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1. Introduction. The multipoint boundary value problems for ordinary differential

equations arise in a variety of different areas of applied mathematics and physics. Linear

and nonlinear second-order multipoint boundary value problems have been studied by

several authors, we refer the reader to [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and the references

therein.

Consider the nth-order two-point boundary value problem

y(n)+f (t,y(t))= 0, 0< t < 1,

y(i)(0)= 0, 0≤ i≤n−2, y(n−1)(1)= 0.
(1.1)

Recently, there have been some papers [1, 2, 3, 13, 14] discussing the existence of pos-

itive solutions for the BVP (1.1) by using the Guo-Krasnoselskii fixed-point theorem, that

is, the expansion/compression-type fixed-point theorem on cones. It was proved that

(1.1) has at least one positive solution under certain assumptions (f is sublinear or sup-

linear). Agarwal and O’Regan in [3] established the criteria of the existence of two pos-

itive solutions of BVP (1.1) when f0= limx→0f(t,x)/x=f∞= limx→+∞f(t,x)/x=+∞.

However, the problem of existence of multiple positive solutions of BVP (1.1) remains

open when either f0 = limx→0f(t,x)/x or f∞ = limx→+∞f(t,x)/x does not exist.

On the other hand, to the best of our knowledge, few authors have studied the exis-

tence of multiple positive solutions for higher-order multipoint boundary value prob-

lems. It is an interesting problem and one of the future research directions to discuss

the solvability of the nth-order differential equations

x(n)(t)= f (x(t)), 0< t < 1, (1.2)

satisfying either k-point right focal boundary value conditions or k-point boundary

value conditions [4, 5].
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Motivated by the results [1, 2, 3, 4, 5], we, in this paper, study the existence of multiple

positive solutions for the nth-order three-point boundary value problems consisting of

the differential equation

y(n)(t)+f (t,y(t),y ′(t), . . . ,y(n−2)(t)
)= 0, 0< t < 1, (1.3)

and following boundary value conditions:

y(i)(0)= 0, i= 0,1, . . . ,n−2, y(n−1)(1)=αy(n−1)(η). (1.4)

We give the following assumptions:

(H1) f : [0,1]×Rn−1+ → [0,+∞) is continuous, where R+ = [0,+∞),
(H2) 1>α≥ 0, 0< η< 1, and n≥ 2, but fixed.

We will impose growth conditions on f to obtain two positive solutions of BVP (1.3)-

(1.4). The main results in [1, 3, 13, 14] are corollaries of our theorems.

This paper is organized as follows. In Section 2, we first introduce some definitions

and a fixed-point theorem, which is the generalized form of the Leggett-Williams fixed-

point theorem, founded in Avery and Henderson [6], and then we present our main

results. Several corollaries to illustrate the main results are given in Section 3.

2. Main results. For convenience, we first introduce some definitions in Banach

spaces, such as in [6, 9], and a fixed theorem, which is a generalization of the Leggett-

Williams fixed point theorem, see Avery and Henderson [6]. The main results and their

proofs will be presented at the end of this section.

Definition 2.1. Let X be a real Banach space; a nonempty closed convex set P ⊂X
is called a cone of X if it satisfies the following conditions:

(i) x ∈ P , λ≥ 0 implies λx ∈ P ,

(ii) x ∈ P , −x ∈ P implies x = 0.

Every cone P ⊂ X induces an ordering in X, which is given by x ≤ y if and only if

y−x ∈ P [6].

Definition 2.2. A mapψ : P → [0,+∞) is called a nonnegative, continuous, increas-

ing functional, provided ψ is nonnegative and continuous and satisfies ψ(x) ≤ ψ(y)
for all x,y ∈ P with x ≤y .

Definition 2.3. An operator is called completely continuous if it is continuous and

maps bounded sets into precompact sets. Denote

P(ψ,d)= {x ∈ P :ψ(x) < d
}
,

∂P(ψ,d)= {x ∈ P :ψ(x)= d},
P(ψ,d)= {x ∈ P :ψ(x)≤ d}.

(2.1)

Lemma 2.4 [6]. Let X be a real Banach space, P a cone of X, γ andφ two nonnegative

increasing continuous maps, θ a nonnegative continuous map with θ(0) = 0. Suppose
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there are two positive numbers c and M such that

γ(x)≤ θ(x)≤φ(x), ‖x‖ ≤Mγ(x) for x ∈ P(γ,c). (2.2)

Again, assume T : P(γ,c)→ P is completely continuous, and that there are positive num-

bers 0<a< b < c such that

θ(λx)≤ λθ(x) ∀λ∈ [0,1], x ∈ ∂P(θ,b) (2.3)

and

(i) γ(Tx) > c for x ∈ ∂P(γ,c),
(ii) θ(Tx) < b for x ∈ ∂P(θ,b),

(iii) φ(Tx) > a and P(φ,a) 
= ∅ for x ∈ ∂P(φ,a).
Then T has at least two fixed points x1 and x2 ∈ P(γ,c) satisfying

a<φ
(
x1
)
, θ

(
x1
)
< b, b < θ

(
x2
)
, γ

(
x2
)
< c. (2.4)

The following lemma is similar to Lemma 2.4, whose proof is omitted.

Lemma 2.5. Let X be a real Banach space, P a cone of X, γ and φ two nonnegative

increasing continuous maps, θ a nonnegative continuous map, and θ(0) = 0. Suppose

there are two positive numbers c and M such that

γ(x)≤ θ(x)≤φ(x), ‖x‖ ≤Mγ(x) for x ∈ P(γ,c). (2.5)

Again, assume T : P(γ,c)→ P is completely continuous, and that there are positive num-

bers 0<a< b < c such that

θ(λx)≤ λθ(x) ∀λ∈ [0,1], x ∈ ∂P(θ,b) (2.6)

and

(i) γ(Tx) < c for x ∈ ∂P(γ,c),
(ii) θ(Tx) > b for x ∈ ∂P(θ,b),

(iii) φ(Tx) < a and P(φ,a) 
= ∅ for x ∈ ∂P(φ,a).
Then T has at least two fixed points x1 and x2 ∈ P(γ,c) satisfying

a<φ
(
x1
)
, θ

(
x1
)
< b, b < θ

(
x2
)
, γ

(
x2
)
< c. (2.7)

To be able to apply Lemmas 2.4 and 2.5, we must define an operator on a cone in a

suitable Banach space. In order to do this, we first observe the Green functions for the

above nth-order three-point boundary value problem.

Lemma 2.6. Suppose N = 1−α 
= 0. If y ∈ C[0,1], then the problem

u(n)(t)+y(t)= 0, 0≤ t ≤ 1,

u(i)(0)= 0, i= 0,1, . . . ,n−2, u(n−1)(1)=αu(n−1)(η),
(2.8)
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has the unique solution

u(t)=−
∫ t

0

(t−s)n−1

(n−1)!
y(s)ds+ tn−1

(n−1)!(1−α)

[∫ 1

0
y(s)ds−α

∫ η
0
y(s)ds

]

=
∫ 1

0
G(t,s;η)y(s)ds,

(2.9)

where M = (n−1)!(1−α) and

G(t,s;η)= 1
M




tn−1−(1−α)(t−s)n−1−αtn−1, 0≤ s ≤ t < η < 1 or 0≤ s ≤ η≤ t ≤ 1,

tn−1−αtn−1, 0≤ t ≤ s ≤ η < 1,

tn−1−(1−α)(t−s)n−1, 0≤ η≤ s ≤ t ≤ 1,

tn−1, 0< η≤ t ≤ s ≤ 1 or 0≤ t < η≤ s ≤ 1.
(2.10)

Furthermore, if y(t) ≥ 0 for t ∈ [0,1], then the unique solution u satisfies u(t) ≥ 0 for

t ∈ [0,1].
Proof. Suppose that

u(t)=−
∫ t

0

(t−s)n−1

(n−1)!
y(s)ds+Atn−1 (2.11)

is the unique solution of (2.8). One gets

−
∫ 1

0
y(s)ds+A(n−1)!=−α

∫ η
0
y(s)ds+α(n−1)!A (2.12)

and then

A= 1
1−α

[∫ 1

0

1
(n−1)!

y(s)ds−α
∫ η

0

1
(n−1)!

y(s)ds
]
. (2.13)

Substitute A into (2.11). Then the first part of the lemma is complete.

To prove that u(t)≥ 0 for t ∈ [0,1], it suffices to prove that G(t,s;η)≥ 0 for (t,s)∈
[0,1]×[0,1]. This is simple and is omitted.

Let E denote the Banach space Cn−2[0,1] with the norm

‖y‖ =max
{‖y‖∞, . . . ,∥∥y(n−2)∥∥∞}. (2.14)

We note that, for y ∈ E with y(i)(0)= 0 for i= 0,1, . . . ,n−2,

∣∣y(t)∣∣= ∣∣y(t)−y(0)∣∣= ∣∣ty ′(ξ)∣∣≤ ∣∣y ′(ξ)∣∣≤ ‖y ′‖∞,∣∣y ′(t)∣∣= ∣∣y ′(t)−y ′(0)∣∣= |ty ′′(ξ1
)∣∣≤ ∣∣y ′′(ξ1

)∣∣≤ ‖y ′′‖∞. (2.15)

Hence, ‖y‖∞ ≤ ‖y ′‖∞ and ‖y ′‖∞ ≤ ‖y ′′‖∞. By bootstrapping, one sees that

‖y‖∞ ≤ ‖y ′‖∞ ≤ ··· ≤
∥∥y(p−1)∥∥∞ ≤ ··· ≤ ∥∥y(n−2)∥∥∞. (2.16)
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So

‖y‖ = ∥∥y(n−2)∥∥∞. (2.17)

Define the subset of E by

P =
{
y ∈ E :y(i)(0)= 0, i= 0,1, . . . ,n−2, y(n−2)(t)≥ t∥∥y(n−2)∥∥∞,
y(n−2)(t) is nondecreasing on [0,1]

}
.

(2.18)

Define an operator T by

Tx(t)=−
∫ t

0

(t−s)n−1

(n−1)!
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

+ tn−1

(1−α)(n−1)!

[∫ 1

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

−α
∫ η

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds
]

(2.19)

for x ∈ E. Then

(Tx)(n−2)(t)=−
∫ t

0
(t−s)f (s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

+ t
1−α

[∫ 1

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

−α
∫ η

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds
]
,

(Tx)(n−1)(t)=−
∫ t

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

+ 1
1−α

[∫ 1

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

−α
∫ η

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds
]
,

(Tx)(n)(t)=−f (t,x(t),x′(t), . . . ,x(n−2)(t)
)
.

(2.20)

Hence, we get the following lemma.

Lemma 2.7. Assume (H1) and (H2). Then

(i) P is a cone in Banach space E;

(ii) TP ⊂ P and T is completely continuous;

(iii) if x ∈ P , then Tx(i)(0)= 0, i= 0,1, . . . ,n−2;

(iv) Tx(t)≥ 0, . . . ,(Tx)(n−1)(t)≥ 0, (Tx)(n)(t)≤ 0 for all t ∈ (0,1);
(v) y is a positive solution of BVP (1.3) and (1.4) if and only if y is a fixed point of the

operator T in the P .

Proof. The proofs of (i)–(v) are simple and are omitted.
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From now on, fix l such that 0 < η < l < 1, and define the nonnegative, increasing,

continuous functionals γ, θ, and φ by

γ(u)= min
η≤t≤l

u(n−2)(t)=u(n−2)(η),

θ(u)= max
0≤t≤η

u(n−2)(t)=u(n−2)(η),

φ(u)= min
l≤t≤1

u(n−2)(t)=u(n−2)(l)

(2.21)

for every u ∈ P . We see that γ(u) = θ(u) ≤φ(u). In addition, for each u ∈ P , γ(u) =
u(n−2)(η)≥ ηu(n−2)(1)= η‖u(n−2)‖∞. Hence,

‖u‖ = ∥∥u(n−2)∥∥∞ ≤ 1
η
γ(u) ∀u∈ P. (2.22)

We also find that

θ(λu)= λθ(u) for λ∈ [0,1], u∈ P(θ,b). (2.23)

Finally, for notational convenience, we denote

λ= η(1−η)
1−α , ξ = 1

2
η2+ η(1−η)

1−α , λl = l(1−l)
1−α . (2.24)

We now present our first result of this paper.

Theorem 2.8. Suppose 0 < a < (λl/ξ)b < η(λl/ξ)c, and f satisfies the following

conditions:

(A) f(t,w0,w1, . . . ,wn−2) > c/λ for (t,w0,w1, . . . ,wn−2)∈ [η,1]×Rn−2+ ×[c,c/η];
(B) f(t,w0,w1, . . . ,wn−2) < b/ξ for (t,w0,w1, . . . ,wn−2)∈ [0,1]×Rn−2+ ×[0,b/η];
(C) f(t,w0,w1, . . . ,wn−2) > a/λl for (t,w0,w1, . . . ,wn−2)∈ [l,1]×Rn−2+ ×[a,a/l].

Then the BVP (1.3)-(1.4) admits at least two positive solutions u1, u2 such that

a<φ
(
u1
)

with θ
(
u1
)
< b, b < θ

(
u2
)

with γ
(
u2
)
< c. (2.25)

Proof. To begin, we define a completely continuous operator T : P → E as above for

every u∈ P . Obviously, w(t)= Tu(t)≥ 0 for t ∈ [0,1].
From the definition of T and Lemma 2.7, we claim that for each u ∈ P , w = Tu ∈ P

and satisfies (1.4) and w(1) is the maximum value of w on [0,1].
It is well known that each fixed point of T in P is a solution of (1.3)-(1.4). We proceed

to verify that the conditions of Lemma 2.4 are met.

As a result of Lemma 2.7, we conclude that T : P(γ,c) → P and T is completely

continuous. We now show that (i), (ii), (iii) of Lemma 2.4 are satisfied.

Firstly, we prove that Lemma 2.4(i) is satisfied. For each u∈ ∂P(γ,c),

γ(u)= min
η≤t≤l

u(n−2)(t)=u(n−2)(η)= c. (2.26)
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Then u(n−2)(t)≥ c for η≤ t ≤ 1. Recalling that

‖u‖ = ∥∥u(n−2)∥∥∞ ≤ 1
η
γ(u)= 1

η
c,

u(i)(t)≥ 0 ∀t ∈ [0,1], i= 0,1, . . . ,n−2,
(2.27)

we have

c ≤u(n−2)(t)≤ 1
η
c for η≤ t ≤ 1. (2.28)

As a consequence of (A),

f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
>
c
λ

for t ∈ [η,1]. (2.29)

Therefore,

γ(Tu)= (Tu)(n−2)(η)

=−
∫ η

0
(η−s)f (s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

+ η
1−α

(∫ 1

0
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

−α
∫ η

0
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds
)

=
∫ η

0
sf
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

+ η
1−α

∫ 1

η
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

≥ η
1−α

∫ 1

η
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

>
c
λ

(
η

1−α
∫ 1

η
ds
)

= c
λ

(
η(1−η)

1−α

)

= c.

(2.30)

Secondly, we show that Lemma 2.4(ii) is fulfilled. We choose u∈ ∂P(θ,b). Then

θ(u)= max
0≤t≤η

u(n−2)(t)=u(n−2)(η)= b. (2.31)

This implies

0≤u(n−2)(t)≤ b, 0≤ t ≤ η, b ≤u(n−2)(t)≤ ∥∥u(n−2)∥∥∞ =u(n−2)(1) (2.32)
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for t ∈ [η,1]. Moreover,

‖u‖ = ‖u‖∞ ≤ 1
η
γ(u)= 1

η
θ(u)= b 1

η
. (2.33)

Thus u(i)(t)≥ 0 for all t ∈ [0,1], i= 0,1, . . . ,n−2, and

0≤u(n−2)(t)≤ b 1
η
, 0≤ t ≤ 1. (2.34)

By (B), we have

f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
<
b
ξ
, t ∈ [0,1], (2.35)

and so

θ(Tu)= (Tu)(n−2)(η)

=−
∫ η

0
(η−s)f (s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

+ η
1−α

(∫ 1

0
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

−α
∫ η

0
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds
)

=
∫ η

0
sf
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

+ η
1−α

∫ 1

η
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

<
b
ξ

(∫ η
0
sds+ η

1−α
∫ 1

η
ds
)

= b
ξ

(
1
2
η2+ η(1−η)

1−α

)

= b.

(2.36)

Finally, we verify that Lemma 2.4(iii) is also satisfied. It is easy to show that P(φ,a)≠
∅.

Now, let u ∈ ∂P(φ,a), then φ(u) = minl≤t≤1u(n−2)(t) = u(n−2)(l) = a. This means

that

a≤u(n−2)(t)≤ a
l
, l≤ t ≤ 1. (2.37)

From assumption (C), we have u(i)(t)≥ 0 for all t ∈ [0,1] and i= 0,1, . . . ,n−2, and

f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
>
a
λl

for t ∈ [l,1], (2.38)
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and so

φ(Tu)= (Tu)(n−2)(l)

=−
∫ l

0
(l−s)f (s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

+ l
1−α

(∫ 1

0
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

−α
∫ η

0
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds
)

=
∫ η

0
sf
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

+
∫ l
η

(
l

1−α −l+s
)
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

+ l
1−α

∫ 1

l
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

≥ l
1−α

∫ 1

l
f
(
s,u(s),u′(s), . . . ,u(n−2)(s)

)
ds

>
a
λl

(
l

1−α
∫ 1

l
ds
)

= a
λl

(
l(1−l)
1−α

)

= a.

(2.39)

Therefore, BVP (1.3)-(1.4) has at least two positive solutions u1 and u2 in P(γ,c) such

that

a<φ
(
u1
)

with θ
(
u1
)
< b, b < θ

(
u2
)

with γ
(
u2
)
< c. (2.40)

This completes the proof of Theorem 2.8.

Now we deal with the following boundary value problem:

(−1)nu(n)+f (t,u(t),u′(t), . . . ,u(n−2)(t)
)= 0, 0< t < 1,

u(i)(1)= 0, i= 0,1, . . . ,n−2, u(n−1)(0)=αu(n−1)(η),
(2.41)

where α ≥ 0, 0 < η < 1, but fixed, 1−α > 0, f : [0,1]×Rn−1 → R is continuous and

satisfies

(−1)nf
(
t,u0,u1, . . . ,un−2

)≥ 0 for
(
t,u0, . . . ,un−2

)∈ [0,1]×Rn−1
+ . (2.42)
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If x is a solution of BVP (2.41), then

x(t)=−
∫ 1

t

(s−t)n−1

(n−1)!
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

+ (1−t)n−1

(1−α)(n−1)!

[∫ 1

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

−α
∫ 1

η
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds
]
.

(2.43)

It is easy to see that

(−1)n−2x(n−2)(t)=−
∫ 1

t
(s−t)f (s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

+ 1−t
1−α

[∫ 1

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

−α
∫ 1

η
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds
]
,

(−1)n−1x(n−1)(t)=−
∫ 1

t
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

+ 1
1−α

[∫ 1

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

−α
∫ 1

η
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds
]
,

(−1)nx(n)(t)=−f (t,x(t),x′(t), . . . ,x(n−2)(t)
)
.

(2.44)

Let E denote the Banach space Cn−2[0,1] with the norm

‖y‖ =max
{‖y‖∞, . . . ,∥∥y(n−2)∥∥∞}. (2.45)

It is easy to see that ‖y‖ = ‖y(n−2)‖∞ for all y ∈ E. Define the cone P ⊂ E by

P =
{
u∈ E :u(i)(1)= 0, i= 0,1, . . . ,n−2, (−1)n−2u(n−2)(t)

is nondecreasing,(−1)n−2u(n−2)(t)≥ t∥∥u(n−2)∥∥∞ for t ∈ [0,1]
}
.

(2.46)

The method is just similar to what we have done above. We choose a fixed number l∈
(0,η), and define the nonnegative, increasing functionals γ, θ, andφ on P , respectively,

as

γ(u)= min
l≤t≤η

(−1)n−2u(n−2)(t)= (−1)n−2u(n−2)(η),

θ(u)= max
η≤t≤1

(−1)n−2u(n−2)(t)= (−1)n−2u(n−2)(η),

φ(u)= min
0≤t≤l

(−1)n−2u(n−2)(t)= (−1)n−2u(n−2)(l).

(2.47)
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Define the operator T : P →X by

Tx(t)=−
∫ 1

t

(s−t)n−1

(n−1)!
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

+ (1−t)n−1

(1−α)(n−1)!

[∫ 1

0
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds

−α
∫ 1

η
f
(
s,x(s),x′(s), . . . ,x(n−2)(s)

)
ds
]
.

(2.48)

Let

λ= η(1−η)
1−α , ξ = 1

2
(1−η)2+ η(1−η)

1−α , λl = l(1−l)
1−α . (2.49)

By a method similar to that of Theorem 2.8, we have the following theorem and its

proof is omitted.

Theorem 2.9. Suppose 0 < a < (λr/ξ)b < η(λr/ξ)c and f satisfies the following

conditions:

(D) (−1)nf(t,w0,w1, . . . ,wn−2) > c/λ for (t,w0,w1, . . . ,wn−2) ∈ [η,1] × Rn−2+ ×
[c,c/η];

(E) (−1)nf(t,w0,w1, . . . ,wn−2) < b/ξ for (t,w0,w1, . . . ,wn−2) ∈ [0,1] × Rn−2+ ×
[0,b/η];

(F) (−1)nf(t,w0,w1, . . . ,wn−2) > a/λl for (t,w0,w1, . . . ,wn−2) ∈ [l,1] × Rn−2+ ×
[a,a/l].

Then the BVP (2.41) has at least two positive solutions u1, u2 such that

a<φ
(
u1
)

with θ
(
u1
)
< b, b < θ

(
u2
)

with γ
(
u2
)
< c. (2.50)

We now denote λ′, ξ′, and λ′l by

λ′ = 1
2
η2+ η(1−η)

1−α , ξ′ = η(1−η)
1−α , λ′l =

1
2
l2+ αl(1−η)

1−α + l(1−l)
1−α . (2.51)

Theorem 2.10. Suppose 0 < a < lb < (λ/ξ)lc, and f satisfies the following condi-

tions:

(A′) f (t,w0,w1, . . . ,wn−2) < c/λ′ for (t,w0,w1, . . . ,wn−2)∈ [0,1]×Rn−2+ ×[0,c/η];
(B′) f (t,w0,w1, . . . ,wn−2) > b/ξ′ for (t,w0,w1, . . . ,wn−2)∈ [η,1]×Rn−2+ ×[b,b/η];
(C′) f (t,w0,w1, . . . ,wn−2) < a/λ′l for (t,w0,w1, . . . ,wn−2)∈ [0,1]×Rn−2+ ×[0,a/l].

Then the BVP (1.3)-(1.4) admits at least two positive solutions u1, u2 such that

a<φ
(
u1
)

with θ
(
u1
)
< b, b < θ

(
u2
)

with γ
(
u2
)
< c. (2.52)
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We denote λ′, ξ′, and λ′r by

λ′ = 1
2
(1−η)2+ η(1−η)

1−α ,

ξ′ = η(1−η)
1−α ,

λ′r =
1
2
l2+ l(1−l)

1−α +
(

1−l
1−α +η

)
(η−l)+(1+η−l)(1−η)− 1

2
.

(2.53)

Theorem 2.11. Suppose 0 < a < lb < (ξ′/λ′)lc, and f satisfies the following condi-

tions:

(D′) (−1)nf(t,w0,w1, . . . ,wn−2) < c/λ′ for (t,w0,w1, . . . ,wn−2) ∈ [0,1] × Rn−2+ ×
[0,c/η];

(E′) (−1)nf(t,w0,w1, . . . ,wn−2) > b/ξ′ for (t,w0,w1, . . . ,wn−2) ∈ [0,η] × Rn−2+ ×
[b,b/η];

(F′) (−1)nf(t,w0,w1, . . . ,wn−2) < a/λ′l for (t,w0,w1, . . . ,wn−2) ∈ [0,1] × Rn−2+ ×
[0,a/l].

Then the BVP (2.41) admits at least two positive solutions u1, u2 such that

a<φ
(
u1
)

with θ
(
u1
)
< b, b < θ

(
u2
)

with γ
(
u2
)
< c. (2.54)

3. Applications. In this section, we present the theorems which may be considered

as the corollaries of Theorems 2.8, 2.9, 2.10, and 2.11, respectively.

Theorem 3.1. Suppose that

(i) f0 = limxn−2→0(f (t,x0, . . . ,xn−2)/xn−2) = +∞, f∞ = limxn−2→+∞(f (t,x0, . . . ,
xn−2)/xn−2)=+∞ are uniform in t,x0, . . . ,xn−2;

(ii) there is 0< η< l < 1 and x0 > 0 such that

f
(
t,x0, . . . ,xn−2

)
<
η
ξ
x0 for

(
t,x0, . . . ,xn−2

)∈ [0,1]×Rn−2
+ ×[0,x0

]
, (3.1)

where λ, ξ, and λl are given in Theorem 2.8.

Then BVP (1.3)-(1.4) has at least two positive solutions.

Proof. Firstly, by (ii), choosing b = x0η, one gets

f
(
t,w0, . . . ,wn−2

)
<

1
ξ
b for 0≤wn−2≤x0,

(
t,w0, . . . ,wn−3

)∈ [0,1]×Rn−3
+ . (3.2)

Secondly, choose K sufficiently large such that

Kλ=K
(
η(1−η)

1−α
)
> 1. (3.3)

Since f0 =+∞, there is R1 > 0 sufficiently small such that

f
(
t,x0, . . . ,xn−2

)≥Kxn−2 for 0≤ xn−2 ≤ R1,
(
t,x0, . . . ,xn−3

)∈ [0,1]×Rn−3
+ . (3.4)



TWIN POSITIVE SOLUTIONS FOR THREE-POINT BOUNDARY . . . 2061

Without loss of generality, suppose R1 ≤ (λr /ξ)(1/η)b. Choose a > 0 so that a < lR1

and a< (λr/l)b. For a≤wn−2 ≤ (1/l)a, we have wn−2 ≤ R1. Thus

f
(
t,w0, . . . ,wn−2

)≥Kwn−2 ≥Ka> aλ
for a≤wn−2 ≤ 1

η
a,
(
t,x0, . . . ,xn−3

)∈ [0,1]×Rn−2
+ .

(3.5)

Thirdly, choose K1 sufficiently large such that

K1ξ =K1

(
l(1−l)
1−α

)
> 1. (3.6)

Since f∞ =∞, there is R2 > 0 sufficiently large such that

f
(
t,x0, . . . ,xn−2

)≥K1xn−2 for xn−2 ≥ R2,
(
t,x0, . . . ,xn−3

)∈ [0,1]×Rn−3
+ . (3.7)

Without loss of generality, suppose R2 > (1/η)b. Choose c ≥ R2. Then

f
(
t,w0, . . . ,wn−2

)≥K1wn−2 ≥K1c >
c
λl

for c ≤wn−2 ≤ 1
l
c,
(
t,x0, . . . ,xn−3

)∈ [0,1]×Rn−3
+ .

(3.8)

Hence, it follows from the definition of a, b, and c that

0<a<
λl
ξ
b < η

λl
ξ
c, (3.9)

and conditions in Theorem 2.8 are satisfied. By Theorem 2.8, BVP (1.3)-(1.4) has at least

two positive solutions. The proof is complete.

Theorem 3.2. Suppose that

(i) f0 = limxn−2→0(f (t,x0, . . . ,xn−2)/xn−2)=∞, f∞ = limxn−2→+∞(f (t,x0, . . . ,xn−2)/
xn−2)=∞ are uniform in t,x0, . . . ,xn−2;

(ii) there are 0< l < η < 1 and x0 > 0 such that

f
(
t,x0, . . . ,xn−2

)
1−η <

η
ξ
x0 for

(
t,x0, . . . ,xn−2

)∈ [0,1]×Rn−3
+ ×[0,x0

]
, (3.10)

where λ, ξ, and λl are given in Theorem 2.9.

Then BVP (2.41) has at least two positive solutions.
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Proof. The proof is similar to that of Theorem 3.1 and is omitted.

Theorem 3.3. Suppose that

(i) f0 = limxn−2→0(f (t,x0, . . . ,xn−2)/xn−2) = 0, f∞ = limxn−2→+∞(f (t,x0, . . . ,
xn−2)/xn−2)= 0 are uniform in t,x0, . . . ,xn−2;

(ii) there are 0< η< l < 1 and x0 > 0 such that

f
(
t,x0, . . . ,xn−2

)
>
η
ξ′
x0 for

(
t,x0, . . . ,xn−2

)∈ [η,1]×Rn−3
+ ×[0,x0

]
, (3.11)

where ξ′ is given in Theorem 2.10.

Then BVP (1.3)-(1.4) has at least two positive solutions.

Theorem 3.4. Suppose that

(i) f0 = limxn−2→0(f (t,x0, . . . ,xn−2)/xn−2) = 0, f∞ = limxn−2→+∞(f (t,x0, . . . ,
xn−2)/xn−2)= 0 are uniform in t,x0, . . . ,xn−2;

(ii) there are 0< l < η < 1 and x0 > 0 such that

f
(
t,x0, . . . ,xn−2

)
1−η >

η
ξ′
x0 for

(
t,x0, . . . ,xn−2

)∈ [0,η]×Rn−3
+ ×[0,x0

]
, (3.12)

where ξ′ is given in Theorem 2.11.

Then BVP (2.41) has at least two positive solutions.

Proof. The proofs of Theorems 3.3 and 3.4 are similar to that of Theorem 3.1 and

are omitted.
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