
IJMMS 2004:37, 1943–1956
PII. S0161171204401173

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

METHOD OF SEMIDISCRETIZATION IN TIME TO NONLINEAR
RETARDED DIFFERENTIAL EQUATIONS WITH NONLOCAL

HISTORY CONDITIONS

S. AGARWAL and D. BAHUGUNA

Received 4 January 2004

This paper deals with the applications of the method of semidiscretization in time to a
nonlinear retarded differential equation with a nonlocal history condition. We establish the
existence and uniqueness of a strong solution. Finally, we consider some applications of the
abstract results.

2000 Mathematics Subject Classification: 34K30, 34G20, 47H06.

1. Introduction. Consider the following nonlinear retarded differential equation in

a real Hilbert space H:

u′(t)+Au(t)= f (t,u(t),u(r1(t)
)
,u
(
r2(t)

)
, . . . ,u

(
rm(t)

))
, t ∈ (0,T ],

h
(
u[−τ,0]

)=φ0, on [−τ,0], (1.1)

where 0< τ , T <∞, φ0 ∈�0 := C([−τ,0];H), the nonlinear operator A is single valued

and maximal monotone defined from the domainD(A)⊂H intoH, the nonlinear map f
is defined from [0,T ]×Hm+1 into H, the map h is defined from �0 into �0, and ψ[−τ,0]
is the restriction of ψ ∈ �T := C([−τ,T];H) on [−τ,0]. Here �t := C([−τ,t];H) for

t ∈ [0,T ] is the Banach space of all continuous functions from [−τ,t] into H endowed

with the supremum norm

‖φ‖t := sup
−τ≤η≤t

∥∥φ(η)∥∥, φ∈�t , (1.2)

where ‖·‖ represents the norm inH and the functions ri : [0,T ]→[−τ,T], i= 1,2, . . . ,m.

The existence and uniqueness results for (1.1) may also be applied to the particular

case, namely, the retarded functional differential equation

u′(t)+Au(t)= f (t,u(t),u(t−τ1
)
,u
(
t−τ2

)
, . . . ,u

(
t−τm

))
, t ∈ (0,T ],

u=φ0, on [−τ,0], (1.3)

where 0< τi < T and τ =max{τ1,τ2, . . . ,τm}.
For the earlier works on existence, uniqueness, and stability of various types of so-

lutions of differential and functional differential equations with nonlocal conditions,

we refer to Byszewski and Lakshmikantham [7], Byszewski [6], Balachandran and Chan-

drasekaran [4], Lin and Liu [11], and the references cited in these papers.
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Our aim is to extend the application of the method of semidiscretization in time, also

known as the method of lines, to (1.1). For the applications of the method of lines to

nonlinear evolution and nonlinear functional evolution equations, we refer to Kartsatos

and Parrott [9, 10], Kartsatos [8], Bahuguna and Raghavendra [3], Bahuguna [1], and the

references cited in these papers.

Suppose that there is χ ∈ �T such that h(χ[−τ,0]) =φ0 on [−τ,0] and χ(0) ∈D(A).
We prove the existence of a strong solution u of (1.1) under the assumptions of Theorem

2.4, stated in the next section, in the sense that there exists a unique function u ∈ �T
such that u(t)∈D(A) for a.e. t ∈ [0,T ], u is differentiable a.e. on [0,T ], and

u′(t)+Au(t)= f (t,u(t),u(r1(t)
)
, . . . ,u

(
rm(t)

))
, a.e. t ∈ [0,T ],

u[−τ,0] = χ[−τ,0], on [−τ,0]. (1.4)

Finally, we show that u is unique if and only if χ ∈ �T satisfying h(χ[−τ,0]) = φ0 is

unique up to [−τ,0]. We also consider some applications of the abstract results.

2. Preliminaries and main result. Let H be a real Hilbert space. Let (x,y) be the

inner product of x,y ∈H. We assume the following conditions.

(A1) The operator A :D(A)⊂H →H is maximal monotone, that is,

(Ax−Ay,x−y)≥ 0, ∀x,y ∈D(A), R(I+A)=H, (2.1)

where R(·) is the range of an operator.

(A2) The map h : �0 → �0 and there exists χ ∈ �T such that h(χ[−τ,0]) = φ0 and

χ(0)∈D(A).
(A3) The nonlinear map f : [0,T ]×Hm+1 →H satisfies a local Lipschitz-like condition

∥∥f (t,u1,u2, . . . ,um+1
)−f (s,v1,v2, . . . ,vm+1

)∥∥≤ Lf (r)
[
|t−s|+

m+1∑
i=1

∥∥ui−vi∥∥
]
,

(2.2)

for all (u1,u2, . . . ,um+1) and (v1,v2, . . . ,vm+1) in Br (Hm+1,(χ(0), . . . ,χ(0))) and

t ∈ [0,T ], where Lf :R+ →R+ is a nondecreasing function and, for r > 0,

Br
(
Hm+1,

(
χ(0), . . . ,χ(0)

))=
{(
u1, . . . ,um+1

)∈Hm+1 :
m+1∑
i=1

∥∥ui−χ(0)∥∥≤ r
}
. (2.3)

(A4) For i = 1,2, . . . ,m, the maps ri : [0,T ] → [−τ,T] are continuous satisfying the

delay property ri(t)≤ t for t ∈ [0,T ].
Further, if A is monotone, 1+αA is invertible for α > 0 and the inverse operator

(1+αA)−1 is Lipschitz continuous, that is,

∥∥(1+αA)−1u−(1+αA)−1v
∥∥≤ ‖u−v‖, u,v ∈D((1+αA)−1). (2.4)

Also, the inverse of an invertible monotonic operator in Hilbert space H is monotonic,

but it might not be true in the general case.
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For an m-monotonic operator A, we introduce the following sequences of operator

(n= 1,2, . . .):

Jn =
(
1+n−1A

)−1,

An =AJn =n
(
I−Jn

)
,

(2.5)

where AJn denotes the composition of the two maps A and Jn. The Jn and An are

defined everywhere on H. We recall simple lemmas that we will have occasions to use.

More details may be found in [5].

Lemma 2.1. Let A be m-monotonic. Jn and An are uniformly Lipschitz continuous,

with ∥∥Jnu−Jnv∥∥≤ ‖u−v‖,∥∥Anu−Anv∥∥≤ 2n‖u−v‖. (2.6)

Lemma 2.2. Let A be m-monotonic. Then An are also monotonic. Furthermore,

∥∥Anu∥∥≤ ‖Au‖, for u∈D(A). (2.7)

Lemma 2.3. Let A be m-monotonic in H.

(a) IfXn ∈D(A),n= 1,2, . . . ,Xn→u∈H, and if ‖AXn‖ are bounded, thenu∈D(A)
and AXn ⇀Au.

(b) If xn ∈ H, n = 1,2, . . . , xn → u ∈ H, and if ‖Anxn‖ are bounded, then u ∈ D(A)
and Anxn ⇀Au.

Proof. (a) The monotonicity condition gives

(
Av−AXn,v−Xn)≥ 0, (2.8)

for any v ∈ D(A). Since H is reflexive and the ‖AXn‖ are bounded, there is a subse-

quence {Xn′ } of {Xn} such that AXn′ ⇀w ∈H. Since v−Xn′ → v−u, we obtain from

(2.8) the inequality (Av−w,v−u)≥ 0. For fixed z ∈H, t > 0, put vt =A−1
1 (u+w+tz),

where A1 = (I +A). It follows that Avt +vt −u−w = tz, hence t(z,vt −u) ≥ 0 so

(z,vt −u) ≥ 0. Letting t → 0, vt → A−1
1 (u+w), hence (z,A−1

1 (u+w)−u) ≥ 0, so

u=A−1
1 (u+w), u∈D(A), and Au=w. It shows that AXn ⇀w =Au.

(b) Set Xn = Jnxn ∈ D(A). Then AXn = (AJnxn) = Anxn and ‖AXn‖ are bounded.

Also, xn−Xn = (I−Jn)xn = n−1Anxn → 0, so that Xn → u. Thus, by the result of (a),

we get u∈D(A) and Anxn =AXn ⇀Au.

Now, we state the following main result of this paper which will be proved in the

next section after proving some a priori estimates.

Theorem 2.4. Suppose that the conditions (A1), (A2), (A3), (A4) are satisfied. Then

(1.1) has a strong solution u ∈ �T either on [−τ,T] or on the maximal interval of exis-

tence [−τ,tmax), 0< tmax ≤ T , and in the later case, either limt→tmax−‖u(t)‖ =∞ or u(t)
goes to the boundary of D(A) as t→ tmax−. Moreover, u is Lipschitz continuous on every

compact subinterval of existence.
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3. Discretization scheme and a priori estimates. In this section, we establish the

existence and uniqueness of a strong solution to (1.4) for any given χ ∈�T with χ(0)∈
D(A). For the application of the method of lines to (1.4), we proceed as follows. Let

R0 := supt∈[−τ,T]‖χ(t)−χ(0)‖. For any 0<R ≤ R0, we choose t0 such that

0< t0 ≤ T , t0
[∥∥Aχ(0)∥∥+3Lf

(
R0
)(
T +(m+1)R0

)+∥∥f (0,χ(0),χ(0), . . . ,χ(0))∥∥]≤ R.
(3.1)

For n∈N, let hn = t0/n. We set un0 = χ(0) for all n∈N and define each of {unj }nj=1 as

the unique solution of the equation

u−unj−1

hn
+Au= f (tnj ,unj−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))
, (3.2)

where ũn0 (t)= χ(t) for t ∈ [−τ,0], ũn0 (t)= χ(0) for t ∈ [0, t0] and for 2≤ j ≤n,

ũnj−1(t)=




χ(t), t ∈ [−τ,0],
uni−1+

1
hn

(
t−tni−1

)(
uni −uni−1

)
, t ∈ [tni−1, t

n
i
]
, i= 1,2, . . . ,j−1,

unj−1, t ∈ [tnj−1, t0
]
.

(3.3)

The existence of a unique unj ∈ D(A) satisfying (3.2) is a consequence of the m-

monotonicity of A. Using (A2), we first prove that the points {unj }nj=0 lie in a ball with

its radius independent of the discretization parameters j, hn, and n. We then prove a

priori estimates on the difference quotients {unj −unj−1/hn} using (A2). We define the

sequence {Un} ⊂�T of polygonal functions

Un(t)=


χ(t), t ∈ [−τ,0],
unj−1+

1
hn

(
t−tnj−1

)(
unj −unj−1

)
, t ∈ (tnj−1, t

n
j
]
,

(3.4)

and prove the convergence of {Un} to a unique strong solution u of (1.4) in �T as

n→∞.

Now, we first show that {unj }nj=0 lie in a ball in H of radius independent of j, hn,

and n.

Lemma 3.1. For n∈N, j = 1,2, . . . ,n,

∥∥unj −χ(0)∥∥≤ R. (3.5)

Proof. From (3.2) for j = 1, we have

un1 −un0
hn

+Aun1 = f
(
tn1 ,u

n
0 , ũ

n
0

(
r1
(
tn1
))
, . . . , ũn0

(
rm
(
tn1
)))
. (3.6)

Subtracting Aun0 on both sides, we get

un1 −un0
hn

+Aun1 −Aun0 =−Aun0 +f
(
tn1 ,u

n
0 , ũ

n
0

(
r1
(
tn1
))
, . . . , ũn0

(
rm
(
tn1
)))
. (3.7)
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Taking the inner product with un1 −un0 , we get

(
un1 −un0
hn

,un1 −un0
)
+(Aun1 −Aun0 ,un1 −un0 )

=−(Aun0 ,un1 −un0 )+(f (tn1 ,un0 , ũn0 (r1
(
tn1
))
, . . . , ũn0

(
rm
(
tn1
)))
,un1 −un0

)
.

(3.8)

By the monotonicity of A, we have

∥∥un1 −un0 ∥∥≤ hn[∥∥Aun0 ∥∥+∥∥f (tn1 ,un0 , ũn0 (r1
(
tn1
))
, . . . , ũn0

(
rm
(
tn1
)))∥∥]. (3.9)

Using (A3), we get

∥∥un1 −χ(0)∥∥≤ hn[∥∥Aχ(0)∥∥+3Lf
(
R0
)(
T +(m+1)R0

)+∥∥f (0,χ(0), . . . ,χ(0))∥∥]≤ R.
(3.10)

Assume that ‖uni −χ(0)‖ ≤ R for i= 1,2, . . . ,j−1.

Now, for 2≤ j ≤n,

unj −unj−1

hn
+Aunj = f

(
tnj ,u

n
j−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))
. (3.11)

Subtracting Aχ(0) on both sides, we get

unj −unj−1

hn
+Aunj −Aχ(0)=−Aχ(0)+f

(
tnj ,u

n
j−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))
.

(3.12)

Taking the inner product with unj −χ(0), we get

1
hn

(
unj −unj−1,u

n
j −χ(0)

)+(Aunj −Aχ(0),unj −χ(0))
=−(Aχ(0),unj −χ(0))+(f (tnj ,unj−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))
,unj −χ(0)

)
.

(3.13)

By the monotonicity of A, we have

∥∥unj −χ(0)∥∥≤ ∥∥unj−1−χ(0)
∥∥

+hn
[∥∥Aχ(0)∥∥+∥∥f (tnj ,unj−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))∥∥]. (3.14)

Using (A3), we get

∥∥unj −χ(0)∥∥≤ ∥∥unj−1−χ(0)
∥∥

+hn
[∥∥Aχ(0)∥∥+3Lf

(
R0
)(
T +(m+1)R0

)+∥∥f (0,χ(0),χ(0), . . . ,χ(0))∥∥].
(3.15)
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Repeating the above inequality, we obtain

∥∥unj −χ(0)∥∥≤ jhn[∥∥Aχ(0)∥∥+3Lf
(
R0
)(
T +(m+1)R0

)
+∥∥f (0,χ(0),χ(0), . . . ,χ(0))∥∥]≤ R, (3.16)

as jhn ≤ t0 for 0≤ j ≤n. This completes the proof of the lemma.

Now, we establish a priori estimates for the difference quotients {(unj −unj−1)/hn}.
Lemma 3.2. There exists a positive constant K independent of the discretization pa-

rameters n, j, and hn such that

∥∥∥∥∥
unj −unj−1

hn

∥∥∥∥∥≤K, j = 1,2, . . . ,n, n= 1,2, . . . . (3.17)

Proof. In this proof and subsequently, K will represent a generic constant indepen-

dent of j, hn, and n. Subtracting Aun0 =Aχ(0) from both sides in (3.2), we get

un1 −un0
hn

+Aun1 −Aun0 =−Aun0 +f
(
tn1 ,u

n
0 , ũ

n
0

(
r1
(
tn1
))
, . . . , ũn0

(
rm
(
tn1
)))
. (3.18)

Taking the inner product with (un1 −un0 ), we get

(un1 −un0
hn

,un1 −un0
)
+(Aun1 −Aun0 ,un1 −un0 )

=−(Aun0 ,un1 −un0 )+(f (tn1 ,un0 , ũn0 (r1
(
tn1
))
, . . . , ũn0

(
rm
(
tn1
)))
,un1 −un0

)
.

(3.19)

Using monotonicity of A, we get

∥∥∥∥u
n
1 −un0
hn

∥∥∥∥≤ ∥∥Aχ(0)∥∥+∥∥f (tn1 ,un0 , ũn0 (r1
(
tn1
))
, . . . , ũn0

(
rm
(
tn1
)))∥∥. (3.20)

Using (A3), we have

∥∥∥∥u
n
1 −un0
hn

∥∥∥∥≤ ∥∥Aχ(0)∥∥+∥∥f (0,χ(0),χ(0), . . . ,χ(0))∥∥+3Lf
(
R0
)(
T +(m+1)R0

)
≤K.

(3.21)

Now, for 2≤ j ≤n, taking the inner product with (unj −unj−1) in (3.2), we get

(
unj −unj−1

hn
,unj −unj−1

)
+(Aunj ,unj −unj−1

)
= (f (tnj ,unj−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))
,unj −unj−1

)
.

(3.22)

Also,

(
unj −unj−1

hn
− u

n
j−1−unj−2

hn
,unj −unj−1

)
+(Aunj −Aunj−1,u

n
j −unj−1

)
= (f (tnj ,unj−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))

−f (tnj−1,u
n
j−2, ũ

n
j−2

(
r1
(
tnj−1

))
, . . . , ũnj−2

(
rm
(
tnj−1

)))
,unj −unj−1

)
.

(3.23)
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Using the monotonicity of A, we get

∥∥∥∥∥
unj −unj−1

hn

∥∥∥∥∥≤
∥∥∥∥∥
unj−1−unj−2

hn

∥∥∥∥∥
+∥∥f (tnj ,unj−1, ũ

n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))

−f (tnj−1,u
n
j−2, ũ

n
j−2

(
r1
(
tnj−1

))
, . . . , ũnj−2

(
rm
(
tnj−1

)))∥∥.
(3.24)

Now,

∥∥f (tnj ,unj−1, ũ
n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))

−f (tnj−1,u
n
j−2, ũ

n
j−2

(
r1
(
tnj−1

))
, . . . , ũnj−2

(
rm
(
tnj−1

)))∥∥
≤ C

[
hn+(m+1)hn

∥∥∥∥∥
unj −unj−1

hn

∥∥∥∥∥
]
.

(3.25)

From the above inequality, we get

max
{1≤k≤j}

∥∥∥∥∥u
n
k −unk−1

hn

∥∥∥∥∥≤ (1+Chn) max
{1≤k≤j−1}

∥∥∥∥∥u
n
k −unk−1

hn

∥∥∥∥∥+Chn
≤ (1+Chn)

[
1+ max

{1≤k≤j−1}

∥∥∥∥∥u
n
k −unk−1

hn

∥∥∥∥∥
]
,

(3.26)

where C is a positive constant independent of j, hn, and n. Repeating the above in-

equality, we get

max
{1≤k≤j}

∥∥∥∥∥
unj −unj−1

hn

∥∥∥∥∥≤ (1+Chn)jD ≤DeTC ≤K. (3.27)

This completes the proof of the lemma.

We introduce another sequence {Xn} of step functions from [0,T ] into H by

Xn(t)=

χ(0), t = 0,

unj , t ∈ (tnj−1, t
n
j
]
.

(3.28)

Remark 3.3. From Lemma 3.2, it follows that the functionsUn and ũnr , 0≤ r ≤n−1,

are Lipschitz continuous on [0, t0] with a uniform Lipschitz constant K. The sequence

Un(t)−Xn(t)→ 0 in H as n→∞ uniformly on [0, t0]. Furthermore, Xn(t) ∈D(A) for

t ∈ [0, t0] and the sequences {Un(t)} and {Xn(t)} are bounded inH, uniformly inn∈N
and t ∈ [0, t0]. The sequence {AXn(t)} is bounded uniformly in n∈N and t ∈ [0, t0].

For notational convenience, let

fn(t)= f (tnj ,unj−1, ũ
n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))
, t ∈ (tnj−1, t

n
j
]
, 1≤ j ≤n.

(3.29)



1950 S. AGARWAL AND D. BAHUGUNA

Then (3.2) may be rewritten as

d−

dt
Un(t)+AXn(t)= fn(t), t ∈ (0, t0], (3.30)

where d−/dt denotes the left derivative in (0, t0]. Also, for t ∈ (0, t0], we have

∫ t
0
AXn(s)ds = χ(0)−Un(t)+

∫ t
0
fn(s)ds. (3.31)

Lemma 3.4. There exists u ∈ �t0 such that Un → u in �t0 as n→∞. Moreover, u is

Lipschitz continuous on [0, t0].

Proof. From (3.30) for t ∈ (0, t0], and taking the inner product with (Xn(t)−Xk(t)),
we have

(
d−

dt
Un(t)− d

−

dt
Uk(t),Xn(t)−Xk(t)

)

+(AXn(t)−AXk(t),Xn(t)−Xk(t))
= (fn(t)−fk(t),Xn(t)−Xk(t)).

(3.32)

Using monotonicity of A, we have

(
d−

dt
(
Un(t)−Uk(t)),Xn(t)−Xk(t))≤ (fn(t)−fk(t),Xn(t)−Xk(t)). (3.33)

From the above inequality and the fact that

2
(
d−

dt
Un(t)− d

−

dt
Uk(t),Un(t)−Uk(t)

)
= d

−

dt
∥∥Un(t)−Uk(t)∥∥2, (3.34)

we get

1
2
d−

dt
∥∥Un(t)−Uk(t)∥∥2

≤
(
d−

dt
(
Un(t)−Uk(t))+fn(t)−fk(t)−fn(t)+fk(t),

Un(t)−Uk(t)−Xn(t)+Xk(t)
)
+(fn(t)−fk(t),Xn(t)−Xk(t))

=
(
d−

dt
(
Un(t)−Uk(t))−fn(t)+fk(t),Un(t)−Uk(t)−Xn(t)+Xk(t))

+(fn(t)−fk(t),Un(t)−Uk(t)).

(3.35)

Now,

∥∥fn(t)−fk(t)∥∥= ∥∥f (tnj ,unj−1, ũ
n
j−1

(
r1
(
tnj
))
, . . . , ũnj−1

(
rm
(
tnj
)))

−f (tkl ,ukl−1, ũ
k
l−1

(
r1
(
tkl
))
, . . . , ũkl−1

(
rm
(
tkl
)))∥∥. (3.36)

Using (A3), we get

∥∥fn(t)−fk(t)∥∥≤ εnk(t)+K∥∥Un−Uk∥∥t , (3.37)
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where

εnk(t)=K
[
hn+hk+

∣∣tnj −tkl ∣∣+∥∥Xn(t−hn)−Un(t)∥∥
+∥∥Xk(t−hk)−Uk(t)∥∥
+
m∑
i=1

(∣∣ri(t)−ri(tnj )∣∣+∣∣ri(t)−ri(tkl )∣∣)
]
,

(3.38)

for t ∈ (tnj−1, t
n
j ] and t ∈ (tkl−1, t

k
l ], 1≤ j ≤n, 1≤ l≤ k. Therefore εnk(t)→ 0 as n,k→∞

uniformly on [0, t0]. This implies that for a.e. t ∈ [0, t0],
d−

dt
∥∥Un(t)−Uk(t)∥∥2

≤ 2
[∥∥∥∥d−dt

(
Un(t)−Uk(t)−fn(t)−fk(t))

∥∥∥∥
×∥∥Un(t)−Uk(t)−Xn(t)+Xk(t)∥∥
+∥∥fn(t)−fk(t)∥∥∥∥Un(t)−Uk(t)∥∥]

≤K
[
εnk+

∥∥Un−Uk∥∥2
t

]
,

(3.39)

where εnk is a sequence of numbers such that εnk→ 0 asn,k→∞. Integrating the above

inequality over (0,s), 0< s ≤ t ≤ t0, and using the fact that Un =φ on [−τ,0] for all n,

we get

∥∥Un(s)−Uk(s)∥∥2 ≤K
[
Tεnk+

∫ t
0

∥∥Un−Uk∥∥2
s ds

]
. (3.40)

Taking the supremum over [0, t], we get

sup
s∈[0,t]

∥∥Un(s)−Uk(s)∥∥2 ≤K
[
Tεnk+

∫ t
0

∥∥Un−Uk∥∥2
s ds

]
. (3.41)

Thus,

∥∥Un−Uk∥∥2
t ≤K

[
Tεnk+

∫ t
0

∥∥Un−Uk∥∥2
s ds

]
. (3.42)

Applying Gronwall’s inequality, we conclude that there exists u∈�t0 such that Un→u
in �t0 . Clearly, u = φ on [−τ,0] and, from Remark 3.3, it follows that u is Lipschitz

continuous on [0, t0]. This completes the proof of the lemma.

Proof of Theorem 2.4. We first prove the existence on [−τ,t0] and then prove

the unique continuation of the solution on [−τ,T]. From Lemma 2.3(a), we know that

u(t) ∈D(A) for t ∈ [0, t0], AXn(t) ⇀ Au(t) on [0, t0]. Here, ⇀ denotes the weak con-

vergence inH. Also, we may show that Au(t) is weakly continuous on [0, t0] as follows.

Let ti → t; ti,t ∈ [0, t0], then u(ti) → u(t) and, by boundedness of A(u(ti)) and

reflexivity of H, there exists a sequence {u(tj)} of {u(ti)} such that Au(tj) ⇀ w(t).
Then it follows from Lemma 2.3(a) that Au(ti) ⇀ Au(t).
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For every x∗ ∈X∗ and t ∈ (0, t0], we have

∫ t
0

〈
AXn(s),x∗

〉
ds = 〈χ(0),x∗〉−〈Un(t),x∗〉+

∫ t
0

〈
fn(s),x∗

〉
ds. (3.43)

Using Lemma 3.4 and the bounded convergence theorem, we obtain as n→∞,

∫ t
0

〈
Au(s),x∗〉ds = 〈χ(0),x∗〉−〈u(t),x∗〉

+
∫ t

0

〈
f
(
s,u(s),u

(
r1(s)

)
, . . . ,u

(
rm(s)

))
,x∗

〉
ds.

(3.44)

If Au(t) is Bochner integrable (cf. [2]) on [0, t0], from (3.44), we get

d
dt
u(t)+Au(t)= f (t,u(t),u(r1(t)

)
, . . . ,u

(
rm(t)

))
, a.e. t ∈ [0, t0]. (3.45)

To show that Au(t) is Bochner integrable, we will use Lemmas 2.1 and 2.2 which state

that operators Jn and An are Lipschitz continuous. Also,

∥∥Anu∥∥≤ ‖Au‖, for u∈D(A). (3.46)

Now,

∥∥AnUn(t)∥∥≤ ∥∥AnUn(t)−AnXn(t)∥∥+∥∥AnXn(t)∥∥
≤ 2n

∥∥Un(t)−Xn(t)∥∥+∥∥AXn(t)∥∥
≤K,

(3.47)

where K is a constant.

Then Lemma 2.3(b) implies that AnUn(t) ⇀Au(t).
Let H0 be the smallest closed linear subspace of H containing all the values of the

AnUn(t) for t ∈ [0, t0] and n= 1,2, . . . . Since AnUn(t) are continuous, H0 is separable.

Since AnUn(t) ⇀Au(t) andH0 is weakly closed, Au(t)∈H0 too. Thus Au(t) is separa-

bly valued. Since it is weakly continuous, it is strongly measurable and, being bounded,

it is Bochner integrable (see [12]).

Clearly, u is Lipschitz continuous on [0, t0] and u(t)∈D(A) for t ∈ [0, t0]. Now we

prove the uniqueness of a function u ∈ �t0 which is differentiable a.e. on [0, t0] with

u(t) ∈ D(A) a.e. on [0, t0] and u = φ on [−τ,0] satisfying (3.45). Let u1,u2 ∈ �t0 be

two such functions. Let

R =max
{∥∥u1

∥∥
t0 ,
∥∥u2

∥∥
t0

}
. (3.48)

Then for u=u1−u2, we have

(
du
dt
(t),u(t)

)
+(Au1(t)−Au2(t),u(t)

)
= (f (t,u1(t),u1

(
r1(t)

)
, . . . ,u1

(
rm(t)

))
−f (t,u2(t),u2

(
r1(t)

)
, . . . ,u2

(
rm(t)

))
,u(t)

)
.

(3.49)
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By the monotonicity of A,

d
dt
∥∥u(t)∥∥2 ≤ 2

∥∥f (t,u1(t),u1
(
r1(t)

)
, . . . ,u1

(
rm(t)

))
−f (t,u2(t),u2

(
r1(t)

)
, . . . ,u2

(
rm(t)

))∥∥∥∥u(t)∥∥. (3.50)

It implies that

d
dt
∥∥u(t)∥∥2 ≤ C(R)‖u‖2

t , a.e. t ∈ [0, t0], (3.51)

where C :R+ →R+ is a nondecreasing function. Integrating over (0,s) for 0< s ≤ t ≤ t0,

and using the fact that u≡ 0 on [−τ,0], we get

∥∥u(s)∥∥2 ≤ C(R)
∫ t

0
‖u‖2

s ds. (3.52)

Taking the supremum over [0, t], we get

sup
s∈[0,t]

∥∥u(s)∥∥2 ≤ C(R)
∫ t

0

∥∥u∥∥2
s ds. (3.53)

Thus,

‖u‖2
t ≤ C(R)

∫ t
0
‖u‖2

s ds. (3.54)

Application of Gronwall’s inequality implies that u≡ 0 on [−τ,t0].
Now, we prove the continuation of the solution u on [−τ,T]. Suppose t0 < T and

consider the problem

w′(t)+Aw(t)= f̃ (t,w(t),w(r̃1(t)
)
,w
(
r̃2(t)

)
, . . . ,w

(
r̃m(t)

))
, 0< t ≤ T −t0,

w = χ̃, on
[−τ−t0,0], (3.55)

where

f̃
(
t,u1,u2, . . . ,um+1

)= f (t+t0,u1,u2, . . . ,um+1
)
, 0≤ t ≤ T −t0,

χ̃(t)=

χ
(
t+t0

)
, t ∈ [−τ−t0,−t0],

u
(
t+t0

)
, t ∈ [−t0,0],

r̃i(t)= ri
(
t+t0

)−t0, t ∈ [0,T −t0], i= 1,2, . . . ,m.

(3.56)

Since χ̃(0) = u(t0) ∈ D(A), f̃ satisfies (A3), and r̃i, i = 1,2, . . . ,m, satisfy (A4) on

[0,T −t0], we may proceed as before and prove the existence of a unique w ∈ C([−τ−
t0, t1];X), 0 < t1 ≤ T − t0, such that w is Lipschitz continuous on [0, t1], w(t) ∈ D(A)
for t ∈ [0, t1], and w satisfies

w′(t)+Aw(t)= f̃ (t,w(t),w(r̃1(t)
)
,w
(
r̃2(t)

)
, . . . ,w

(
r̃m(t)

))
, a.e. t ∈ [0, t1],

w = χ̃, on
[−τ−t0,0]. (3.57)
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Then the function

ū(t)=

u(t), t ∈ [−τ,t0],
w
(
t−t0

)
, t ∈ [t0, t0+t1], (3.58)

is Lipschitz continuous on [0, t0+t1], ū(t)∈D(A) for t ∈ [0, t0+t1], and satisfies (1.4)

a.e. on [0, t1]. Continuing this way, we may prove the existence either on the whole

interval [−τ,T] or on the maximal interval of existence [−τ,tmax), 0< tmax ≤ T . In case

limt→tmax−‖u(t)‖<∞, then asu(t)∈D(A) for t ∈ [0, tmax), we have that limt→tmax−u(t)
is in the closure of D(A) in H, and if it is in D(A), then proceeding as before, we

may extend u(t) beyond tmax contradicting the definition of the maximal interval of

existence.

Now, let uχ be the strong solution of (1.4) corresponding to χ ∈ �T̃ satisfying

h(χ[−τ,0]) = φ0 (T̃ is either equal to T or T̃ < tmax). If there are χ1,χ2 ∈ �T̃ such that

h(χ1
[−τ,0])= h(χ2

[−τ,0])=φ0 and χ1 ≠ χ2 on [−τ,0], then clearly uχ1 and uχ2 , satisfying

(1.4), are different. This completes the proof of Theorem 2.4.

4. Applications. Theorem 2.4 may be applied to get the existence and uniqueness

results for (1.1) in the case when the operator A, with the domain D(A) = H2m(Ω)∩
Hm0 (Ω) into H := L2(Ω), is associated with the nonlinear partial differential operator

Au=
∑

|α|≤m
(−1)|α|DαAα

(
x,u(x),Du,. . . ,Dαu

)
, (4.1)

in a bounded Ω in Rn with sufficiently smooth boundary ∂Ω, where Aα(x,ξ) are real

functions defined on Ω×RN for some N ∈N and satisfying the following conditions.

(I) Aα are measurable in x and continuous in ξ. There exist p = 2, g ∈ L2(Ω), and

a positive constant C such that

∣∣Aα(x,ξ)∣∣≤ C(|ξ|+g(x)), a.e. x ∈Ω, (4.2)

where ξ = (ξα;|α| ≤m).
(II) For any (ξ,η) ∈ RN ×RN and for almost every x ∈ Ω, the following inequality

holds:

∑
|α|≤m

(
Aα(x,ξ)−Aα(x,η)

)(
ξα−ηα

)≥ 0. (4.3)

In (1.1), we may take f as the function f : [0,T ]×(L2(Ω))m+1 → L2(Ω), given by

f
(
t,u1,u2, . . . ,um+1

)= f0(t)+a(t)
m+1∑
i=1

∥∥ui∥∥L2(Ω)ui, (4.4)

where f0 : [0,T ] → L2(Ω) and a : [0,T ] → R are Lipschitz continuous functions on

[0,T ] and ‖ · ‖L2(Ω) denotes the norm in L2(Ω). Let φ0 ∈ C([−τ,0];L2(Ω)) be such

that φ0(0) ∈ D(A). For the functions ri, i = 1,2, . . . ,n, and h, we may have any of the

following.
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(b1) For i= 1,2, . . . ,m, let ri(t)= t−τi, t ∈ [0,T ].
(b2) For i= 1,2, . . . ,m, let ri(t)= kit, t ∈ [0,T ], 0< ki ≤ 1.

(b3) Let T = 1 andN0 ∈N. For i= 1,2, . . . ,m, for t ∈ [0,T ], let ri(t)= kitN0 , 0< ki ≤ 1.

(h1) For u∈ C([−τ,0];L2(Ω)), let

g(u)=
∫ 0

−τ
k(s)u(s)ds, φ0(t)≡u0, t ∈ [−τ,0], u0 ∈D(A), (4.5)

where κ = ∫ 0
−τ k(s)ds ≠ 0. Let h(u)(t)≡ g(u) for t ∈ [−τ,0]. In this case, we may

take χ(t)≡ (1/κ)u0 on [−τ,T].
(h2) For u∈ C([−τ,0];L2(Ω)), −τ ≤ a1 < a2 < ···< ar ≤ 0, and ci > 0, i= 1,2, . . . ,r ,

with C :=∑ri=1 ci ≠ 0, let

g(u)=
r∑
i=1

ciu
(
ai
)
, (4.6)

with h andφ0 as in (h1). In this case, we may take χ(t)≡ (1/C)u0 for t ∈ [−τ,T].
(h3) With u, ai, and ci as in (h2) and εi > 0 for i= 1,2, . . . ,r , let

g(u)=
r∑
i

ci
εi

∫ ai
ai−εi

u(s)ds, (4.7)

with h, φ0, and u0 as in (h1). In this case, we may take χ(t) as in (h2).
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