
IJMMS 2004:41, 2161–2170
PII. S0161171204402336

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ORDER OF GROWTH OF SOLUTIONS TO ALGEBRAIC
DIFFERENTIAL EQUATIONS IN THE UNIT DISK

D. BENBOURENANE and L. R. SONS

Received 3 February 2004

S. B. Bank has shown that there is no uniform growth estimate for meromorphic solutions
of algebraic differential equations with meromorphic coefficients in the unit disk. We give
conditions under which such solutions must have a finite order of growth.
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1. Introduction. Consider the algebraic differential equation
∑
ᾱ∈I
aᾱ(z)yα0(y ′)α1···(y(k))αk = 0, (1.1)

where I is a finite set of distinct tuples (α0,α1, . . . ,αk) for which eachαi is a nonnegative

integer, and the aᾱ are meromorphic functions in D = {z | |z| < 1}. For some index

sets I, we determine conditions on aᾱ, whereby a meromorphic solution f of (1.1) in

D will have finite order of growth as measured by the Ahlfors-Shimizu characteristic

function.

In [1], Bank investigated (1.1) where I consists of 2-tuples and the aᾱ are arbitrary

analytic functions of finite order in the unit disk. He observed that such equations could

possess analytic solutions of infinite order in the unit disk, but obtained a uniform

growth estimate for all such solutions. He further noted that for arbitrary meromorphic

solutions in the disk, no such uniform growth estimate is possible.

Recently, Heittokangas [3] showed for certain sets I that each meromorphic solution

of (1.1) has finite order when the aᾱ are polynomial functions. Further, he and Wulan

[5] studied the equation

(y ′)n =
∑
ᾱ∈I
bᾱ(z)yα0(y ′)α1 ···(y(k))αk , (1.2)

where each bᾱ is analytic in D and satisfies supz∈D(1− |z|2)q|bᾱ(z)| < ∞ for some

q ≥ 0, and showed that if n is large enough relative to the size of the number q, then

each meromorphic solution of (1.2) has finite order. Our first theorem is similar in

character to the result of Wulan and Heittokangas, while our other theorems take into

account the nature of the zeros or poles of the aᾱ coefficient functions.

2. Statement of results

Theorem 2.1. Let f be a meromorphic function in the unit disk D which satisfies a

differential equation of the form (1.1), where the sum is taken over some finite index set I
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of distinct m-tuples ᾱ= (α0,α1, . . . ,αm) for which each αi is a nonnegative integer and

the aᾱ are meromorphic functions in D. Suppose that

(i) there exists a β̄∈ I, where β1 ≥ 1 such that aβ̄ is not identically zero,

(ii) for all ᾱ ∈ I \ {β̄}, q = (β1 −α1)+ 2(β2 −α2)+···+m(βm −αm) is a positive

integer,

(iii) for all ᾱ∈ I \{β̄} and for all z ∈D,

∣∣∣∣∣aᾱ(z)aβ̄(z)

∣∣∣∣∣=O
(

1(
1−|z|)q

)
. (2.1)

Then

lim
r→1

sup
logT0(r ,f )
− log(1−r) <∞, (2.2)

where T0 denotes the Ahlfors-Shimizu characteristic function.

Our second result concerns the situation where a restriction is placed on the number

of poles each coefficient function can have. We use the usual little n counting function

of Nevanlinna theory and state the following theorem.

Theorem 2.2. Let f be a meromorphic function in the unit disk D which satisfies a

differential equation of the form (1.1), where the sum is taken over some finite index set I
of distinct m-tuples ᾱ= (α0,α1, . . . ,αm) for which each αi is a nonnegative integer and

the aᾱ are meromorphic functions in D. Suppose that

(i) for each ᾱ∈ I, ∫ 1
0 (1−r)n(r ,aᾱ)dr <∞,

(ii) there exists a β̄ ∈ I, where β1 ≥ 1 such that aβ̄ is not identically zero and
∫ 1
0 (1−

r)n(r ,1/aβ̄)dr <∞,

(iii) for all ᾱ∈ I \{β̄}, q = (β1−α1)+2(β2−α2)+···+m(βm−αm) is positive,

(iv) for all ᾱ∈ I \{β̄} and for all z ∈D,

∣∣∣∣∣hᾱ(z)hβ̄(z)

∣∣∣∣∣=O
(

1(
1−|z|)q

)
, (2.3)

where aᾱ(z) = hᾱ(z)/zl(ᾱ)Pβ̄(z) with Pᾱ(z) the Blaschke product for the poles

of aᾱ and aβ̄(z)= zl(β̄)Pβ̄(z)hβ̄(z) with Pβ̄(z) the Blaschke product for the zeros

of aβ̄.

Then

lim
r→1

sup
logT0(r ,f )
− log(1−r) <∞. (2.4)

Our third result allows the coefficient functions aᾱ of (1.1) to have more poles than

Theorem 2.2 does. To state it easily, we need to recall some facts and terms concerning

the canonical products in the unit disk introduced by Tsuji [4].
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If f is a meromorphic function of finite order σ in the unit disk with {an} its zero

points for which an ≠ 0, then
∑
k(1−|an(a)|)σ+1+ε <∞ for each ε > 0.

The convergence exponent µ ≥ 0 of {|an|} is defined to be zero if
∑
n(1−|an|) <∞,

whereas otherwise it is that number for which

∑
k

(
1−∣∣an(a)∣∣)µ+1−ε =∞,

∑
k

(
1−∣∣an(a)∣∣)µ+1+ε <∞ (2.5)

for any ε > 0. It follows that 0≤ µ ≤ σ .

The Tsuji canonical product P formed with {an} is defined by

P(z)=
∞∏
n=1

(
1− 1−|an|2

1−anz

)
(2.6)

when
∑
n(1−|an|) <∞, while

P(z)=
∞∏
n=1

(
1− 1−|an|2

1−anz

)
exp


1−∣∣an∣∣2

1−anz + 1
2

(
1−∣∣an∣∣2

1−anz

)2

+···+ 1
p

(
1−∣∣an∣∣2

1−anz

)p


(2.7)

when
∑
n(1− |an|) = ∞ with p a positive integer satisfying

∑
n(1− |an|)p = ∞ and∑

n(1−|an|)p+1 <∞.

It follows that p−1 ≤ µ. Further, Tsuji [4, page 227] has shown that when
∑
n(1−

|an|)=∞, the order of P is equal to µ.

Theorem 2.3. Let f be a meromorphic function in the unit disk D which satisfies a

differential equation of the form (1.1), where the sum is taken over some finite index set I
of distinct m-tuples ᾱ= (α0,α1, . . . ,αm) for which each αi is a nonnegative integer and

the aᾱ are meromorphic functions in D. Assume that

(i) there exists a β̄∈ I, where β1 ≥ 1 and aβ̄ is not identically zero,

(ii) for all ᾱ ∈ I \ {β̄}, q = (β1 −α1)+ 2(β2 −α2)+···+m(βm −αm) is a positive

integer with q > K(µ̂+νβ+6), where νβ is the convergence exponent for the zeros

of the zeros of 1/aβ, µ̂ =maxᾱ∈I\{β}µᾱ with µᾱ the convergence exponent for the

zeros of aᾱ, and

K =max

(
8pβ̄+1

∞∑
i=1

(
1−∣∣ci,β̄∣∣)pβ̄+1, max

ᾱ∈I\{β̄}

(
8pᾱ+1

∞∑
i=1

(
1−∣∣bi,ᾱ∣∣)pᾱ+1

))
(2.8)

with pβ̄ the smallest positive integer for which
∑∞
i=1(1−|ci,β̄|)pβ̄+1 is finite ({ci,β̄}

is the sequence of zeros of 1/aβ̄) and pᾱ the smallest positive integer for which∑∞
i=1(1−|bi,ᾱ|)pᾱ+1 is finite ({bi,ᾱ} is the sequence of zeros of aᾱ),

(iii) the zeros of aβ̄ and the poles of aᾱ are all located in the sector Ω, where Ω =
{z | a+ε < argz < b−ε, where 0< b−a< 2π and 0< ε < (2π−(b−a))/3},
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(iv) there exists a number γ with 0≤ γ < q−K(µ̂+νβ+6) such that for all z ∈D with

1/2≤ |z|< 1,

∣∣∣∣∣hᾱ(z)hβ̄(z)

∣∣∣∣∣=O
(

1(
1−|z|)γ

)
(r �→ 1) (2.9)

where aβ̄(z)= zl(β̄)Pβ̄(z)hβ̄(z)with Pβ̄(z) the Tsuji canonical product of the zeros

of aβ̄ and aᾱ(z) = hᾱ(z)/zl(ᾱ)Pᾱ(z) with Pᾱ(z) the Tsuji canonical product for

the zeros of 1/aᾱ,

(v) there is a sector Λ= {z/c < argz < d, 0<d−c < 2π} with Λ∩Ω̃ =∅ for which

∫∫
|z|≤r

arg(z)∉Λ

∣∣f #(z)
∣∣2dxdy =O

(
1

1−r
)

(r �→ 1) (2.10)

where Ω̃= {z | a< argz < b, a and b as in (iii)}.
Then

lim
r→1

sup
logT0(r ,f )
− log(1−r) <∞. (2.11)

The arguments in our proofs proceed by contradiction and involve the use of normal

families.

We will present a proof for Theorem 2.1 in Section 3 and a proof of Theorem 2.3 in

Section 4. The proof for Theorem 2.2 proceeds along similar lines and will be omitted.

3. Proof of Theorem 2.1. We will use a lemma attributed to Zalcman [6, 7].

Lemma 3.1. A family 	 of meromorphic functions on the unit disk is not normal if

and only if there exist a number 0 < r < 1, points zk, |zk| < r , functions fk ∈ 	, and

positive real numbers ρk→ 0 such that fk(zk+ρkζ) converges spherically uniformly on

compact subsets of C to a nonconstant meromorphic function g(ζ). The function g may

be taken to satisfy the normalization g#(z)≤ g#(0)= 1, z ∈ C.

We proceed with the proof of Theorem 2.1 by assuming there exists a solution f for

our equation with

lim
r→1

sup
logT0(r ,f )
− log(1−r) =∞. (3.1)

This implies that for any A>0, there exists a sequence rk→ 1 such that logT0(rk,f )/
− log(1−rk) > A for all k≥N0.

We claim that there exists a sequence wk, |wk| = rk→ 1, such that

(
1−∣∣wk

∣∣)A/2+1f #(wk
)
�→∞ (3.2)

for all k≥N0.
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Otherwise,

S(t)= 1
π

∫∫
|z|<t

∣∣f #(z)
∣∣2dxdy

= 1
π

∫∫
|z|<t

O
(

1(
1−|z|)A+2

)
dxdy

=O
((

1
1−t

)A+1
)
.

(3.3)

So,

T0
(
rk,f

)=
∫ rk

0

S(t)
t
dt =O

((
1

1−rk
)A)

, (3.4)

a contradiction.

Therefore, for k≥N0,

f #(wk
)
>

1(
1−rk

)A/2+1 . (3.5)

Now, consider the family 	= {fk} in the unit disk, where

fk(z)= f
(
z+wk

1+wkz

)
. (3.6)

Note that φ(z)= (z+wk)/(1+wkz) maps the unit disk D conformally onto itself.

Taking the derivative with respect to z gives

f ′k(z)=
1−∣∣wk

∣∣2

(
1+wkz

)2 f
′
(
z+wk

1+wkz

)
, (3.7)

and so

f ′k(0)=
(
1−∣∣wk

∣∣2
)
f ′
(
wk
)
. (3.8)

Hence,

f #
k (0)=

∣∣f ′k(0)∣∣
1+∣∣fk(0)∣∣2

=
(
1−∣∣wk

∣∣2
)
f #(wk

)
.

(3.9)

So,

f #(0) >
1(

1−rk
)A/2 . (3.10)

Thus, as k→∞,

f #
k (0) �→+∞. (3.11)
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Hence, 	 is not a normal family by Marty’s criterion. By Lemma 3.1, there exist a

real number 0 < r < 1, a sequence of complex numbers {zk} in D, |zk| < r , such that

zk→ 0, a sequence {ρk} of positive real numbers such that ρk→ 0+, and a nonconstant

meromorphic function g in C such that

fk
(
zk+ρkζ

)= f
( (

zk+ρkζ
)+wk

1+wk
(
zk+ρkζ

)
)
= gk(ζ) �→ g(ζ), (3.12)

as k→∞, spherically uniformly on compact subsets of C. gk is defined on the compact

sets |ζ| ≤ (r −|zk|)/ρk. In the construction of the proof of Lemma 3.1,

ρk = 1

f #
k
(
zk
) ,

g#
k(0)≥ g#

k

(
− zk
ρk

)
.

(3.13)

Therefore, we have

f #
k
(
zk
)= g#

k(0)≥ g#
k

(
− zk
ρk

)
= f #(wk

)= f #
k (0) >

1(
1−rk

)A/2 , (3.14)

so

ρk = 1

f #
k
(
zk
) < (1−rk)A/2, (3.15)

and ρk→ 0 as k→∞.

Now, since aβ̄(z) is not identically zero, we can divide both sides of (1.1) through by

aβ̄(z), and write it in the form

f ′(z)β1 =−
∑

ᾱ∈I\{β̄}

aᾱ(z)
aβ̄(z)

f(z)α0−β0f ′(z)α1f (2)(z)α2−β2 ···f (m)(z)αm−βm. (3.16)

We proceed to substitute

τk =φ
(
zk+ρkζ

)=
(
zk+ρkζ

)+wk

1+wk
(
zk+ρkζ

) (3.17)

for z into the differential equation. We have

g′k(ζ)=
d
dζ

f
( (

zk+ρkζ
)+wk

1+wk
(
zk+ρkζ

)
)

=
ρk
(
1−∣∣wk

∣∣2
)

(
1+wk

(
zk+ρkζ

))2 f
′
( (

zk+ρkζ
)+wk

1+wk
(
zk+ρkζ

)
)
.

(3.18)

Differentiating with respect to ζ, we obtain

(
1−∣∣wk

∣∣2
)2
ρ2
kf

′′(τk)
= (1+wk

(
zk+ρkζ

))4g′′k (ζ)+2wkρk
(
1+wk

(
zk+ρkζ

))3g′k(ζ),
(3.19)
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and by induction we can show that for j = 1,2,3, . . . ,

f (j)
(
τk
)= [(1−∣∣wk

∣∣2
)
ρk
]−j
Hj
[
gk
]
(ζ), (3.20)

where Hj[gk] is a polynomial function of the derivatives g′k, . . . ,g
(j)
k , which converges

to Hj[g] as k→∞. Using (3.20) in (3.16), we get

[(
1+wk

(
zk+ρkζ

))2g′k(ζ)(
1−∣∣wk

∣∣2
)
ρk

]β1

=−
∑

ᾱ∈I\{β̄}

aᾱ
(
τk
)

aβ̄
(
τk
) [(1−∣∣wk

∣∣2
)
ρk
]−[α1+2(α2−β2)+···+m(αm−βm)]

Mᾱ
[
gk
]
(ζ),

(3.21)

where

Mᾱ
[
gk
]
(z)=Hα0

0

[
gk
]
(z)Hα1

1

[
gk
]
(z)Hα2

2

[
gk
]
(z)···Hαm

m
[
gk
]
(z). (3.22)

Multiplying both sides of the equality by [(1−|wk|2)ρk]β1 , where β1 is assumed to

be a positive integer, we get

[(
1+wk

(
zk+ρkζ

))2g′k(ζ)
]β1 =−

∑
ᾱ∈I\{β̄}

aᾱ
(
τk
)

aβ̄
(
τk
) [(1−∣∣wk

∣∣2
)
ρk
]q
Mᾱ

[
gk
]
(ζ).

(3.23)

The modulus of the right-hand side of (3.23) is less than

K
∑

ᾱ∈I\{β̄}

1(
1−∣∣τk∣∣)q

[(
1−∣∣wk

∣∣2
)
ρk
]q∣∣Mᾱ

[
gk
]
(ζ)

∣∣. (3.24)

Now, we use the inequality

2
(
1−∣∣τk∣∣)≥ 1−∣∣τk∣∣2

= 1−
∣∣(zk+ρkζ)−wk

∣∣2∣∣1+wk
(
zk+ρkζ

)∣∣2

=
∣∣1+wk

(
zk+ρkζ

)∣∣2−∣∣(zk+ρkζ)−wk
∣∣2∣∣1+wk

(
zk+ρkζ

)∣∣2

≥ 1+∣∣wk
(
zk+ρkζ

)∣∣2−∣∣zk+ρkζ∣∣2−∣∣wk
∣∣2

4

=
(
1−∣∣zk+ρkζ∣∣2

)(
1−∣∣wk

∣∣2
)

4
.

(3.25)
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So, since |zk+ρkζ| → 0, as k→∞, there exists an integer N1 such that |zk+ρkζ| ≤ 1/3
for all k≥N1. Therefore, for such k,

1−∣∣wk
∣∣2

1−∣∣τk∣∣ ≤ 9,
(

1−∣∣wk
∣∣2

1−∣∣τk∣∣
)q
≤ 9q.

(3.26)

Thus, the right-hand side of (3.23) can be bounded in modulus by

9qK
∑

ᾱ∈I\{β̄}
ρqk
∣∣Mᾱ

[
gk
]
(ζ)

∣∣ (3.27)

which goes to zero as k→∞.

But as k→∞, the left-hand side of (3.23) goes tog′(ζ)β1 . Hence, we obtain (g′(ζ))β1 ≡
0 in contradiction to g being a nonconstant function.

4. Proof of Theorem 2.3. We will use the following lemma which is a modification

of [4, Theorem V.25, page 224].

Lemma 4.1. Let f be a meromorphic function of finite order in D, and let {an} be its

zero points for which an ≠ 0. Let P be the Tsuji canonical product formed with {an}, and

let µ be the convergence exponent of {|an|}. For n = 1,2,3, . . . , denote by Cn the circle

|z−an| = (1−|an|2)µ+4. If z lies outside of Cn for n= 1,2,3, . . . and 1/2≤ |z|< 1, then

log+
1∣∣P(z)∣∣ ≤ log

(
2µ+4

r0
· 1(

1−|z|)p+1

)
8p+1

∑
n

(
1−∣∣an∣∣)p+1, (4.1)

where r0 =min|an| and p is a positive integer such that
∑
n(1−|an|)p =∞ and

∑
n(1−

|an|)p+1 <∞.

To prove Theorem 2.3, we argue by contradiction assuming first that there exists a

solution f to the differential equation with

lim
r→1

sup
logT0(r ,f )
− log(1−r) =∞. (4.2)

Then we claim that for each A ≥ 1 there exists a sequence wk with argwk in S, and

|wk| = rk→ 1, such that

(
1−∣∣wk

∣∣)A/2+1f #(wk
)
�→∞ (4.3)

for k→∞. Otherwise, for 0< t < 1,

λ(t)= 1
π

∫∫
|z|<t

argz∈Ω

∣∣f #(z)
∣∣2dxdy ≤ 1

π

∫∫
|z|<t

argz∈Ω

K(
1−|z|)A+2dxdy (4.4)
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for some constant K. Hence

λ(t)=O
((

1
1−t

)A+1
)

(t �→ 1). (4.5)

Combining this estimate with assumption (v), we have

T0(r ,f )=
∫ r

0

S(t)
t

=O
((

1
1−r

)A)
(r �→ 1) (4.6)

which contradicts (4.2).

Therefore the sequence {wk} exists and there is an integer N0 such that for k≥N0,

f #(wk
)
>

1(
1−rk

)A/2+1 . (4.7)

As in the proof of Theorem 2.1, we observe that Marty’s criterion shows that the

family 	= {fk} defined in the unit disk by

fk(z)= f
(
z+wk

1+wkz

)
(4.8)

is not a normal family.

Also, by Lemma 3.1, there are a real number r with 0< r < 1, a sequence of complex

numbers {zk} in D with |zk|< r such that zk→ 0 as k→∞, a sequence {ρk} of positive

real numbers such that ρk→ 0+ as k→∞, and a nonconstant function g in C such that

fk
(
zk+ρkζ

)= f
( (

zk+ρkζ
)+wk

1+wk
(
zk+ρkζ

)
)
= gk(ζ) �→ g(ζ), (4.9)

as k→∞, spherically uniformly on compact subsets of C. gk is defined on compact sets

{ζ/|ζ| ≤ (r −|zk|)/ρk}. Further, the proof of Lemma 3.1 gives ρk = 1/f #(zk).
Since aβ̄ is not identically zero, we can divide (1.1) through by aβ̄(z) and write it in

the form (3.16). Proceeding as in the proof of Theorem 2.1 with the substitution of τk
for z in the differential equation, the differentiation with respect to ζ, and the induction

process for the derivatives of f at τk, we again obtain (3.23). Replacing aᾱ and aβ̄ by

their representatives in assumption (iv), we get

[(
1+wk

(
zk+ρkζ

))2g′k(ζ)
]β1

=
∑

ᾱ∈I\{β̄}

−hᾱ
(
τk
)

hβ̄
(
τk
)

[(
1−∣∣wk

∣∣2
)
ρk
]q

τl(ᾱ)+l(β̄)k Pᾱ
(
τk
)
Pβ̄
(
τk
)Mᾱ

[
gk
]
(ζ).

(4.10)

Assumptions (iii) and (iv) assure that Lemma 4.1 may be used to estimate

1/Pᾱ(τk)Pβ̄(τk) for which we obtain

1∣∣Pᾱ(τk)Pβ̄(τk)∣∣ ≤ K̂
(

1
1−∣∣τk∣∣

)K(µ̂+νβ+6)

(4.11)
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for each pair of ᾱ and β̄, where K̂ is a constant independent of k. Thus, by assumption

(iv), the modulus of the right-hand side of (4.10) is bounded by

K0

∑
ᾱ∈I\{β̄}

1(
1−∣∣τk∣∣)γ

[(
1−∣∣wk

∣∣2
)
ρk
]q

∣∣τk∣∣l(ᾱ)+l(β̄)
∣∣Mᾱ

[
gk
]
(ζ)

∣∣(
1−∣∣τk∣∣)K(µ̂+νβ+6) , (4.12)

where K0 is a constant.

As in the proof of Theorem 2.1, we have

1−∣∣wk
∣∣2 ≤ 9

(
1−∣∣τk∣∣), (4.13)

so our estimate becomes

K0

∑
ᾱ∈I\{β̄}

ρqk
(
1−∣∣τk∣∣)q−γ−K(µ̂+νβ+6)

∣∣Mᾱ
[
gk
]
(ζ)

∣∣∣∣τk∣∣l(ᾱ)+l(β̄) . (4.14)

Hence, as k goes to infinity, the modulus of the right-hand side of (4.10) goes to zero,

and since the left-hand side goes to |g′(ζ)|β1 , we have a contradiction.

Remark 4.2. A more refined theorem of the nature of Theorem 2.3 appears in the

dissertation of Benbourenane [2].
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