A,B) and, for any

ω≠ω∗,

Dim(H−ωI)⊥ =n. (2.10)

Moreover, if F is in H(A,B) and E(ω)= (A,B)(ω) is invertible, then

F(z)−E(z)E−1(ω)F(ω)
z−ω (2.11)

belongs to H(A,B).
Define

R(ω)F = F(z)−E(z)E
−1(ω)F(ω)

z−ω ,

R(ω)F = E(z)RωE−1F.
(2.12)

R(ω) satisfies the resolvent equation. Moreover, R(ω) is bounded from H(A,B) into

H(A,B) and thus there is a relation T such that

(T −ωI)−1 =R(ω). (2.13)

Then,

(
T∗−ωI)−1 = F(z)−(A+B)(z)(A+B)

−1
(
ω∗)F(ω∗)

z−ω∗ ,

i
(
T∗−ω)−1−i(T −ω)−1−i(ω∗−ω)(T∗−ω∗)−1(T −ω)−1 ≥ 0.

(2.14)

GraphH = GraphT ∩GraphT∗ and ρ(T)⊂ C−.

In general, H(A,B) is not resolvent invariant and it is of interest to look for n×n-

valued functions S(z) such that

F �→ F(z)−S(z)S−1(ω)F(ω)
z−ω . (2.15)

We denote by RS the above operator (2.15) (see [6, 7, 8]) which is a bounded operator

from H(A,B) into itself. We then call the space RS -invariant.

Associated to such a pair (A,B) will be the following structure problem.

Definition 2.1. Given a pair (A,B) of Cn×n-valued functions as above, the struc-

ture problem associated to (A,B) consists in finding all pairs (A′,B′) with the same

properties and such that

(A,B)= (A′,B′)θ′ (2.16)

for some entire
(

0 I
I 0

)
inner θ′.
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This problem is a particular case of the inverse scattering problem defined in [6].

Note that H(A′,B′) is contractively included in H(A,B) since

A(λ)B∗(ω)+B(λ)A∗(ω)
iπ
(
λ−ω∗) = A

′(λ)B′(ω)∗+B′(λ)A′∗(ω)
−iπ(λ−ω∗)

+(A′(λ),B′(λ))J−θ′(λ)Jθ′(ω)∗−iπ(λ−ω∗)
(
A′

B′

)
.

(2.17)

Theorem 2.2. Let (A,B) and H(A′,B′) be as in (2.16) and suppose the space

H(A′,B′)RS is invariant. Then H(A,B) is RS -invariant.

Proof. The structure problem associated to a given space H(A,B) thus consists in

finding a family of invariant subspaces of H(A,B). We distinguish two cases.

Case 1. (A,B) is the upper part of a
(

0 I
I 0

)
inner entire function. (This will happen if

and only if H(A,B) is resolvent invariant.)

Case 2. (A,B) is not a part of a
(

0 I
I 0

)
inner entire function.

In the first case, using Potapov’s theorem, we associate to (A,B) a family (At,Bt)
which is not enough to define a Fourier analysis (see [7, 8, 12, 15, 16, 17, 18, 20, 21, 22,

24, 30]).

3. De Branges space. Let H be a Hermitian operator. We want to associate to H a

Fourier analysis, which really means that we want a model for H in a space of analytic

functions in terms of invariant subspaces (this last notion has to be precise).

The first step is to get a model for the operator H.

Theorem 3.1. Let H be a Hermitian operator, closed, simple, and with equal and

finite deficiency indices (n,n). Suppose that the graph of H is the intersection of the

graph of T and T∗, where T is a relation, extending H, with spectrum in the open lower

half-plane and such that, for ω in C+,

i
(
T∗−ω∗)−1/2−i(T −ω)−1−i(ω−ω∗)(T∗−ω∗)−1(T −ω)−1 ≥ 0. (3.1)

Proof. There exist n×n entire functions A and B such that (A−B) is invertible in

C+, (A+B) is invertible in C− such that (A−B)−1(A+B) is inner, and H is unitarily

equivalent to multiplication by λ in H(A,B), the reproducing kernel Hilbert space with

reproducing kernel

A(λ)B∗(ω)+B(λ)A∗(ω)
iπ
(
λ−ω∗) . (3.2)

An interesting feature of the proof of the theorem is that

(A−B)−1(A+B)(λ)= I+2πiλJ(λ)J(0)∗, (3.3)

where

J(λ)= Jω
(
I+(α−ω)(T −α))−1

(3.4)

and Jω is a first part of the operator in (3.1).
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The space H(A,B) is not in general resolvent invariant, and it is of interest, in order

to define invariant subspaces, to characterize functions S, entire andn×n-valued, such

that H(A,B) is closed under the operator RS(u),

(
RS(u)f

)= f(λ)−S(λ)S−1(ω)f(ω)
λ−ω . (3.5)

Such conditions are stated in [6, 8].

To define the Fourier analysis associated to H, we first define the following structure

problem for A, B.

Definition 3.2. Let A, B be entire n×n-valued functions as above. The structure

problem associated toH(A,B) consists in finding all pairs (A′,B′) such that anH(A′,B′)
space exists and such that (A,B)= (A′,B′)θ′, for some

(
0 I
I 0

)
inner entire function θ′.

Note that (3.3) implies that H(A′,B′) is contractively included in H(A,B).
The space H(A,B) will be RS -invariant as soon as H(A′,B′) is RS -invariant.

The question at hand can thus be described as follow. Given a medium of the opera-

tor H when enough RS -invariant subspaces are known. The answer to this question is

different according to if S can be chosen to be I, there or not, see [3, 6, 13, 14, 17, 18, 19].

When S is equal to I, there exist matrix-valued functions C andD such thatM = (A B
C D

)
is
(

0 I
I 0

)
inner and entire.

Theorem 3.3. Let M(λ) be a J-inner entire function. Then

M(λ)=
∫ t

0
expiλH(u)du, (3.6)

where

H(u)J ≥ 0, TTH(u)J = 1; (3.7)

and let

M(t,λ)=
∫ t

0
expiλH(u)du,

∂M
∂t

= iλM ·H(u). (3.8)

Then (A(t,λ),B(t,λ)) is a solution of the structure problem associated to A, B.

Proof. When J = (0 I
I 0

)
,

J−M(t,λ)JM(t,ω)
iπ
(
λ−ω∗)2π =

∫ t
0
M(u,λ)

H(u)J
2π

M∗(u,ω)du (3.9)

and so the map

f �→
∫ �

0
M(u,λ)

H(u)J
2π

f(u)du (3.10)

is a partial isometry from L2(H,[0,�)) into H(M).
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Let

F(z)=
∫ �

0
M(u,λ)

H(u)J
2π

f(u)du. (3.11)

R0F belongs to H(M) and thus there exists an element g in L2(H,[0,�]) such that

(
R0F

)
(z)=

∫ �
0
M(u,λ)

H(u)J
2π

g(u)du (3.12)

(see [5, 9, 10, 11, 15, 20]).

The functions f and g are linked by (g is chosen in the orthogonal of the kernel of

the partial isometry)

∫ 1

c
H(u)Jg(u)du=

∫ 1

c

(
H(c)−H(u))H(u)Jf(u)du. (3.13)

When S cannot be chosen to I (and thus the space H(A,B) is not resolvent invariant),

the situation is more involved. One cannot construct from (A,B) the mass function

H(u)J and has to state as a hypothesis the enough solutions to the structure problem

for A, B, that is, the existence of a family H(A(t),B(t)), t > 0, such that for every t > 0,

H(A(t),B(t)) is contractively included inH(A,B). One has also to state as a hypothesis

the existence of a mass function H(u) such that a weakened version of (3.9) holds,

namely, for any a,b > 0, z,ω in C,

(
A(b,z),B(b,z)

)
J
(
A(b,z),B(b,z)∗

)−(A(a),B(a))JA((a,ω),B(a,ω)∗)

=−i(z−ω∗)∫ b
a

(
A(t,z),B(t,z)

)
H(u)J

(
A(t,ω),B(t,ω)

)
dt.

(3.14)

Theorem 3.4. Under such hypothesis, the map

f �→
∫ b
a

(
A(t,z),B(t,z)

)
H(u)du (3.15)

is a partial isometry from L2(HJ,[a,b]) onto the completion for H(A(b),B(b)) of

H(A(a),B(a)).
When a may be chosen to be zero (i.e., when some limit process is justified), a partial

isometry from L2(HJ,[a,b]) onto H(A,B)=H(A(b),B(b)) is obtained.

Proof. Let

F(z)=
∫ b
a

(
A(t,z),B(t,z)

)
H(t)Jf(t)du (3.16)

be in the orthogonal complement of the partial isometry and suppose F(0) = 0. Then

F(z)/z belongs to H(A,B) and thus there exists a g such that

θ(z)=
∫ b

0

(
A(t,z),B(t,z)

)
H(t)Jf(t)du, (3.17)

f and g are linked by (3.13) (see [6, 23, 30]).
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4. Theory of H(A,B) spaces. In order to prove the expansion theorem described in

Section 3, a more detailed analysis of H(A,B) spaces is needed (see [3, 5, 7, 8]).

We first recall that a function analytic in the upper half-plane C+ is said of bounded

type if it is a quotient of two bounded analytic functions in C+. It can be then written

as

f(z)= eizhB(z)·exp
(
i
∫
dµ(t)
t2+1

tz+1
z−t

)
, (4.1)

where B is Blaschke product h∈R, and
∫
(|dµ|/(t2+1)) <∞.

Definition 4.1. The number h is called the mean type of f . When h is negative,

then it is said to be of nonpositive mean type. The number h is negative if and only if,

for any ε > 0,

lim
y→+∞e

−εyf (iy)= 0. (4.2)

The interest in the functions of bounded type with nonpositive mean type is that the

Cauchy formula holds for such functions, provided some regularity is satisfied on the

real line.

Theorem 4.2. Let f be analytic in C+ of bounded type and nonpositive mean type in

C+ and suppose f has a continuous extension to the closure of C+. Then

∫
|f |2(t)dt <∞. (4.3)

Proof. We have

2πif(z)=
∫∞
−∞
f(t)
t−zdt = 0 for z in C+ (4.4)

(see [1, 2, 3, 4, 6, 7, 8]).

5. Spectral function. We defined the Nevanlinna class Nn as the class of all n×n
matrix functions N(�), which are holomorphic in C0, satisfying N(�)∗ =N(�), � ∈ C0,

and for which the kernel

KN(�,λ)= N(�)−N(λ)
∗

�−λ , �,λ∈ C0, � ≠ λ, (5.1)

is nonnegative. The reproducing kernel Hilbert space associated with the kernelKN(�,λ)
(see [7, 8]) is denoted by L(N). For general information concerning reproducing kernel

Hilbert spaces, we refer to Aronszajn [3]. It is well known that for eachN(�)∈Nn, there

exist n×nmatrices A and B with A=A∗, B= B∗ ≥ 0, and a nondecreasing n×nmatrix

function Σ on R with
∫
R(t2+1)−1dΣ(t) <∞ such that

N(�)=A+B�+
∫
R

(
1
t−� −

t
t2+�

)
dΣ(t), � ∈ C0. (5.2)
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With this so-called Riesz-Hergoltz representation, the kernel KN(�,λ) takes the form

KN(�,λ)= B+
∫
R

dΣ(t)
(t−�)(t−λ) , �,λ∈ C0 (5.3)

(see [10, 13, 29, 30, 31, 32, 33]). We define the space CnB̃ to be the range R(B) of B in

Cn×1 endowed with the inner product [Bc,Bd]= d∗Bc. We note that CnB̃ is equal to the

space L(B�). As usual, L2(dΣ) is the Hilbert space of all n×1 vector functions f defined

on R such that

‖f‖2
Σ =

∫
R
f(t)∗dΣ(t)f (t) <∞. (5.4)

Recall that by the Stieltjes-Liversion formula, the functions (t− �)−1c, c ∈ Cn×1 and

� ∈ C0, are dense in L2(dΣ). The scalar version of the next result can be found in [8].

Proposition 5.1. Let (�) ∈ Nn have the integral representation (5.2). The Hilbert

space L(n) is isomorphic to the space of all n×1 vector functions F(�) of the form

F(�)= Bc+
∫
R

dΣ(t)f (t)
t−� , � ∈ C0, (5.5)

where c ∈ Cn×1, f ∈ L2(dΣ) are uniquely determined by F(�), with norm given by

‖F‖2 = c∗Bc+‖f‖2
Σ. (5.6)

Proof. Let F(�) be an element of the form (5.5). We first check that Bc and f are

uniquely determined by F(�). Indeed, if F(�) admits two such representations with

f ∈ L2(dΣ), c ∈ Cn×1 and f̃ ∈ L2(dΣ), c̃ ∈ Cn×1, we have

B(c̃−c)=
∫
R

dΣ(t)
(
f(t)− f̃ (t))
t−� =

[
f(t)− f̃ (t),(t−�)−1

]
Σ
. (5.7)

Letting �→∞, we obtain Bc = Bc̃ and f = f̃ . The set of functions of the form (5.5) with

norm (5.6) is easily seen to be a Hilbert space, which we denote by K. The representation

(5.3) shows that the function �→ KN(�,λ)d belongs to K for any d∈ Cn×1 and λ∈ C0.

Moreover, for F(�) of the form (5.5), we have the reproducing property of the kernel

KN(�,λ),

[
F,KN(·,λ)d

]= d∗F(λ), d∈ Cn×1, (5.8)

where [·,·] denotes the inner product associated with the norm (5.6). The uniqueness

of the reproducing kernel Hilbert space with reproducing kernel KN(�,λ) implies that

K and L(N) are isomorphic.

Note that we may write L(N) = L(B�)⊕L(N −B�) = CnB̃ ⊕L(N −B�). The mapping

defined by

f �→
∫
R

dΣ(t)f (t)
t−� , f ∈ L2(dΣ), (5.9)
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is an isometry from L2(dΣ) onto L(N−B�) and the mapping defined by (5.5) is an isom-

etry from CnB̃ ⊕L(N−B�) onto L(N). The elements of L(N) are n×1 vector functions,

which are defined and holomorphic on C0. This follows from the fact that L(N) is a

reproducing kernel Hilbert space, and also from (5.5). We will identify L(N) with the

space CnB̃ ⊕L2(dΣ). For any n× 1 vector function F(�), holomorphic on C0, and any

λ∈ C0, we define the operator Rλ by

(
RλF

)
(�)= F(�)−F(λ)

�−λ , � ∈ C0, � ≠ λ,
(
RλF

)
(λ)= F ′(λ). (5.10)

For Hilbert spaces K, R, we denote by L(K,R) the space of all bounded linear operators

from K to R; we write L(K)= L(K,K).

Proposition 5.2. The following items are satisfying:

(i) for all λ∈ C0, Rλ ∈ L(L(N)). In fact, ‖RλF‖ ≤ | Imλ|−1‖F‖, F ∈ L(N);
(ii) for all λ∈ C0, (Rλ)∗ = Rλ;

(iii) the resolvent identity Rλ−Rµ = (λ−µ)RµRλ holds for all λ,µ ∈ C0.

Proof. Let F(�)∈ L(N) have representation (5.5). Then for λ∈ C0,

(
RλF

)
(�)=

∫
R

dΣ(t)f (t)
(t−�)(t−λ) , (5.11)

which on account of Proposition 5.1 implies that RλF ∈ L(N), λ∈ C0. By (5.11),

∥∥RλF∥∥2 =
∥∥∥∥f(t)t−λ

∥∥∥∥
2

Σ
=
∫
R

(
f(t)
t−λ

)∗
dΣ(t)

(
f(t)
t−λ

)

≤ | Imλ|−2
∫
R
f(t)∗dΣ(t)f (t)= | Imλ|−2‖f‖2

Σ ≤ | Imλ|−2‖F‖2,
(5.12)

for λ ∈ C0, which shows that Rλ is a bounded operator in L(N); this proves (i). Items

(ii) and (iii) also follow from (5.11).

Combining (ii) and (iii) of Proposition 5.2, we obtain the identity

Rλ−R∗µ =
(
λ−µ)R∗µ , λ,µ ∈ C0. (5.13)

Conversely, if Rλ ∈ L(L(N)) satisfies (5.13), then the inequality in (i), (ii), and (iii) follow.

For a selfadjoint relation (i.e., multivalued operator) A in a Hilbert space K, A(0) =
{ϕ ∈ K | {0,ϕ} ∈ A} stands for the multivalued part of A and As = A∩ (K
A(0))2
is the operator part of A, which is a (densely defined) selfadjoint operator in K
A(0)
with D(As) = D(A). In the following theorem, we assume that N(�) ∈ Nn and that it

has the integral representation (5.2).

Theorem 5.3. The operator Rλ, λ ∈ C0, is the resolvent operator of the selfadjoint

relation A in L(N) given by

A= {{F,G} ∈ L(N)2 |G(�)−�F(�)= c, ∀� ∈ C0, for some c ∈ Cn×1
}
. (5.14)
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The multivalued part of A is equal to A(0) = L(N)∩Cn×1 = R(B). Representing F(�) ∈
L(N) by (5.5),

(i)

F ∈D(A)⇐⇒ F(�)=
∫
R

dΣ(t)f (t)
t−� for some f ∈ L2(dΣ) with tf (t)∈ L2(dΣ),

(5.15)

(ii)

(
AsF

)
(�)= �F(�)+

∫
R
dΣ(t)f (t)=

∫
R

dΣ(t)tf (t)
t−� , F ∈D(A). (5.16)

Proof. Proposition 5.2 implies that B = {{RµH,(I+µRµ)H} |H ∈ L(N)} is a selfad-

joint relation in L(N) which is independent of µ ∈ C0. We have Rλ = (B−λ)−1, that is,

Rλ is the resolvent of B. It is easy to see that B is contained in the right-hand side of

(5.14). To prove the inclusion A⊂ B, take {F,G} ∈ L(N)2 for which G(�)−�F(�)= c for

some c ∈ Cn×1 and put H(�)=G(�)−µF(�). Then H(�)∈ L(N), (RµH)(�)= F(�), and

((I+µRµ)H)(�) = G(�) and hence {F,G} ∈ B. This proves B = A and the first part of

the theorem. The item about the multivalued part of A is clear. Let F(�) ∈ D(A) have

the representation (5.5). Then Bc = 0 since D(A) is orthogonal to A(0). By (5.14), there

exists a constant d ∈ Cn×1 so that �F(�)+d ∈ L(N) and hence for some e ∈ Cn×1 and

g ∈ L2(dΣ),
∫
R

dΣ(t)�f(t)
t−� +d= Be+

∫
R

dΣ(t)g(t)
t−� . (5.17)

Applying Rα with α∈ C0 to both sides, we obtain

∫
R

dΣ(t)
(
g(t)−tf (t))

(t−�)(t−α) = 0 (5.18)

which implies g(t)= tf (t) and hence tf (t)∈ L2(dΣ). Therefore, F has the representa-

tion in (i), the integral
∫
R dΣ(t)f (t) exists, and

�F(�)=
∫
R

dΣ(t)�f(t)
t−� =−

∫
R
dΣ(t)f (t)+

∫
R

dΣ(t)tf (t)
t−� . (5.19)

This shows that �F(�)+ ∫R dΣ(t)f (t) ∈ L(N) and is orthogonal to A(0) so that (ii) has

been proved. As to the converse of (i), let F(�)∈ L(N) have the indicated representation

for some f ∈ L2(dΣ) with tf (t)∈ L2(dΣ). Then
∫
R dΣ(t)f (t) exists and

�F(�)+
∫
R
dΣ(t)f (t)=

∫
R

dΣ(t)tf (t)
t−� , (5.20)

where the right-hand side belongs to L(N). Therefore, by (5.14), F(�)∈D(A) (see [6, 9]).

Several observations and proofs in this section are due to A. Dijksma, H. de Snoo, and

P. Bruinsma.
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