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1. Introduction. Let F be an algebraic number field of degreen. There exist exactlyn
field embeddings of F in C. Let s be the number of embeddings of F whose images lie

in R, and let 2t be the number of nonreal complex embeddings, so that n= s+2t. The

pair (s,t) is said to be the signature of F . Let ZF be the ring of integers of the field F .

A unit in F is an invertible element of ZF . The set of units in F forms a multiplicative

group which will be denoted by Z×F . In 1840, P. G. Lejeune-Dirichlet determined the

structure of the group Z×F . He showed that Z×F is a finitely generated Abelian group of

rank r = s+t−1, that is, Z×F is isomorphic to µF ×Zr , where µF is a finite cyclic group.

µF is called the torsion subgroup of Z×F . Thus, there exist units ε1, . . . ,εr such that every

element of Z×F can be written in a unique way as ζεn1
1 ···εnrr , where ni ∈ Z and ζ is a

root of unity in F . Such a set {ε1, . . . ,εr} is called a system of fundamental units of F .

Finding a system of fundamental units of F is one of the main computational problems

of algebraic number theory (see, e.g., [4, page 217]). Much work has been done to solve

this problem for certain classes of algebraic number fields (see, e.g., [11]). In the case

of the real quadratic fields, the continued fraction algorithm provides a very efficient

method for solving this problem (see, e.g., [11, page 119]). This approach goes back

to L. Euler, who applied continued fractions to solve Pell’s equation x2 −dy2 = ±1.

(If a square-free positive integer d ≡ 2 or 3mod4 and x, y is an integral solution of

this equation, then x+√dy is a unit in the real quadratic field Q(
√
d). Moreover, any

unit in Q(
√
d) can be obtained this way.) Many attempts have been made to develop

a similar algorithm that would find a system of fundamental units in other algebraic

number fields. In the case of a cubic field, one of the most successful such algorithms

was introduced by Voronoi [16]. A review of the multidimensional continued fraction

algorithms and their properties that were known by 1980 can be found in [1].

Let d > 0 be a square-free integer. Let ZK be the ring of integers of the field K =
Q(
√−d). The group of units µK of K is a finite cyclic group of order 6 if d = 3, 4 if

d = 1, and µK = {±1} otherwise. Let ω = (1+√−d)/2 if d ≡ 3(mod4) and ω = √−d
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otherwise. Then {1,ω} is a Z-basis of ZK . Let F/K be a relative extension of relative

degree n, so that the signature of F is (0,n).
In [24], the (multidimensional continued fraction) Algorithm II associated with the

discrete group GLn(Z)/{±1} acting on the symmetric space �n = SLn(R)/SOn(R) was

introduced and applied to the problem of finding a system of fundamental units in an

algebraic number field. In the present paper, an analog of Algorithm II associated with

the group Γ = GLn(ZK)/µK acting on the Hermitian symmetric space �= SLn(C)/SU(n)
is applied to the problem of finding a system of fundamental units in the relative ex-

tension F/K and in the field F . The space � can be identified with the set of positive

definite Hermitian forms in n complex variables with the leading coefficient one. De-

note by X̂ the positive definite quadratic form in 2n real variables associated with a

Hermitian form X ∈�. The set {X̂ :X ∈�} is a totally geodesic submanifold of �2n of

dimension n2−1 (see, e.g., [2, Chapter II.10]).

Assume that g ∈ GLn(C). Let gai = λiai, i = 1, . . . ,n, so that ai is an eigenvector of

g corresponding to its eigenvalue λi. For simplicity, assume that all the eigenvalues

of g are distinct. Let P = (a1, . . . ,an) be the matrix with columns a1, . . . ,an. The set of

points in � fixed by g will be called the axis LP of g. The axis LP of g depends only on

eigenvectors of g, that is, on P , but not on its eigenvalues (see Section 3). LP is a totally

geodesic submanifold of � of dimension n−1.

In Section 2, the notion of the height of a point in � is introduced. Letw = (1,0, . . . ,0)T
andW =wwT . In what follows, the pointW which belongs to the boundary of � is anal-

ogous to the point ∞ in the upper half-space model Hn+1 = {(z,t) : z ∈ Rn, t > 0} of

the (n+1)-dimensional hyperbolic space (see [21, 22]). The set Kn = K(w) in � is de-

fined so that, for every point X ∈ �, the points in the Γ -orbit of X with the largest

height belong to K(w). The images Kn[g] of Kn, g ∈ Γ , under the action of Γ form the

K-tessellation of �. The K-tessellation of � is Γ -invariant.

If LP∩Kn[g] �= ∅, g ∈ Γ , then the vector u= g−1w ∈ ZnK is called a convergent of LP .

In Section 3, it is shown that if u is a convergent of LP , then |〈a1,u〉···〈an,u〉/detP |,
where 〈·,·〉 denotes the complex dot product inCn, is small (Theorem 3.3). Algorithm II,

which is introduced in [24], can be applied in � to find the sets R(g−1w)= LP∩Kn[g] �=
∅, which form a tessellation of LP , and the set of convergents of LP .

It is proved in Section 4 that a system of fundamental units in the relative extension

F/K is a system of fundamental units in the field F provided ZF/K is a free ZK-module.

The upper half-space H3 = {(z,t) : z ∈ C, t > 0} with the metric ds2 = t−2(|dz|2+
dt2) can be used as a model of the three-dimensional hyperbolic space. SL2(C) is the

group of orientation-preserving isometries of H3. In Section 5, for n= 2, a bijection ψ
of � andH3 is introduced, so thatψ is also a bijection between the K-tessellations of �

and H3. Thus, Algorithm I from [21] in H3 coincides with Algorithm II from [24] in �

in this case. In Examples 5.3, 5.4, and 5.6, Algorithm I is applied to find fundamental

units in some families of number fields with signature (0,2).
If g ∈ Γ = GLn(ZK)/µK , then there are only finitely many sets R(u) which are not

congruent modulo the action of Γ . The union of noncongruent sets R(u) forms a fun-

damental domain of ΓL in LP . Assume that the characteristic polynomial p(x) of g
is irreducible over K. Let p(ε) = 0. In Section 6, the problem of finding a system of



UNITS IN FAMILIES OF TOTALLY COMPLEX . . . 2385

fundamental units in F/K is solved for some families of fields F =Q(ε) with signature

(0,n), n ≤ 4, by reducing it, as explained in Section 4, to the problem of finding a set

of generators of ΓL. Here, the families of fields with signature (0,n) are obtained from

some families of fields with signature (n,0) by complexification, that is, by replacing a

real parameter t ∈ Z by a nonreal complex parameter m∈ ZK .

In Example 5.3 (and, for δ=−1, in Example 6.1), the following result is obtained.

Theorem 1.1. Let d be a square-free positive integer and let K =Q(√−d). Let {1,ω}
be the standard Z-basis of ZK . Let p(x)= x2−mx+δ, where nonreal m∈ ZK , |m| ≥ 4,

and δ ∈ Z×K . Assume that either m2−4δ or m2/4−δ is a square-free ideal in ZK . Let

p(ε)= 0 and F =Q(ε).
Then {1,ω,ε−1,ε−1ω} is a Z-basis of ZF and Z×F /µF = 〈ε〉.
Similar results (Theorems 5.5 and 5.7) are proved in Examples 5.4 and 5.6, where

Γ = Bd/µK and Bd is the extended Bianchi group (see [19, 20]). Complexification of the

family of simplest cubic fields of Shanks [15] leads to the following result obtained in

Example 6.2.

Theorem 1.2. Let d be a square-free positive integer and letK =Q(√−d). Let f(x)=
x3−mx2−(m+3)x−1, where nonrealm∈ ZK , |m| ≥ √20+3. Assume thatm2+3m+9

is a square-free ideal in ZK . Let f(ε)= 0 and F =Q(ε).
Then {1,ε,ε2} is a ZK -basis of ZF/K and Z×F /µF = 〈ε,ε+1〉.
In Example 6.4, the fundamental domain of ΓL in LP is found for the family of the

simplest quartic fields of Gras [8]. By complexification of this family, in Example 6.5,

we prove the following.

Theorem 1.3. Let d be a square-free positive integer and letK =Q(√−d). Let f(x)=
x4 − 2mx3 − 6x2 + 2mx+ 1, where nonreal m ∈ ZK , gcd(m,2) = 1, and |m| ≥ √84.

Assume that m2+4 is a square-free ideal in ZK . Let f(ε)= 0 and F =Q(ε).
Then {1,ε,(ε2−1)/2,ε(ε2−1)/2} is a ZK -basis of ZF/K , and Z×F /µF = 〈ε,(ε−1)/(ε+

1),(ε−ε−1)/2〉.
Note that the families of algebraic number fields F considered in the theorems above

are parameterized by complex parameters m = a+ωb ∈ ZK , a,b ∈ Z, or by three real

parameters a, b, and d.

In [23], Algorithm II is used to find a system of fundamental units in a two-parameter

family of complex cubic fields. In [24], it is used to find a system of fundamental units

in some families of algebraic number fields F of degree less than or equal to 4, which

have at least one real embedding. Thus, the present paper, where Algorithm II is applied

only to the totally complex algebraic number fields, can be considered as a complement

of [24].

2. Fundamental domains and K-tessellation. Almost all the definitions in this sec-

tion and in Section 3 are similar to the corresponding definitions from [24, Sections 2

and 3]. We reproduce them here for completeness.

Letn≥ 2 be a positive integer. Let Vn be the vector space of Hermitiann×nmatrices.

A complex matrixX ∈ Vn if and only ifX =X∗ =XT . The real dimension of Vn isN =n2.
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The action of g ∈G = GL(n,C) on X ∈ Vn is given by

X 
 �→X[g]= g∗Xg. (2.1)

For a subset S of Vn, denote S[g]= {X[g]∈ Vn :X ∈ S}.
The one-dimensional subspaces of Vn form the real projective space V of dimension

N−1, so that for any fixed nonzeroX ∈ Vn, all the vectors kX ∈ Vn, 0 �= k∈R, represent

one point in V . Denote by �⊂ V the set of (positive) definite elements of V and by � the

boundary of � (� can be identified with nonnegative elements of V of rank less than n).

The group G preserves both � and � as does its arithmetic subgroup GL(n,ZK).
The space Vn (and V ) can be also identified with the set of Hermitian forms A[x]=

x∗Ax, A∈ Vn, x ∈ Cn. With each point a= (a1, . . . ,an)T ∈ Cn, we associate the matrix

A= aa∗ ∈� and the Hermitian form

A[x]= ∣∣〈a,x〉∣∣2 = ∣∣a1x1+···+anxn
∣∣2. (2.2)

Here, 〈a,x〉 = 〈x,a〉 = a∗x. For g ∈G, we have 〈ga,x〉 = a∗g∗x = 〈a,g∗x〉.
Let w = (1,0, . . . ,0)T and W =ww∗. Then 〈w,x〉2 = x2

1 and W[g]= U =uu∗, where

u= g∗w.

Denote by G∞ and Γ∞ the stabilizers of w in G and Γ = GL(n,ZF )/µF , respectively.

Then

G∞ = {g ∈G : gw =w} = {g ∈G : g1 =w
}
, (2.3)

where g1 is the first column of g. Thus, g ∈G∞ if and only if W[g∗]=W .

We will say that A ∈ V is extremal if |A[x]| ≥ |A[w]| = |a11|2 for any x ∈ ZnK , x �=
(0, . . . ,0). Let �n = {X ∈ V : X[w] �= 0}. It is clear that � ⊂�n. For X ∈�n, we will say

that ht(X)= |det(X)|1/n/|X[w]| is the height of X and, for a subset S of V , we define

the height of S as ht(S)=maxht(X), X ∈ S.

The elements of �n will be normalized so that X[w] = 1. For a fixed g ∈ Γ , the set

{X ∈�n : |X[gw]|< 1} is called the g-strip. It is clear that the gh-strip coincides with

the g-strip for any h∈ Γ∞. Since X[gw]∈R for any g ∈G, the boundary of the g-strip

consists of two planes X[gw]=±1. The plane

L+(gw)= L+(g)= {X ∈�n :X[gw]= 1
}

(2.4)

is the boundary of the g-strip, which cuts �. Let �w be the set of all extremal points

of V . Denote

Kn =K(w)=�∩�w. (2.5)

Note that K(w) ⊂�n is bounded by the planes L+(g). If h ∈ Γ∞, then X[hw] = X[w]
and, therefore, ht(X[h])= ht(X). Thus,

Kn[h]=Kn, h∈ Γ∞. (2.6)

By (2.6), Kn[hg]= Kn[g] for any g ∈ Γ and h∈ Γ∞. Thus, the sets Kn[g] are param-

eterized by the classes Γ∞\Γ or by primitive vectors u= g−1h−1w = g−1w, so that ±u
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represent the same Kn[g]. The sets Kn[g], g ∈ Γ∞\Γ , form a tessellation of � which

will be called the K-tessellation. It is clear that the K-tessellation of � is Γ -invariant.

Letw2n = (1,0, . . . ,0)T ∈�2n. Denote byK(w2n) the set ofw2k-extremal points in �2k.

Denote �H = {X̂ :X ∈�} and KH =K(w2n)∩�H . LetX ∈�n. A Hermitian matrix can be

reduced to a diagonal form by a unitary transformation. Hence det(X̂) = det2(X) and,

therefore, ht(X̂) = (ht(X))2, where ht(X̂) is the height of X̂ ∈ �2n (see [24]). It follows

that X → X̂ is a bijection between the K-tessellations of � and �H . In Sections 5 and 6,

to show that X ∈� is extremal, we will show that X̂ is Minkowski-reduced (see, e.g., [6,

pages 396–397]).

3. Axes of elements ofG. Letg ∈G. Letgai = λiai, i= 1, . . . ,n, where, for simplicity,

we assume that λi �= λj if i �= j. Here, ai is an eigenvector of g corresponding to its

eigenvalue λi. Assume that 〈ai,w〉 �= 0, i= 1, . . . ,n. Then we can choose ai so that〈
ai,w

〉= 1, i= 1, . . . ,n. (3.1)

g ∈ Γ is said to be K-irreducible if its characteristic polynomial is irreducible over the

field K. If g ∈ Γ is K-irreducible, then all its eigenvalues are distinct. Let λk �= ±1. Let

P = (a1, . . . ,an) be the matrix with columns a1, . . . ,an, and letH = diag(λ1, . . . ,λn). Then

g = PHP−1.

The totally geodesic submanifold LP of � fixed by g = PHP−1 will be called the axis

of g. The dimension of LP is n−1. A point q ∈ LP can be represented as

q =
n∑
k=1

µkAk, Ak = aka∗k , µk ≥ 0,
n∑
k=1

µk = 1. (3.2)

It can also be identified with the set of Hermitian forms in �n

q[x]=
n∑
k=1

µkAk[x]=
n∑
k=1

µk
∣∣〈x,ak〉∣∣2, µk ≥ 0,

n∑
k=1

µk = 1. (3.3)

Hence

detq = µ1 ···µn|detP |2. (3.4)

It follows from (3.3) that LP is the axis of h ∈ G if and only if ai, i = 1, . . . ,n, are

eigenvectors of h. Hence, the axis of g depends only on its set of eigenvectors, that is,

on P , but not on the eigenvalues of g.

Thus, LP is the simplex with vertices Ak, k= 1, . . . ,n. All the faces of LP belong to �.

Note that LP[g∗]= LP .

Denote Kn(g−1w)=Kn[g] and

R
(
g−1w

)=Kn[g]∩LP �= ∅, g ∈ Γ∞\Γ . (3.5)

The sets R(u), u = g−1w, form a tessellation of LP which is invariant modulo the

action of Γ since the K-tessellation of � is Γ -invariant. We say that this tessellation is

periodic if there are only a finite number of noncongruent sets R(u)modulo the action
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of Stab(LP ,Γ). In that case, the union of all noncongruent sets R(u) is a fundamental

domain of Stab(LP ,Γ). The number of noncongruent sets R(u) in the tessellation of LP
will be called the period length.

Let NP(x)= 〈x,a1〉···〈x,an〉, where 〈x,ak〉 = x∗ak. Define

ν
(
LP
)= inf

∣∣∣∣NP(gw)detP

∣∣∣∣, (3.6)

where the infimum is taken over all g ∈ Γ . It is clear that ν(LP) = ν(LMP[h]) for any

h ∈ Γ and M = diag(µ1, . . . ,µn), where µ1, . . . ,µn ∈ C and µ1 ···µn �= 0. The projective

invariant ν(LP) is well known in the geometry of numbers (see, e.g., [3] or [9]).

Let n= 2. The approximation constants supν(LP) are known for d= 1,2,3,5,6,7,11,
15,19 (see, e.g., [20, 22], where in the cases of d= 5,6, and 15, Γ is the extended Bianchi

group). For d= 1,3, and 11, more information is available (see [12, 13, 14, 17, 18]). Thus,

when d= 1, it is proved in [17, 18] that if ν(LP) > 1/2, then ν(LP)= (4−|m|−4)−1/2 or

14.76−1/4, where (m,m′) is a solution of the Diophantine equation (mm′)2+(m′m)2 =
|m|2+|m′|2 in nonzerom,m′ ∈ ZK , the ring of integers of the Gaussian field K =Q(i).

A point qm ∈ LP is said to be the summit of LP if |det(qm)| =max |det(q)|, the max-

imum being taken over all q ∈ LP . It is clear that if R = LP ∩Kn(w) �= ∅, then qm ∈ R.

The following two lemmas are analogous to [24, Lemmas 5 and 6].

Lemma 3.1. Let LP be the totally geodesic manifold fixed by g ∈ G and defined by

(3.3), where gai = λiai. Let P = (a1, . . . ,an) be the matrix with columns a1, . . . ,an. Then

qm = 1
n

n∑
k=1

Ak (3.7)

is the summit of LP ,

ht
(
LP
)= 1

n

∣∣∣∣ detP
NP(w)

∣∣∣∣2/n
,

ν
(
LP
)= inf

(
nht

(
LP[g]

))−n/2, g ∈ Γ .
(3.8)

Lemma 3.2. Let LP be the totally geodesic manifold fixed by g ∈ G and defined by

(3.3), where gai = λiai. Then

ν
(
LP
)= inf

(
nht

(
LP
[
gj
]))−n/2, LP ∩Kn

(
gjw

) �= ∅, gj ∈ Γ . (3.9)

Assume that LP ∩Kn(gw) �= ∅, where g ∈ Γ . Denote

hn = inf
(
ht(X)

)
, X ∈Kn. (3.10)

Since LP[g]∩Kn(w) �= ∅, by Lemma 3.1,

ht
(
LP[g]

)= ht
(
Lg∗P

)= 1
n

∣∣∣∣ detP
Ng∗P (w)

∣∣∣∣2/n
> hn. (3.11)
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But Ng∗P (x) = 〈x,g∗a1〉···〈x,g∗an〉 = 〈gx,a1〉···〈gx,an〉. Hence Ng∗P (w) =
NP(gw).

A vector gw ∈ ZnK , such that LP ∩Kn(gw) �= ∅, will be called a convergent of LP . We

have proved the following.

Theorem 3.3. If a vector u is a convergent of LP (i.e., if LP ∩Kn(u) �= ∅), then

∣∣NP(u)∣∣<Cn/2n |detP |, (3.12)

where Cn = 1/(nhn). Hence, if LP cuts infinitely many sets Kn(u), then this inequality

has infinitely many solutions in u∈ ZnK .

A component of the boundary of a set R(u) of codimension one will be called a face

of R(u).
Algorithm II from [24] can be applied in �. In this case, a simplex L⊂� has vertices

at Ai ∈�, where Ai = aia∗i , for i= 1, . . . ,n, and det(a1, . . . ,an) �= 0.

The following result shows that any matrix g in the stabilizer of the simplex L is

uniquely determined by the first row of g.

Proposition 3.4. Let f(x) be an irreducible polynomial over ZK of degree n with

coefficients in ZK . Let E∗ be the companion matrix of f(x). Let LP be the axis of E. Let

g = (gij)∈GL, the torsion-free subgroup of the stabilizer of LP in G. Then

g = g11I+g12E+···+g1nEn−1. (3.13)

Proof. The first row of Ei−1 is the standard unit vector ei = (0, . . . ,0,1,0, . . . ,0).

4. Fundamental units in ZF and ZF/K . Let ZF be the ring of integers of the field F .

Assume that ZF is a free ZK -module. Let {1,α2, . . . ,αn} be a ZK-basis of ZF . Then the

Z-basis of ZF is {1,ω,α2,ωα2, . . . ,αn,ωαn}. Let a1 = (1,α2, . . . ,αn)T . Let γ ∈ ZF . Then

γαj =
∑
mjkαk or γa1 =Mγa1, where α1 = 1, mjk ∈ ZK , and Mγ = (mjk) is a square

matrix of order n. Let σi be the n distinct embeddings of F/K in C. Let ak = σk(a1) and

γk = σk(γ), where γ1 = γ. Then γkak =Mγak for k= 1, . . . ,n. Thus, ak is an eigenvector

of Mγ corresponding to its eigenvalue γk. It is clear that the map γ � Mγ is an iso-

morphism of the ring of integers ZF/K and the commutative ring of ZK-integral square

matrices of order n with the common axis LP . The relative norm of γ equals det(Mγ)
so that γ is a unit in ZF/K if and only if Mγ ∈ GLn(ZK). The torsion-free subgroup ΓL of

the stabilizer of LP is isomorphic to Z×F/K/µF/K . Thus, the problem of finding a system

of fundamental units of F/K is equivalent to the problem of finding a set of generators

of ΓL. The analog of the (multidimensional continued fraction) Algorithm II introduced

in [24] can be used to solve the latter problem. In Section 6, a set of generators of ΓL,
and, therefore, a system of fundamental units, is found in some families of relative

extensions F/K of relative degree n≤ 4 and in the fields F .
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Let â1 = (1,ω,α2,ωα2, . . . ,αn,ωαn). Let mjk = bjk+ωcjk, where bjk,cjk ∈ Z. Then

γαj =
∑
bjkαk +

∑
cjkωαk. Let d1 = (d + 1)/4. If d ≡ 3(mod4), then γωαj =∑

(−d1cjk)αk+
∑
(bjk+cjk)ωαk, and γωαj =

∑
(−dcjk)αk+

∑
bjkωαk otherwise. De-

note M̂γ = (m̂jk), where

m̂jk =



 bjk cjk
−d1cjk bjk+cjk

 if d≡ 3(mod4), bjk cjk
−dcjk bjk

 otherwise.

(4.1)

Then γkâk = M̂γâk, where âk = σk(â1), for k= 1, . . . ,n, and (̂ak) is also an eigenvector

of M̂γ corresponding to its eigenvalue γk. Let L̂P be the axis of M̂γ in �2n. It is clear

that the map γ � M̂γ is an isomorphism of the ring of integers ZF and the commutative

ring of Z-integral square matrices of order 2n with the common axis L̂P . The norm of

γ equals det(M̂γ) so that γ is a unit in ZF if and only if M̂γ ∈ GL2n(Z). The torsion-

free subgroup Γ̂L of the stabilizer of L̂P is isomorphic to Z×F /µF . Thus, the problem of

finding a system of fundamental units of F is equivalent to the problem of finding a set

of generators of Γ̂L. Note that det(M̂γ)= |det(Mγ)|2 since N(γ)= |NF/K(γ)|2.

We have proved the following.

Lemma 4.1. Let d > 0 be a square-free integer. Let ZK be the ring of integers of the

field K =Q(√−d). Let F be an extension of K. Let ZF be the ring of integers of the field F .

Assume that ZF is a free ZK -module. Then a system of fundamental units of the relative

extension F/K is a system of fundamental units of F .

5. 2 × 2 Hermitian matrices. In this section, we consider a model of the three-

dimensional hyperbolic space which is similar to the Klein model of the hyperbolic

plane used in Example 1 from [23] or [24].

When n= 2, the space V consists of all Hermitian 2×2 matrices

A=
[

x1 x2+ix3

x2−ix3 x4

]
, (5.1)

where (x1,x2,x3,x4)∈R4. The formula

ρ(g)A= g∗Ag =A[g], (5.2)

where g ∈ PSL(2,C), A ∈ V , defines a representation ρ of the group PSL(2,C) in the

space V . All the transformations ρ(g) as well as the complex conjugation A� A pre-

serve the form ∆(A)= det(A)= x1x4−x2
2−x2

3 . The space � of (positive) definite matri-

ces in V , considered with the action of the group ρ(PSL(2,C)) extended by the complex

conjugation, is isomorphic to the three-dimensional hyperbolic space.
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The action of g = [α βγ δ]∈ SL(2,C) on (z,t)∈H3 is given by

g(z,t)=
(
(αz+β)(γz+δ)+αγt2

|γz+δ|2+|γ|2t2 ,
t

|γz+δ|2+|γ|2t2
)

(5.3)

(see, e.g., [7, page 569]). Thus, the height of g(z,t) is t(|γz+δ|2+|γ|2t2)−1.

Lemma 5.1 [7, page 409]. Define ψ : ��H3 by

ψ(A)=
(
x2+ix3

x1
,
√
∆(A)∣∣x1

∣∣
)
, A=

[
x1 x2+ix3

x2−ix3 x4

]
∈�. (5.4)

Thenψ(A[g])= gψ(A). Henceψ induces a bijection of � andH3, which commutes with

the action of PSL(2,C).
The height of ψ(A) is

√
∆(A)/|x1|.

Let g ∈ Γ = PGL(2,ZK). Denote

K(∞)= {(z,t)∈H3 :
∣∣g21z+g22

∣∣2+∣∣g12

∣∣2t2 ≥ 1, g = (gij)∈ Γ}. (5.5)

We have the following.

Theorem 5.2. Letψ be the bijection of � andH3 defined in Lemma 5.1. Thenψ(K2)=
K(∞) and, therefore, ψ is a bijection between the K-tessellations of � and H3. Hence ψ
is a bijection between the tessellations of the axis of g ∈ SL(2,C) in H3 and the axis of g
in �. Thus, Algorithm I from [22] in H3 coincides with Algorithm II from [24] in � in this

case.

Proof. The height of ψ(A)∈H3 equals ht(A) in �. Hence ψ(K2)=K(∞).
Let F be a field with signature (0,2), which has an imaginary quadratic subfield K,

so that ZF , the ring of integers of F , is a free ZK-module. Lemma 4.1 and Theorem 5.2

imply that to find a fundamental unit in F , one can apply either Algorithm I in H3 or

Algorithm II in �. But, in general, it is easier to apply Algorithm II in � than Algorithm

I in H3, since to find the point of intersection of the axis LP of g ∈ Γ with the boundary

of K(w) in �, one has to solve a system of linear equations. On the other hand, to

solve this problem in H3, we have to find the point of intersection of a semicircle with

a hemisphere. However, the application of Algorithm I in H3 in Examples 5.3, 5.4, and

5.6 is quite simple. In the next section, we apply Algorithm II in � to find a system of

fundamental units in some families of fields with signature (0,n), n ≤ 4. The period

length in any of Examples 5.3, 5.4, 5.6, 6.1, 6.2, 6.4, 6.5 is one.

The discriminant of F is d2
K|dF/K|2, where dK is the discriminant of K and dF/K is the

discriminant of the extension F/K (see, e.g., [5, page 209]). In all the examples below, we

assume that ZF has a free basis over ZK . In the case when F/K is a quadratic extension,

(i.e., F = K(√∆)), as in Examples 5.3, 5.4, and 5.6, such a basis exists if and only if

DF/K/
√
∆ is a principal ideal (of ZF ) generated by an element of K (see, e.g., [5, page

222]). Here, DF/K is the relative different.
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Example 5.3. Let

U =
[

1 m
0 1

]
, S =

[
0 −δ
1 0

]
, W =

[−1 0

0 1

]
, (5.6)

where m = a+ωb ∈ ZK , δ ∈ Z×K . Then reflection S fixes the unit hemisphere φ1 with

equation |z|2 + t2 = 1 in the hyperbolic space H3. The axes of reflections U ′ = UW
and S′ = WS are perpendicular to the axis Ag of g = US = U ′S′ in H3. Let M and

M1 be the points of intersection of Ag with axes of S′ and U ′, respectively. Let R0 be

the arc MM1 on Ag . Since the axis of U ′ is the vertical line in H3 through the point

m/2 ∈ C, R0 ⊂ Ag∩K(∞) if and only if M ∈ K(∞). For |m| fixed, it can be easily seen

that the height ofM is smallest when Ag and the axis of S′ lie in the same vertical plane

in H3. It is clear that the part of the unit hemisphere φ1 which lies above |z| ≤ 1/2
belongs to K(∞) for any d. It follows that M ∈ K(∞) and R0 ⊂ Ag ∩K(∞) if |m| ≥ 4.

Thus, g is a generator of the torsion-free subgroup of the stabilizer of Ag in PGL(2,ZF )
and, by Theorem 5.2, of ΓL, provided |m| ≥ 4. The characteristic polynomial of g is

p(x) = x2−mx+δ with discriminant d(p) =m2−4δ. Let p(ε) = 0. Let F = Q(ε). If

either the ideal d(p)=m2−4δ or d(p)/4 is square-free in ZK , then {1,ε} is a ZK -basis

of ZF/K , and {1,ω,ε−1,ε−1ω} is a Z-basis of ZF . By Lemma 4.1, Z×F /µF = 〈ε〉. Note that

â= (1,ω,ε−1,ε−1ω)T is an eigenvector of ĝ corresponding to its eigenvalue ε. We have

proved Theorem 1.1.

Example 5.4. Let d = 5 or 6. Let Bd be the extended Bianchi group (see [19]). Let

c = 1+√−5 for d = 5 and c = √−6 for d = 6. In that case, the floor of an isometric

fundamental domain of Bd inH3 lies in the hemisphereφ1, which is the unit hemisphere

defined in Example 5.3, and hemisphere φ2 with center c/2 and radius 1/
√

2 (see [19,

page 308]). Let

U =
[

1 m
0 1

]
, S6 =

[
c 2

2 −c

]
, S5 =

[
c c
2 −c

]
, W =

[−1 c
0 1

]
, (5.7)

where nonreal m= a+b√−d∈ ZK . The axes of reflections U ′ =UW and S′d =WSd are

perpendicular to the axis Ag of g = USd = U ′S′d. As in Example 5.3, it can be shown

that g is a generator of the torsion-free subgroup of the stabilizer of Ag in Bd, provided

|m| ≥ √6.

The characteristic polynomial of g is p(x)= x2−2mx+2 with discriminant d(p)=
4(m2−2). Let p(α)= 0 and F =K(α). g ∉ GL(ZK) since detg = 2, but (1/2)g2 ∈ SL(ZK).
Hence α2/2 =mα−1 ∈ Z×F . (Similarly, the case of g′ = US′d = U ′Sd can be considered.

In this case, α2/2 =mα+1 ∈ Z×F .) If either d = 5 and (a−b) is odd, or d = 6 and a is

even, then NF/K((α+c)/2)∈ ZK . If d(p)/8=m2/2−1 is a square-free ideal in ZK , then

{(α+c)/2,1} is a ZK-basis of ZF/K , {(α+c)/2,ω(α+c)/2,1,ω} is a Z-basis of ZF , and

Z×F /µF = 〈ε〉, where ε=α2/2=mα−1. We have proved the following.

Theorem 5.5. Let d = 5 or 6. Let c = 1+√−5 for d = 5 and c = √−6 for d = 6.

Let {1,ω} be the standard Z-basis of ZK , where K =Q(√−d). Let α be a root of p(x)=
x2−2mx+2δ, where nonrealm= a+b√−d∈ ZK , |m| ≥ √6, and δ=±1. Let F =K(α).
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Assume that eitherd= 5 and (a−b) is odd, ord= 6 anda is even. Ifm2/2−δ is a square-

free integer in ZK , then {(α+c)/2,ω(α+c)/2,1,ω} is a Z-basis of ZF , and Z×F /µF = 〈ε〉,
where ε=α2/2=mα−1.

Note that â = ((α+c)/2,ω(α+c)/2,1,ω)T is an eigenvector of ĝ corresponding to

its eigenvalue α.

Example 5.6. Let d= 15. Let K =Q(√−15). The floor of an isometric fundamental

domain of B15 in H3 lies in φ1, which is the unit hemisphere defined in Example 5.3,

and the hemisphere φ2 with center ω/2 and radius 1/
√

2 (see [22, page 2313]). Let

U =
[

1 m
0 1

]
, S =

[−1−ω 1+ω
1+ω 1+ω

]
, W =

[−1 ω
0 1

]
, (5.8)

where m = a+ωb ∈ ZK . Let Ag be the axis of g = US = U ′S′ in H3, where U ′ = UW
and S′ = WS. As above, it can be shown that the arc R = K(∞)∩Ag is a fundamental

domain of the torsion-free subgroup of the stabilizer of Ag in B15 on Ag , and that g is

a generator of this subgroup, provided |m| ≥ 4.

The characteristic polynomial of g is p(x) = x2−m(1+ω)x+3 with discriminant

d(p) = (1+ω)2(m2+ω). Let p(α) = 0. Let F = Q(α). α ∉ Z×F since det(g) = 3 and

g ∉ GL(ZK). But (1/3)g2 ∈ SL(ZK). Hence ε = α2/3 =mα(1+ω)/3−1 ∈ Z×K . Let β =
(α−1−ω)/(1+ω). NF/K(β) = −1−2b+2(a+b)/ω ∈ ZF if and only if (a+b) ∈ 2Z.

Assume that (a+ b) is even. Then {β,1} is a ZK-basis of ZF/K , and {β,βω,1,ω} is

a Z-basis of ZF , provided m2 +ω is a square-free ideal in ZK . We have obtained the

following.

Theorem 5.7. Let K = Q(√−15). Let m = a+ωb ∈ ZK , where (a+ b) ∈ 2Z. Let

p(x)= x2−m(1+ω)x+3 and p(α)= 0. Assume that |m| ≥ 4 andm2+ω is a square-

free ideal in ZK . Let F =Q(α). Let β= (α−1−ω)/(1+ω). Then {β,βω,1,ω} is a Z-basis

of ZL and Z×L /µL = 〈ε〉, where ε=α2/3=mα(1+ω)/3−1.

Note that (β,βω,1,ω)T is an eigenvector of ĝ corresponding to its eigenvalue α.

6. Complexification of families of totally real cyclic fields. In this section, systems

of fundamental units are found in some families of totally complex fields of degrees

4, 6, and 8, which are cyclic extensions of imaginary quadratic fields. These families

are obtained by replacing the real parameter t ∈ Z in Examples 1 and 2 from [24] and

Example 6.4 by a nonreal complex parameter m∈ ZK .

Example 6.1. Let f(x)= x2−mx−1, wherem∈ ZK . Let f(ε)= 0. Ifm∈ Z, then we

obtain the family of real quadratic fields Q(ε) considered in [24, Example 1]. Assume

that m ∉ Z and that either m2+4 or m/4+1 is a square-free ideal in ZF . Then {1,ε} is

a ZK -basis of ZF/K , where F =K(ε). The family of fields considered here is a particular

case of the family of fields from Example 1.

Let nonreal m = a+ ib = a1+ωb1 = ε−1/ε, ε = u+ iv , where a,b,u,v ∈ R and

a1,b1 ∈ Z. Let η = η0

√
d = v/(u2+v2+1) and c = |m|2+4. Then c/b = (1+4η2)/η.
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Hence η0 is a root of the polynomial r(x) = 4b1dx2−c1x+b1, where c1 = 2c if d ≡
3(mod4) and c1 = c otherwise. The discriminant of r(x) is dr = c2

1−16db2
1 = |d(f)|2,

where d(f) is the discriminant of f .

Let E∗ be the companion matrix of f(x). Let LP be the axis of E. Let ΓL be the torsion-

free subgroup of the stabilizer of LP in Γ . Let E∗ai = εiai and Ai = aia∗i , where ε0 = ε,
ai = (1,εi), i = 0,1. Then q(µ0,µ1) = µ0A0+µ1A1, µi > 0, µ0+µ1 = 1 is an equation

of LP . Let F1 be the intersection of LP and L+(E). Then F1 = q(|ε|2,1) in the projective

coordinates. Let

h=
[

1 −m
0 1

]
, F0 =

[
1 2iη

−2iη 1

]
. (6.1)

Assume that |ε|< 1. Then |η|< |ε|< (|m|2−4)−1/2 since |m| = |ε+1/ε| ≤ |ε|+1/|ε|.
Thus, if |m| ≥ √20, then Fo = F1[h] is Minkowski-reduced. Hence, F1 and F2 = F1[E]

are extremal. Thus, the interval R = [F1,F2]= LP∩K(w) is a fundamental domain of ΓL
on LP . It follows that ΓL = 〈E〉 and, therefore, Z×F /µF = 〈ε〉.

A point X = (xij)∈�n is said to be rational over a field M if all xij ∈M . A subset S
of �n is rational over M if the set of rational points of S is dense in S. If the summit of

the axis LP of g ∈ GLn(Z) is rational over a field M , then LP is rational over M (see [24,

Section 4]). By (3.7), the summit of LP is

qm =


1

m
2

m
2

|m|2+∣∣d(f)∣∣
4

 . (6.2)

Hence, L̂P = {X̂ : X ∈ LP} ⊂ �4 is rational over the real quadratic field Q(|d(f)|) =
Q(η0).

Example 6.2. Let m ∈ ZK . Let Γ = GL(3,ZK). Here, we consider complexification of

the simplest cubic fields (see [15] and [24, Example 2]). These are the relative cyclic

fields of relative discriminant dF/K = (m2+3m+9)2. Assume that m ∉ Z. The sextic

field F = K(ε1) is generated by a root ε1 of f(x) = x3−mx2− (m+3)x−1. Assume

that m2+3m+9 is a square-free ideal in ZK . Then {1,ε1,ε2
1} is a ZK -basis of ZF and

both units ε1 and ε2 = σ(ε1)=−1/(1+ε1) are the roots of this polynomial.

Let nonrealm= a+ib = a1+ωb1, ε1 =u+iv , where a1,b1 ∈ Z, a,b,u,v ∈R. Let η=
η0

√
d = v/(u2+v2+u+1). Since b/η−a−3 = |ε1|2+|ε2|2+|ε3|2, η does not depend

on a chosen root of f(x). Denote c = |m|2+3a+9∈ (1/2)Z, so that c−b ∈ Z. Then η0

is the real root of the polynomial r(x) = c1dx3−9b1dx2+c1x−b1, where c1 = 2c if

d≡ 3(mod4), and c1 = c otherwise. The discriminant of r(x) is dr =−4d(c2
1−27db2

1)2.

Let E∗ be the companion matrix of f(x) and let E1 = E+ I. Let LP be the axis of E.

Let ΓL be the torsion-free subgroup of the stabilizer of LP in Γ . Let E∗ai = εiai and

Ai = aia∗i , where ai = (1,εi,ε2
i ), i = 1,2,3. Then q(µ1,µ2,µ3) = µ1A1 +µ2A2 +µ3A3,

µi > 0, µ1+µ2+µ3 = 1, is an equation of LP .
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Denote E2 = EE−1
1 . Let F1 be the intersection of LP , L+(E), and L+(E2), and let G1 be

the intersection of LP , L+(E), and L+(E1). Let m = 3n+k, where n,k = k1+ωk2 ∈ ZK ,

|k1| ≤ 1 and |k2| ≤ 1. Denote

h=

1 0 −1

0 1 −1−m
0 0 1

 , F0 = F1[h]=

 1 −α α
−α 1 α
α α 1

 , (6.3)

where α= 2η/(η−i), and

h1 =

1 0 −1−n
0 1 −2n
0 0 1

 , G0 =


1 γ13 −ikη

γ13 1
k(1+iη)

2

ikη
k(1−iη)

2
γ33

 , (6.4)

where

γ13 =−1
2
− 3

2
ηi, γ33 = c

6

(
1−3η2

)2

1+9η2
+ |k|

2

3
. (6.5)

Assume that |ε| < 1/2, where ε = ε1. Then |η| < |ε| < ((|m|−3)2−4)−1/2 since |m| =
|ε−1/(ε+1)+(ε+1)/ε| ≤ 1+|ε|+1/|ε|+1/(1−|ε|) ≤ 3+|ε|+1/|ε|. Note that η→ 0

and, therefore, α→ 0 and γ13 →−1/2, as |m| →∞.

Thus, if |m| ≥ √20+3, then F0 = F1[h] and G0 =G1[h1] with

det
(
F0
)= (1− 4η2

1+η2

)3

, det
(
G0
)= 1

8

(|t|2+3a+9
)(1−3η2

)3

1+9η2
(6.6)

are Minkowski-reduced and, therefore, Fi,Gi, i = 1,2,3, are extremal. Hence, R = LP ∩
K(w) is the hexagon with vertices at F1,F2 = F1[E], F3 = F1[E2], G1,G2 = G1[E1],
G3 =G1[E]. The sides of R are identified as follows: E : F1G1 → F2G3; E1 : F3G1 → F2G2;

E2 : F1G2 → F3G3. Thus, R is a fundamental domain of ΓL = 〈E,E1〉 and, therefore,

Z×F /µF = 〈ε,ε+1〉. Theorem 1.2 is proved.

Note that L̂P = {X̂ :X ∈ LP} ⊂�6 is rational over the real cubic fieldQ(η0). Also, note

that F1 = q(|ε1+1|2,|ε1(ε1+1)|2,|ε1|2) and G1 = q(1,|ε1+1|2,|ε1|2) in the projective

coordinates, and if F1 = q(µ1,µ2,µ3), then F2 = q(µ2,µ3,µ1) and F3 = q(µ3,µ1,µ2). The

same relations hold for G1,G2, and G3. For the summit qm of LP , we have

qm = 1
3

∑
Ai = 1

3

∑
Fi = 1

3

∑
Gi. (6.7)

Remark 6.3. The properties of the vertices Fi and Gi of the fundamental domain

R of ΓL mentioned above, in the case of the simplest cubic fields, can be explained as

follows.

Let m= t ∈ Z. Then v = 0 and F is the simplest cubic field. Let Gal(F)= 〈σ〉. Since

r = t2+3t+9=
(
u2+u+1

)3

u2(u+1)2
, (6.8)
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where u = ε1, the divisor ρ = u2+u+1 is ramified in F . Thus, σ(ρ) and σ 2(ρ) both

are divisible by ρ, and therefore tr = trace(ρ) = ρ+σ(ρ)+σ 2(ρ) is divisible by ρ.

But, tr ∈ Z, hence tr is divisible by r . It is easy to verify that tr = r . Let µi = σi(ρ)/r ,

i= 0,1,2. Then

µi > 0,
∑
µi = 1. (6.9)

The point F2 =
∑
µiAi belongs to LP and it is integral since any entry of F2 has a form∑

σi(ρα)/r ∈ Z. Since u,u+ 1 ∈ Z×L and trace(ρ2/ε2) = 2r , where ε = u,u+ 1, or

u(u+1), if we choose µi = σi(ρ2/ε2)/(2r), then (6.9) holds, and we obtain one of the

points Gk. Note that (6.9) for Fi can be written in the form

u2+(u+1)2+(u2+u)2 = (u2+u+1
)2

(6.10)

and, for Gi, in the form

u2+(u+1)2+1= 2
(
u2+u+1

)
. (6.11)

Example 6.4. Let t be an odd integer. Let f(x) = x4−2tx3−6x2+2tx+1. (Out

of the four possible cases enumerated in [10, page 315], here we consider only Case

2.) Let f(ε) = 0 and ε1 = (ε−1)/(ε+1). Then f(ε1) = f(−1/ε) = f(−1/ε1) = 0. The

discriminant of f(x) is d(f) = 44(t2+4)3. Let θ = (ε− ε−1)/2. Then θ2− tθ−1 = 0,

θ = (t±√t2+4)/2, and N = Q(√d), d = t2 + 4, is a quadratic subfield of the cyclic

quartic field F =Q(ε). If t2+4 is square-free, then {1,ε} is a ZN -basis of ZF/N . Hence

{1,ε,θ,θε,} or {1,ε,(ε2−1)/2,(ε3−ε)/2} is a Z-basis of ZF , provided θ is a fundamental

unit of N. Let

τ =



1 0 0 0

0 1 0 0

−1
2

0
1
2

0

0 −1
2

0
1
2

 . (6.12)

Then a0 = (1,ε,(ε2−1)/2,(ε3−ε)/2)T = τ(1,ε,ε2,ε3)T . Let (E′)T be the companion ma-

trix of f(x) and let ET = τ(E′)Tτ−1. Then ETai = εiai, where ai = (1,εi,(ε2
i −1)/2,(ε3

i −
εi)/2), ε0 = ε, ε2 =−1/ε, ε3 =−1/ε1. Denote E1 = (E−I)(E+I)−1 and E2 = (E−E−1)/2,

where I is the identity matrix. Let LP be the axis of E in �4. Let

E− = 1√
2
(E−I), E+ = 1√

2
(E+I). (6.13)

Then E1 = E−E−1+ and E = E−E+E−1
2 . Let ∆L = 〈E,E1,E2〉 and Γ ′L = 〈E2,E−,E+〉. Then ∆L

is a subgroup of index two in Γ ′L. Thus, if we show that Γ ′L equals the extension of the

torsion-free subgroup ΓL of the stabilizer of LP in Γ by E−, then ΓL =∆L.
Let (µ0,µ1,µ2,µ3) be the coordinates of the point

∑4
k=1µkAk, where Ak = akaTk , in LP .

Let δ=u2+1, where u= ε. Let i be defined modulo 4. Define

Bi = 1
δ3

(
β2
i ,β

2
i+1,β

2
i+2,β

2
i+3

)
, (6.14)
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where

β0 =(u−1)(u+1), β1 =
√

2u(u+1),

β2 =u(u−1)(u+1), β3 =
√

2u(u−1)(u+1).
(6.15)

Define

Ci = 1
δ3

(
γ2
i ,γ

2
i+1,γ

2
i+2,γ

2
i+3

)
, (6.16)

where

γ0 =2u, γ1 = 1√
2
(u−1)(u+1)2,

γ2 =2u2, γ3 = 1√
2
u(u−1)2(u+1).

(6.17)

Let

hB =


1 0 0 −m
0 1 −m −2

0 0 1 −2m
0 0 0 1

 , hC =


1 0 0 0

0 1 0 −2

0 0 1 −2m
0 0 0 1

 , (6.18)

where m = t. Then B0[hB] = C0[hC] = I. Thus, all the points Bi,Ci are integral and,

therefore, extremal, with det(Bi) = det(Ci) = 1. The point B0 is the intersection of LP ,

L+(E), L+(E−1
2 ), and L+(EE−1

2 ), and B1 = B0[EE−1− ],B2 = B0[E], B3 = B0[EE−1+ ], C0 =
B0[E−1

2 ], C1 = B0[E+], C2 = B0[EE−1
2 ], and C3 = B0[E−].

The polytope R = LP ∩K(w) is bounded by two quadrangles lying in L+(E±1
2 ) and

eight triangles lying in L+(g±1), g = E+,E−,E+E−1
2 , E−E−1

2 . It has 8 vertices, 16 edges, and

10 faces. Note that at any vertex Bi of R, four faces of R meet, but at any Ci, only three

do. The projections of R into a plane which is “parallel” to its quadrangular faces are

shown in Figure 6.1. The faces of R are identified as follows: E2 : C0B1C2B3 → B0C1B2C3;

E+ : B0C0B3 → C1B1B2; E− : B0C0B1 → C3B3B2; E2E−1+ : B1B2C2 → B0C3B3; E2E−1− : B2B3C2 →
C1B0B1.Thus,R is a fundamental domain of Γ ′L in LP , Γ ′L = 〈E2,E−,E+〉, and ΓL = 〈E,E1,E2〉.
Hence, Z×F /{±1} = 〈ε,(ε−1)/(ε+1),(ε−ε−1)/2〉.

Example 6.5. Here, we consider complexification of the cyclic quartic fields from

Example 6.4. Let f(x)= x4−2mx3−6x2+2mx+1, wherem= a+ib = a1+ωb1 ∈ ZK ,

gcd(m,2) = 1, a1,b1 ∈ Z, a,b,u,v ∈ R, and b �= 0. Let f(ε) = 0. Then F = Q(ε) is a

totally complex field of degree eight. Let ε = u+ iv and η = η0

√
d = v/(u2+v2+1).

Denote c = 2|m|2+8∈ Z. Then η0 is a real root of the polynomial r(x)= b1(16d2x4+
24dx2+1)− c1(4dx3+x), where c1 = 2c if d ≡ 3(mod4), and c1 = c otherwise. The

discriminant of r(x) is dr = 256d3(64db2
1−c2

1)3. Define E, E1, E2, E−, E+, hB , and hC
as in Example 6.4.
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B1

B0 B3

B2

C0

C1 C2

C3

Figure 6.1 Fundamental domain of 〈E2, E−, E+〉.

The point

C0 = 1(
1+4η2

)(
1+|ε|2)3

(
4|ε|2, 1

2
|1+ε|4|1−ε|2,4|ε|4, 1

2
|1−ε|4|1+ε|2

)
(6.19)

is the intersection of LP , L+(E), L+(E+), and L+(EE2). Let C0[hC] = (cij) = (cji). Then

cii = 1, i= 1,2,3,4,

c12 =−c34 =−2iη, c14 = c23 =−4i
η

1+4η2
,

c13 =−c24 = c12c14 =−8
η2

1+4η2
.

(6.20)

The point

B0 = 1(
1+4η2

)(
1+|ε|2)3

(∣∣ε2−1
∣∣2,2|ε|2|1+ε|2,|ε|2∣∣ε2−1

∣∣2,2|ε|2|1−ε|2) (6.21)

is the intersection of LP , L+(E), L+(E+), and L+(E−1
2 ). Let B0[hB] = (bij) = (bji). Then

bii = 1, i= 1,2,3,4,

b12 =−b34 =−2iη, b14 = b23 = 4i
η

1+4η2
,

b13 =−b24 = b12b14 = 8
η2

1+4η2
.

(6.22)

Let α = 2ε/(1− ε2). Then |m| = 2|α− 1/α| ≤ 2(|α| + 1/|α|). Hence, if |α| < 1, then

|α| < 2(|m|2 − 16)−1/2 and |ε| + 1/|ε| > (|m|2 − 16)1/2. Thus, if |ε| < 1, then |η| <
|ε| < (|m|2−20)−1/2. It follows that B0[hB]→ I as |m| → ∞. If |m| ≥ √84, then |η| <
|ε| ≤ 1/8, B0[hB] and C0[hC] are Minkowski-reduced, and, therefore, Bk,Ck, k= 1, . . . ,4,
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which are defined as in Example 6.4, are extremal. Note that det(Bk) = det(Ck) = (1−
4η2)6/(1+ 4η2)4. Thus, the polytope R = LP ∩K(w) is the same as in Example 6.4,

R is a fundamental domain of Γ ′L in LP , Γ ′L = 〈E2,E−,E+〉, and ΓL = 〈E,E1,E2〉. Hence,

Z×F /µF = 〈ε,(ε−1)/(ε+1),(ε−ε−1)/2〉. Theorem 1.3 is proved.

Note that L̂P = {X̂ :X ∈ LP} ⊂�8 is rational over the real quadric field Q(η0).
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(1973), no. 2, 26–40.
[19] , Maximal Fuchsian subgroups of extended Bianchi groups, Number Theory with

an Emphasis on the Markoff Spectrum (Provo, Utah, 1991) (A. D. Pollington and
W. Moran, eds.), Lecture Notes in Pure and Appl. Math., vol. 147, Dekker, New York,
1993, pp. 297–310.

[20] , Diophantine approximation on Bianchi groups, J. Number Theory 54 (1995), no. 1,
73–80.



2400 L. YA. VULAKH

[21] , Diophantine approximation in Euclidean spaces, Number Theory (Ottawa, Ontario,
1996), CRM Proc. Lecture Notes, vol. 19, Amer. Math. Soc., Rhode Island, 1999,
pp. 341–351.

[22] , Farey polytopes and continued fractions associated with discrete hyperbolic groups,
Trans. Amer. Math. Soc. 351 (1999), no. 6, 2295–2323.

[23] , Continued fractions associated with SL3(Z) and units in complex cubic fields, Canad.
J. Math. 54 (2002), no. 6, 1305–1318.

[24] , Units in some families of algebraic number fields, Trans. Amer. Math. Soc. 356
(2004), no. 6, 2325–2348.

L. Ya. Vulakh: Department of Mathematics, Albert Nerken School of Engineering, The Cooper
Union, 51 Astor Place, New York, NY 10003, USA

E-mail address: vulakh@cooper.edu

mailto:vulakh@cooper.edu

