
IJMMS 2004:36, 1897–1908
PII. S0161171204308215

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

VANISHING MOMENTS FOR SCALING VECTORS
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One advantage of scaling vectors over a single scaling function is the compatibility of sym-
metry and orthogonality. This paper investigates the relationship between symmetry, van-
ishing moments, orthogonality, and support length for a scaling vector Φ. Some general
results on scaling vectors and vanishing moments are developed, as well as some necessary
conditions for the symbol entries of a scaling vector with both symmetry and orthogonality.
If orthogonal scaling vector Φ has some kind of symmetry and a given number of vanishing
moments, we can characterize the type of symmetry for Φ, give some information about
the form of the symbol P(z), and place some bounds on the support of each φi. We then
construct an L2(R) orthogonal, symmetric scaling vector with one vanishing moment having
minimal support.

2000 Mathematics Subject Classification: 42-xx, 42C40, 42C15.

1. Introduction. In this paper, we will discuss conditions for vanishing moments for

scaling vector Φ = (φ1, . . . ,φr )T solutions to the matrix refinement equation (MRE)

Φ(x)=
N∑
k=0

CkΦ(2x−k) (1.1)

with r ×r matrix coefficients Ck. Taking the Fourier transform of this MRE gives

Φ̂(w)= P
(
w
2

)
Φ̂
(
w
2

)
, (1.2)

where the 2-scale symbol P is the r ×r matrix

P(w)= 1
2

N∑
k=0

Cke−ikw or P(z)= 1
2

N∑
k=0

Ckzk with z = e−iw. (1.3)

We will use pij(z) to denote the i-j entry of P , and we will occasionally interchange

z and w for the argument of the symbol P ; the context should prevent confusion.

Scaling vectors and solutions to MREs have been studied in [1, 3, 5, 6, 7] and many oth-

ers. In particular, Heil and Colella [5] showed that the eigenvalues of ∆∞ = limj→∞Pj(1)
are crucial to understanding solutions of the MRE. The unconstrained solutions are

precisely those which are the compactly supported distributional solutions to the MRE

(1.1). For this reason, we will restrict our attention in this paper to unconstrained so-

lutions to (1.1). Indeed, all fundamental solutions of scalar refinement equations are

of this type. The vast majority of scaling vector examples in the literature are uncon-

strained.
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Definition 1.1. Solutions to the MRE (1.1) are defined to be unconstrained if ∆∞

exists and is nontrivial: P(0) has 1 for a nondegenerate eigenvalue, and all other eigen-

values have modulus less than 1.

It is also shown in [5] that unconstrained MRE solutions Φ satisfy

Φ̂(1)=
(∫

R
φ1, . . . ,

∫
R
φr
)T
≠ 0. (1.4)

As is standard in the literature, we say the polynomial accuracy p of a scaling vector

is the maximum integer p for which xk ∈ V0 for k= 0,1, . . . ,p−1. A common sufficient

condition for the density condition of a multiresolution analysis (MRA) generated by Φ
requires polynomial accuracy at least p ≥ 1 (e.g., [3]). Throughout this paper, all scaling

vectors are assumed to have accuracy p ≥ 1.

The following combines some important results on accuracy and smoothness found

in [1, 7] necessary for our discussion.

Theorem 1.2. Suppose that compactly supported scaling vector Φ generates an MRA.

The following are equivalent:

(1) Φ provides polynomial accuracy m;

(2) the elements of P(w) are trigonometric polynomials and there are vectors yk for

k= 0, . . . ,m−1 satisfying

m∑
k=0

(
m
k

)(
yk
)T (2i)k−m(Dm−kP)(0)= 2−m

(
ym

)T ,
m∑
k=0

(
m
k

)(
yk
)T (2i)k−m(Dm−kP)(π)= 0T ;

(1.5)

(3) the symbol P(z) factors as

P(z)= 1
2m
Cx0

(
z2)···Cxm−1

(
z2)Pm(z)Cxm−1(z)

−1 ···Cx0(z)
−1. (1.6)

In this case, if infγk <m−1/2, then Φ ∈ L2(R), where

γk = 1
k

log2 sup
ω

∥∥∥∥Pm
(
ω
2

)
···Pm

(
ω
2k

)∥∥∥∥. (1.7)

Whether the MRA generated by Φ is orthogonal is determined by the following con-

dition found in [10].

Theorem 1.3. The scaling vector Φ generates an orthogonal basis if and only if its

symbol P satisfies

P(z)P∗
(

1
z

)
+P(−z)P∗

(−1
z

)
= Ir . (1.8)

One advantage to scaling vectors over a single scaling function is the compatibility

of symmetry and orthogonality, as seen in [3] and elsewhere. The symmetry condition

given below for a scaling vector was proved by Plonka and Strela and appears in [7].
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Theorem 1.4. A scaling vector Φ has component functions that are symmetric or

antisymmetric if and only if there exists a matrix E(z)= diag(±z2T1 , . . . ,±z2Tr ) for which

P(z)= E(z2)P(z−1)E−1(z), (1.9)

where the Tj are the points of symmetry for the φj and the ± sign is + when φj is

symmetric and − when antisymmetric.

When r = 2 and T1 = 0, the condition P(z)= E(z2)P(z−1)E−1(z) is equivalent to the

following, useful in the sequel:

p11(z)= p11
(
z−1), p12(z)=±z−2T2p12

(
z−1),

p21(z)=±z4T2p21
(
z−1), p22(z)= z2T2p22

(
z−1). (1.10)

Remark 1.5. We will say that a scaling vector Φ is symmetric if all component func-

tions of Φ are either symmetric or antisymmetric.

The following result, needed in the sequel, shows that the length of each polynomial

entry in the symbol is unaffected by integer shifts of the scaling functions.

Proposition 1.6. Let Φ = (φ1,φ2)T be a scaling vector with symbol P . If each φk is

shifted by Sk ∈ Z, the symbol of the new scaling vector Φ∗ is

P∗(z)=
(
z−S1p11(z) zS2−2S1p12(z)
zS1−2S2p21(z) z−S2p22(z)

)
. (1.11)

Proof. Note that Φ̂∗(z) = T(z)Φ̂(z), where T(z) = diag{z−S1 ,z−S2}. Substituting

into (1.2), we have

T−1(z2)Φ̂∗(z2)= P(z)T−1(z)Φ̂∗(z),

Φ̂∗
(
z2)= T(z2)P(z)T−1(z)Φ̂∗(z)

=
(
z−S1p11(z) zS2−2S1p12(z)
zS1−2S2p21(z) z−S2p22(z)

)
Φ̂∗(z).

(1.12)

2. Scaling vectors with vanishing moments. The study of vanishing moments for

a single scaling function is discussed in [2] and many other papers. In [2], Daubechies

shows how to link the symbol’s condition for vanishing moments with the condition for

polynomial accuracy via Bezout’s theorem to obtain a family of coiflets. In the scaling

vector situation, the symbol is a matrix, and matters are more complex. In this section,

we develop some general results on scaling vectors and vanishing moments, as well as

some necessary conditions for the symbol entries of a scaling vector with both sym-

metry and orthogonality. We first characterize the vanishing moments of Φ in terms of

the derivatives of its symbol DkP(0) according to the following result, first presented

in [8].
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Definition 2.1. Φ = (φ1, . . . ,φr )T has L−1 vanishing moments if

∫
xnφi(x)dx = 0 for n= 1, . . . ,L−1 (2.1)

for all φi.

Theorem 2.2. The scaling vector Φ = (φ1, . . . ,φr )T generating an MRA has L− 1

vanishing moments if and only if Φ̂(0) is a 0-eigenvector of DkP(0) for k= 1, . . . ,L−1.

Proof. As noted in (1.4), Φ̂(0)≠ 0. Differentiating the MRE (1.2) k times with respect

to ω yields

Φ̂(k)(ω)= 1
2k

k∑
i=0

(
k
i

)
Dk−iP

(
ω
2

)
Φ̂(i)

(
ω
2

)
. (2.2)

Suppose Φ has L−1 vanishing moments. Recall from Fourier analysis that Φ having

L−1 vanishing moments is equivalent to

Φ̂(i)(0)= 0 (2.3)

for i= 1, . . . ,L−1. Now let k∈ {1, . . . ,L−1}. From the theorem hypothesis, (2.2) atω= 0

reduces to

0= 1
2k
DkP(0)Φ̂(0)(0), (2.4)

so Φ̂(0) is a 0-eigenvector of DkP(0).
Suppose Φ̂(0) is a 0-eigenvector. We use the principle of strong induction. Define

S = {n∈N: if Φ̂(0) is a 0-eigenvector of DkP(0) for k= 1, . . . ,n, then Φ has n vanishing

moments}. To see that 1 ∈ S, assume Φ̂(0) is a 0-eigenvector of DP(0). From (2.2) at

ω= 0 and k= 1, we get

Φ̂(1)(0)= 1
21
DP(0)Φ̂(0)(0)+P(0)Φ̂(1)(0)= 1

2
P(0)Φ̂(1)(0). (2.5)

Thus P(0)Φ̂(1)(0)= 2Φ̂(1)(0), so either Φ̂(1)(0) is a 2-eigenvector of P(0) or Φ̂(1)(0)= 0.

However, since we have an MRA, P(0) has spectral radius 1 by [6, Proposition 1.1],

which forces Φ̂(1)(0)= 0. Thus 1∈ S.

Next assume that {1, . . . ,k} ⊂ S. To see that k+ 1 ∈ S, assume that Φ̂(0) is a 0-

eigenvector of DiP(0) for i = 1, . . . ,k+1. Since {1, . . . ,k} ⊂ S, Φ has k vanishing mo-

ments. From this and (2.2) at ω= 0 with k+1, we have

Φ̂(k+1)(0)= 1
2k+1

k+1∑
i=0

(
k+1
i

)
Dk+1−iP(0)Φ̂(i)(0)

= 1
2k+1

P(0)Φ̂(k+1)(0).

(2.6)

Thus Φ̂(k+1)(0) is a 2k+1-eigenvector of P(0) or Φ̂(k+1)(0) = 0. Since P(0) has spectral

radius 1, Φ̂(k+1)(0)= 0. Thus k+1∈ S.
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We now record some useful results about vanishing moments and symmetric scaling

vectors.

Proposition 2.3. If f(x) is symmetric about some β≠ 0, and
∫
Rxf(x)dx = 0, then∫

Rf(x)dx = 0.

Proof. Define g(u) = uf(u+β) and note that g is odd. Thus
∫
Rg(u)du = 0, so

letting x =u+β, we have
∫
Rxf(x)dx = β

∫
Rf(x)dx whence

∫
Rf(x)dx = 0.

Corollary 2.4. If Φ is a symmetric scaling vector with a vanishing moment, then

at least one φk must be symmetric about 0.

Proof. Φ̂(0) cannot vanish as noted in (1.4). Apply Proposition 2.3.

Theorem 2.5. Suppose Φ = (φ1, . . . ,φr )T generates a nontrivial orthonormal basis.

Then not all φi can be symmetric about integers, and not all φi can be antisymmetric.

Proof. That not all φi can be antisymmetric follows immediately from Corollary

2.4.

To prove that not all φi can be symmetric, we prove the contrapositive. Begin by

shifting each φi so that it is symmetric about 0, if necessary. Now let P(z) be the

symbol of this shifted Φ. By the symmetry Theorem 1.4, P(z) = P(1/z) for all z. Thus

the k-k entry of θ = P(z)P∗(1/z)+P(−z)P∗(−1/z) is

θkk =
r∑
j=1

p2
kj(z)+p2

kj(−z). (2.7)

Letting nkj denote the degree of the highest-degree nonzero term ankjz
nkj of pkj(z)

and nk =maxj(nkj), we see that θkk has 2nk degree term

∑
nkj=nk

(
ankjz

nkj
)2+(ankj (−z)nkj )2 = 2z2nk

∑
nkj=nk

(
ankj

)2
≠ 0. (2.8)

Since the basis is nontrivial, P(z) is not constant, so nk > 0 for at least one value of k
whence θkk is not constant for this k value. Thus θ is not the identity matrix, and so

by (1.8), Φ does not generate an orthonormal basis.

We introduce the notation degL(R) = n−m for a polynomial R(z) = amzm+···+
anzn, where m ≤ n. The following results are useful for analyzing the symbol P(z)
when scaling vector Φ is symmetric.

Lemma 2.6. Let polynomial R(z) = amzm + ··· +anzn satisfy zkR(z) = ±R(z−1),
where am,an ≠ 0, m ≤n. Then m =−n−k and degL(R)= 2n+k is even if and only if

k is even.

Proof. The condition zkR(z)=±R(z−1) can be rewritten as follows:

amzm+k+···+anzn+k =±
(
amz−m+···+anz−n

)
. (2.9)

Then the highest-degree terms of (2.9) must be anzn+k = ±amz−m so n+ k = −m
whence degL(R)=n−m= 2n+k.
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Proposition 2.7. Suppose symmetric Φ = (φ1,φ2)T generates a nontrivial orthonor-

mal basis with the φk (anti)symmetric about integers. Then

degL
(
p11

)= degL
(
p12

)
, degL

(
p21

)= degL
(
p22

)
. (2.10)

Proof. By Theorem 2.5, we may assume φ1 is symmetric and φ2 is antisymmet-

ric. Then shift each φk to be (anti)symmetric about 0. Note that this does not affect

degL(pjk) for any j, k by Proposition 1.6. Letting P(z) denote the symbol of this shifted

scaling vector, Theorem 1.4 is satisfied with E(w)= diag{1,−1}; so p11(z)= p11(z−1),
p12(z) = −p12(z−1), p21(z) = −p21(z−1), p22(z) = p22(z−1), and so the k-k entry of

θ = P(z)P∗(1/z)+P(−z)P∗(−1/z) is

θkk = p2
k1(z)+p2

k1(−z)−
(
p2
k2(z)+p2

k2(−z)
)
. (2.11)

Since θkk=1 because of the orthogonality, deg(p2
k1(z))=deg(p2

k2(z)). Thus degL(pk1)=
degL(pk2).

Proposition 2.8. Suppose symmetric Φ = (φ1,φ2)T generates a nontrivial orthonor-

mal basis with φ1 symmetric about an integer and φ2 symmetric about a half integer.

Then

degL
(
p11

)+1≤ degL
(
p12

)
, degL

(
p21

)+1≤ degL
(
p22

)
. (2.12)

Proof. Shift φ1 and φ2 to be symmetric about 0 and −1/2, respectively. Note that

this does not affect degL(pjk) for any j, k by Proposition 1.6. Letting P(z) denote the

symbol of this shifted scaling vector, Theorem 1.4 is satisfied; so by (1.10), p11(z) =
p11(z−1), z−1p12(z) = p12(z−1), p21(z) = z−2p21(z−1), p22(z) = z−1p22(z−1), and so

the 1-1 entry of θ = P(z)P∗(1/z)+P(−z)P∗(−1/z) is

θ11 = p2
11(z)+p2

11(−z)+z−1p2
12(z)−z−1p2

12(−z). (2.13)

Note that the highest-degree terms of z−1p2
12(z) and z−1p2

12(−z) are equal and of odd

degree and so z−1p2
12(z)−z−1p2

12(−z) has degree at most 2deg(p12(z))−2. Since θkk =
1 because of the orthogonality, 2deg(p12)−2≥ deg(p2

11)= 2deg(p11). Thus deg(p12)−
1≥ deg(p11). Using Lemma 2.6, we see that

degL
(
p12

)= 2deg
(
p12

)−1≥ 2
(
deg

(
p11

)+1
)−1= degL

(
p11

)+1. (2.14)

Proving the second claim is very similar. Using (1.10),

θ22 = z2p2
21(z)+z2p2

21(−z)+zp2
22(z)−zp2

22(−z), (2.15)
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and noting that zp2
22(z) − zp2

22(−z) has degree at most 2deg(p22), we see that

2deg(p22)≥ 2deg(p21)+2. Using Lemma 2.6, we see that

degL
(
p22

)= 2deg
(
p22

)+1≥ 2deg
(
p21

)+3= degL
(
p21

)+1. (2.16)

The following result says that we can shift a function φ with vanishing moments

without affecting the vanishing moments, provided that
∫
Rφ = 0. This will simplify

some of our proofs.

Proposition 2.9. If
∫
Rxkf(x)dx = 0 for k= 0,1, . . . ,L−1, then

∫
Rxkf(x−S)dx = 0

for any S.

Proof. Substituting u = x − S, apply the binomial theorem and hypothesis:∫
Rxkf(x−S)dx =

∫
R(u+S)kf (u)du=

∑k
j=0

(
k
j

)
Sk−j

∫
Rujf(u)du= 0.

3. Support bounds for orthogonal, symmetric scaling vectors with vanishing mo-

ments. We now limit discussion to scaling vectors with r = 2 component functions.

If orthogonal Φ = (φ1,φ2)T has some kind of symmetry and a given number of van-

ishing moments, we can characterize the type of symmetry forΦ, give some information

about the form of the symbol P(z), and place some bounds on the support of each φi.
We also demonstrate how to construct an L2(R) orthogonal symmetric scaling vector

with minimal support for one vanishing moment. This support length depends on the

type of symmetry.

We first introduce some standard notation about support for scaling vectors needed

for our analysis of the interplay between vanishing moments and support. We will say

that the support of Φ = (φ1, . . . ,φr )T is supp(Φ) = ∪i supp(φi), with each supp(φi)
being the convex hull of the support points of φi, as in [9]. The support length of φi,
denoted by suppL(φi), is the length of the interval supp(φi).

A family {fi} of functions on R is locally linearly independent (LLI) if
∑
i cifi(x)= 0

on any nontrivial interval I implies that ci = 0 for all i for which supp(fi)∩ I ≠∅. We

say a scaling vector Φ is LLI if the family {φi(x−k) : 1 ≤ i ≤ r , k ∈ Z} is LLI. Wavelets

and the LLI property have been studied together [4, 9], and So and Wang [9] proved the

following result about the connection between the symbol P(z) entries’ degrees and

each supp(φi). This result allows us to put some bounds on the support length of φi.

Theorem 3.1. Suppose Φ = (φ1,φ2)T is LLI. Then supp(φi) = [Li,Ri] for i = 1,2,

where

R1=max
{
H11,

2H12+H21

3
,
H12+H22

2

}
, L1=min

{
B11,

2B12+B21

3
,
B12+B22

2

}
,

R2=max
{
H22,

2H21+H12

3
,
H11+H21

2

}
, L2=min

{
B22,

2B21+B12

3
,
B21+B11

2

}
,

(3.1)

Hij and Bij being the highest and lowest degrees, respectively, of pij(z).
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Corollary 3.2. Suppose Φ = (φ1,φ2)T is LLI. Then

suppL
(
φ1
)≥max

{
degL

(
p11

)
,
2degL

(
p12

)+degL
(
p21

)
3

,
degL

(
p12

)+degL
(
p22

)
2

}
,

suppL
(
φ2
)≥max

{
degL

(
p22

)
,
2degL

(
p21

)+degL
(
p12

)
3

,
degL

(
p11

)+degL
(
p21

)
2

}
.

(3.2)

Proof. Since degL(pij) = Hij − Bij , Theorem 3.1 yields suppL(φ1) = R1 − L1 ≥
(1/3)(2H12+H21)−(1/3)(2B12+B21)= (2/3)degL(p12)+(1/3)degL(p21). This proves

that suppL(φ1)≥ degL(p11),(1/2)(degL(p12)+degL(p22)) are very similar, which gives

us the first claim. The proof of the second claim is the same.

The next two lemmas contain useful information about scaling vectors with vanishing

moments.

Lemma 3.3. Suppose symmetric, orthogonal scaling vector Φ = (φ1,φ2)T has accu-

racy p ≥ 1 and at least one vanishing moment. If φ1 is symmetric about 0, then Φ̂(1)
must be a multiple of (1,0)T , P(1) has a one-dimensional right 1-eigenspace, and y0 of

Theorem 1.2 must be a nonzero scalar multiple of Φ̂(1).

Proof. By Proposition 2.3, Corollary 2.4, and Theorem 2.5, φ2 must be either anti-

symmetric or symmetric about some β ≠ 0. In either case, φ̂2(1) =
∫
Rφ2 = 0, so Φ̂(1)

must be multiple of (1,0)T and P(1)Φ̂(1)= Φ̂(1); so

P(1)=
(

1 x
0 y

)
. (3.3)

By Definition 1.1, the eigenvaluey must be 1 or less than 1 in magnitude. For the sake of

contradiction, suppose thaty = 1. Then P(1) has two linearly independent eigenvectors

F̂1(1), F̂2(1) corresponding to two linearly independent scaling vector solutions F1, F2

by [5, Theorem 2.3]. Thus one of these, say F2 = (f 2
1 ,f

2
2 )T , must satisfy F̂2(1)= (a,b)T

for some b ≠ 0. But then its second component function f̂ 2
2 (1)=

∫
Rf

2
2 = b ≠ 0. On the

other hand, since Φ is symmetric and orthogonal, its symbol P has the form requiring

all other scaling vector solutions to be symmetric and orthogonal, by Theorems 1.4 and

1.3, with the first component function symmetric about 0. So, just as with Φ, f 2
2 must

be either antisymmetric, or symmetric about some β≠ 0, and so f̂ 2
2 (1)=

∫
Rf

2
2 = 0. This

is a contradiction; so |y|< 1, and P(1) has a one-dimensional right 1-eigenspace.

To see the final claim, multiply the orthogonality condition (1.8), evaluated at z = 1,

on the left by (y0)T from Theorem 1.2. Recalling that (y0)T P(1)= (y0)T and (y0)TP(−1)
= 0, this reduces to (y0)TP∗(1)+0·P∗(−1)= (y0)T . Taking transposes gives P(1)y0 =
y0; so y0; is a right 1-eigenvector of P(1). Thus y0 must be a multiple of Φ̂(1).

Lemma 3.4. Suppose Φ = (φ1,φ2)T has L− 1 ≥ 1 vanishing moments and Φ̂(1) =
A(1,0)T for some nonzero constant A. Then the entries p11 and p21 of symbol P(z)
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satisfy

p11(z)= 1+(1−z)LQ11(z),

p21(z)= (1−z)LQ21(z)
(3.4)

for polynomials Q11, Q21.

Proof. Since P(1)Φ̂(1)= Φ̂(1), we must havep11(1)= 1 andp21(z)= 0. By Theorem

2.2,

DkP(1)
(

1
0

)
=
(

0
0

)
(3.5)

for k= 1, . . . ,L−1. Thus (1−z)L must divide p11(z)−1 and p21(z).

The first symmetric, orthogonal, continuous, compactly supported scaling vector

Φ = (φ1,φ2)T in the literature, constructed in [3], had φ1 symmetric about an integer

and φ2 symmetric about 1/2. The next result gives necessary conditions on a scaling

vector’s symmetry, symbol, and support length if we insist additionally on vanishing

moments. In particular, neither φ1 nor φ2 can be antisymmetric.

Theorem 3.5. Suppose symmetric, orthogonal, LLI scaling vector Φ = (φ1,φ2)T has

accuracy p ≥ 1 and L−1 ≥ 1 vanishing moments. If φ2 is symmetric or antisymmetric

about m+1/2 for integer m, then

(1) φ1 is symmetric about 0;

(2) φ2 is symmetric;

(3) if L is even, then suppL(φ1)≥ L+1, suppL(φ2)≥ L+1, and P(z) has the form

P(z)=

1+(1−z)LQ11(z)

(
1−z2

)
(1−z)R12(z)

(1−z)LQ21(z) (1+z)R22(z)


 ; (3.6)

(4) if L is odd, then suppL(φ1)≥ L+2, suppL(φ2)≥ L+2, and P(z) has the form

P(z)=

1+(1−z)L+1R11(z)

(
1−z2

)
(1−z)R12(z)

(1−z)L+1R21(z) (1+z)R22(z)


 . (3.7)

Proof. By Corollary 2.4, φ1 must be symmetric about 0, thus proving claim (1).

From Lemma 3.3,
∫
Rφ2 = 0, so by Propositions 1.6 and 2.9, we may assume WLOG

that this integer m is zero.

Supposeφ2 is antisymmetric for the sake of contradiction. From (1.10) with T2 = 1/2,

p21(z)=−z2p21(1/z) andp22(z)= zp22(z−1). Evaluating at z =±1, we seep21(±1)= 0

and p22(−1)= 0. Evaluating the 2-2 position of (1.8) at z = 1 simplifies to (p22(1))2 = 1.

But P(1)= (1 x
0 p22(1)

)
, so Definition 1.1 says p22(1)= 1. This says P(0) has a two-dimen-

sional right 1-eigenspace, which is a contradiction of Lemma 3.3. This says that φ2 is

in fact symmetric, thus completing the proof of 2.

To prove claims (3) and (4), first note that by Lemma 3.3 and Theorem 1.2, (y0)TP(1)=
(y0)T =A(1,0)T =A(p11(1),p12(1)); so we must have 1−z as a factor of p12(z).
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Similarly (y0)T P(−1) = A(p11(−1),p12(−1)) = 0 says that we must have 1+z as a

factor of p12(z).
By Lemma 3.4 and (1.10) with T2 = 1/2, we see

(1−z)LQ11(z)=
(
1−z−1)LQ11

(
z−1), zp12(z)= p12

(
z−1),

(1−z)LQ21(z)= z2(1−z−1)LQ21
(
z−1), p22(z)= zp22

(
z−1). (3.8)

Multiplying the 1-1 and 2-1 positions by zL and letting p12(z)= (1−z2)Q12, we see that

zLQ11(z)= (−1)LQ11
(
z−1), z3Q12(z)=−Q12

(
z−1),

zLQ21(z)= (−1)Lz2Q21
(
z−1), p22(−1)= 0;

(3.9)

so 1+z divides p22(z) and Q12(1)= 0; so Q12(z)= (1−z)12R(z) for some R12(z).
Consider the case when L is even. The form of P(z) has been verified. Using

Proposition 2.8, degL(p12) ≥ degL(p11)+ 1 ≥ L+ 1 and degL(p22) ≥ degL(p21)+ 1 ≥
L+1; so by Corollary 3.2, suppL(φ2),suppL(φ1)≥ L+1.

Consider the case when L is odd. In this case, we see from (3.9) that Q11(1) =
Q21(1)= 0; so 1−z divides both Q11(z) and Q21(z). This proves the form of P(z) and

degL(p21),degL(p11) ≥ L+1. Using Proposition 2.8, degL(p22) ≥ degL(p21)+1 ≥ L+2

and degL(p12) ≥ degL(p11)+ 1 ≥ L+ 2; so by Corollary 3.2, suppL(φ2) ≥ L+ 2 and

suppL(φ1)≥ (1/2)degL(p12)+(1/2)degL(p22)≥ L+2.

Example 3.6. Set L= 2. We use Theorem 3.5 to guide the construction of an L2(R)
orthogonal symmetric scaling vector with minimal support for one vanishing moment.

Naturally φ1 is symmetric about 0 and φ2 is symmetric about 1/2. We begin with

Q21(z) being a monomial. By Proposition 2.8, degL(p22) ≥ degL(p21)+ 1 = 3, so we

try degL(R22)= 2. Brute force with (1.8) and Lemma 2.6 shows that orthogonality can-

not be obtained if degL(Q11) < 2; so we try degL(Q11) = 2 and thus degL(R12) = 2 is

minimal. We put the unknowns Q11, Q21, R12, R22 into form ensuring the symmetry

conditions, and solved for the parameters to guarantee orthogonality, with the help of

Mathematica:

P(z)=




1+ (1−z)
2

z2

(
a11+b11z+a11z2

) (
1−z2

)
z3

(1−z)(a12+b12z+a12z2
)

a21(1−z)2 (1+z)
z

(
a22+b22z+a22z2

)

 ,

a11 ≈−0.05176, b11 ≈ 0.14648, a12 ≈−0.03832, b12 ≈−0.00337,

a21 ≈−0.24986, a22 ≈−0.185, b22 ≈ 0.16874.
(3.10)

Theorem 1.2 was used to verify that the solution was indeed L2(R). The supports

suppL(φ1) = 4, suppL(φ2) = 3 are minimal for the conditions put on Φ. The plots

of φ1 and φ2 are given in Figure 3.1.

We next consider necessary conditions for an orthogonal scaling vector with vanish-

ing moments if both φ1 and φ2 have symmetry centered about integers. In particular,
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Figure 3.1. Scaling functions for Example 3.6.

we find that one scaling function must be symmetric about zero and the other must be

antisymmetric.

Theorem 3.7. Suppose symmetric, orthogonal, LLI scaling vector Φ = (φ1,φ2)T has

accuracy p ≥ 1 and L−1 ≥ 1 vanishing moments. If φ1 is symmetric about an integer

and φ2 is (anti)symmetric about integer, then

(1) φ2 must be antisymmetric;

(2) φ1 is symmetric about zero;

(3) if L is even, then suppL(φ1)≥ L+1, suppL(φ2)≥ L+2, and the symbol P has the

form

P(z)=
(

1+(1−z)LQ11(z)
(
1−z2

)
Q12(z)

(1−z)L(1−z2
)
R21(z) P22(z)

)
; (3.11)

(4) if L is odd, then suppL(φ1)≥ L+1, suppL(φ2)≥ L+1, and P(z) has the form

P(z)=
(

1+(1−z)L+1Q11(z)
(
1−z2

)
Q12(z)

(1−z)L(1+z)R21(z) P22(z)

)
. (3.12)

Proof. By Theorem 2.5,φ2 must be antisymmetric about an integer. Since
∫
Rφ2 = 0,

by Proposition 1.6, we may assume without loss of generality that this integer is zero.

Claim (2) follows from Corollary 2.4.

By Lemma 3.4 and (1.10), we see that

(1−z)LQ11(z)=
(
1−z−1)LQ11

(
z−1), p12(z)=−p12

(
z−1),

(1−z)LQ21(z)=−
(
1−z−1)LQ21

(
z−1), p22(z)= p22

(
z−1). (3.13)

It follows that

zLQ11(z)= (−1)LQ11
(
z−1),

zLQ21(z)= (−1)L+1Q21
(
z−1),

p12(±1)= 0 �⇒ 1−z2 divides P12(z).

(3.14)
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Consider the case where L is even. Then Q21(±1) = 0, so 1− z2 divides Q21. Thus

(1− z)L(1− z2) divides P21(z), so degL(P21) ≥ L+ 2. From Proposition 2.7, we see

degL(P22) is also at least L+2. Thus suppL(φ2)≥ L+2.

Now degL(P11) is clearly at least L, so degL(P12) ≥ L. Then Corollary 3.2 says

suppL(φ1)≥ (1/2)degL(P12)+(1/2)degL(P22)≥ L+1.

Consider the case where L is odd. Then Q11(1) = 0, so 1− z divides Q11. Thus

(1−z)L+1 divides P11(z)−1, so degL(P11) ≥ L+1 and thus suppL(φ1) ≥ L+1. Next,

note that Q21(−1) = 0, so (1−z)L(1+z) divides P21 and thus degL(P21) ≥ L+1. Now

by Corollary 3.2, suppL(φ2)≥ (1/2)degL(P11)+(1/2)degL(P21)≥ L+1.

Example 3.8. Set L= 2. We use this theorem to guide a construction of an L2(R) LLI,

orthogonal, symmetric scaling vector with one vanishing moment and minimal support.

Naturally φ1 is symmetric about 0 and φ2 is antisymmetric about 1/2, suppL(φ1)≥ 3,

suppL(φ2) ≥ 4. We begin with symbol of the form given in Theorem 3.7 part 3. Brute

force with (1.8) shows that orthogonality cannot be obtained if degL(Q11) < 2, so we

try degL(Q11)= 2 and thus degL(Q12)= 2 is minimal. We put the unknowns Q11, Q12,

P22, R21 into form ensuring the symmetry conditions, and solved for the parameters to

guarantee orthogonality, with the help of Mathematica. Theorem 1.2 was used to verify

that the solution was indeed L2(R). The supports suppL(φ1) = 4, suppL(φ2) = 4 are

minimal for the conditions required for Φ.
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