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1. Introduction. Let � be the class of the functions f(z) which are analytic in the

open unit disk U= {z ∈ C : |z|< 1} and f(0)= f ′(0)−1= 0.

We denote by � the subclass of � consisting of functions f(z)∈� which are univa-

lent in U. Miller and Mocanu [1] have considered many integral operators for functions

f(z) belonging to the class �. In this paper, we consider the integral operators

Fα(z)=
{

1
α

∫ z
0

(
f(u)

)1/αu−1du
}α

(z ∈ U) (1.1)

for f(z) ∈ � and for some α ∈ C. It is well known that Fα(z) ∈ � for f(z) ∈ �∗ and

α> 0, where �∗ denotes the subclass of � consisting of all starlike functions f(z) in U.

2. Preliminary results. To discuss our integral operators, we need the following

theorems.

Theorem 2.1 [3]. Let α be a complex number with Re(α) > 0 and f(z)∈�. If f(z)
satisfies

1−|z|2Re(α)

Re(α)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣� 1, (2.1)

for all z ∈ U, then the integral operator

Gα(z)=
{
α
∫ z

0
uα−1f ′(u)du

}1/α
(2.2)

is in the class �.
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Theorem 2.2 [4]. Let α be a complex number with Re(α) > 0 and f(z)∈�. If f(z)
satisfies (2.1) for all z ∈ U, then, for any complex number β with Re(β) � Re(α), the

integral operator

Gβ(z)=
{
β
∫ z

0
uβ−1f ′(u)du

}1/β
(2.3)

is in the class �.

Example 2.3. Defining the function f(z) by

f(z)=
∫ z

0

(
1+uRe(α)

1−uRe(α)

)1/2
du (2.4)

with Re(α) > 0, we have that

1−z2Re(α)

Re(α)

(
zf ′′(z)
f ′(z)

)
= zRe(α). (2.5)

Thus the function f(z) satisfies the condition of Theorem 2.2. Therefore, for Re(β) �
Re(α),

Gβ(z)=
{
β
∫ z

0
uβ−1

(
1+uRe(α)

1−uRe(α)

)1/2
du

}1/β
(2.6)

is in the class �.

Theorem 2.4 [2]. If the function g(z) is regular in U, then, for all ξ ∈ U and z ∈ U,

g(z) satisfies

∣∣∣∣ g(ξ)−g(z)
1−g(z)g(ξ)

∣∣∣∣�
∣∣∣∣ ξ−z1−zξ

∣∣∣∣, (2.7)

∣∣g′(z)∣∣� 1−∣∣g(z)∣∣2

1−|z|2 . (2.8)

The equalities hold only in the case g(z)= ε((z+u)/(1+uz)), where |ε| = 1 and |u|< 1.

Remark 2.5 [2]. For z = 0, from inequality (2.7),

∣∣∣∣ g(ξ)−g(0)
1−g(0)g(ξ)

∣∣∣∣� |ξ| (2.9)

and, hence

∣∣g(ξ)∣∣� |ξ|+∣∣g(0)∣∣
1+∣∣g(0)∣∣|ξ| . (2.10)

Considering g(0)= a and ξ = z, we see that

∣∣g(z)∣∣� |z|+|a|
1+|a||z| (2.11)

for all z ∈ U.
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Schwarz lemma [2]. If the function g(z) is regular in U, g(0) = 0, and |g(z)| � 1,

for all z ∈ U, then

∣∣g(z)∣∣� |z| (2.12)

for all z ∈ U, and |g′(0)| � 1. The equality in (2.12) for z ≠ 0 holds only in the case

g(z)= εz, where |ε| = 1.

3. Main results

Theorem 3.1. Let α be a complex number with Re(1/α) = a > 0 and the function

g(z)∈� satisfying

∣∣∣∣zg′(z)g(z)
−1

∣∣∣∣� 1 (z ∈ U). (3.1)

Then, for

|α| � 2
(2a+1)(2a+1)/2a , (3.2)

the integral operator

Fα(z)=
{

1
α

∫ z
0

(
g(u)

)1/αu−1du
}α

(3.3)

is in the class �.

Proof. Let 1/α= β. Then we have

F1/β(z)=
{
β
∫ z

0
uβ−1

(
g(u)
u

)β
du

}1/β
. (3.4)

We consider the function

f(z)=
∫ z

0

(
g(u)
u

)β
du. (3.5)

Then the function

h(z)=
(

1
|β|

)
zf ′′(z)
f ′(z)

(3.6)

is regular in U and the constant |β| satisfies the inequality

|β| � (2a+1)
2

(2a+1)/2a

. (3.7)

From (3.5) and (3.6), we have that

h(z)= β
|β|

(
zg′(z)
g(z)

−1
)
. (3.8)
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Using (3.8) and (3.1), we obtain

∣∣h(z)∣∣� 1 (z ∈ U). (3.9)

Noting that h(0)= 0 and applying the Schwarz lemma for h(z), we get

1
|β|

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣� |z| (z ∈ U) (3.10)

and hence we obtain

1−|z|2a
a

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣� |β|
(

1−|z|2a
a

)
|z| (z ∈ U). (3.11)

Because

max
|z|≤1

(
1−|z|2a

a
|z|
)
= 2
(2a+1)(2a+1)/2a , (3.12)

from (3.11) and (3.7), we have

1−|z|2a
a

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣� 1 (3.13)

for z ∈ U. From (3.13) and Theorem 2.1, it follows that (2.4) belongs to the class �.

By means of (2.4) and (3.5), we have that the integral operator F1/β(z) is in the class

�, and hence we conclude that the integral operator Fα(z) is in the class �.

Example 3.2. If we take the function g(z)= zez and α= 1/a > 0, then

g(z)= z+a2z2+a3z3+··· (3.14)

is analytic in U and

∣∣∣∣zg′(z)g(z)
−1

∣∣∣∣= |z|< 1 (z ∈ U). (3.15)

Since the function g(z) satisfies the condition of Theorem 3.1, we have

Tα(z)=
{

1
α

∫ z
0
eu/αu1/α−1du

}α
∈�. (3.16)

Theorem 3.3. Let α, β be complex numbers with Re(β)� Re(α) > 0 and the function

g(z)∈� satisfying

∣∣∣∣zg′(z)−g(z)zg(z)

∣∣∣∣� 1 (z ∈ U). (3.17)

Then, for

|α| �max
|z|�1

{(
1−|z|2Re(α)

Re(α)

)
|z|
(
|z|+∣∣a2

∣∣
1+∣∣a2

∣∣|z|
)}
, (3.18)
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the integral operator

Fα,β(z)=
{
β
∫ z

0

(
g(u)

)1/αuβ−1/α−1du
}1/β

(3.19)

is in the class �.

Proof. We have

Fα,β(z)=
{
β
∫ z

0
uβ−1

(
g(u)
u

)1/α
du

}1/β
. (3.20)

We consider the function

f(z)=
∫ z

0

(
g(u)
u

)1/α
du, (3.21)

which is regular in U. The function

p(z)= |α|f
′′(z)
f ′(z)

, (3.22)

where the constant |α| satisfies inequality (3.18), is regular in U. From (3.22) and (3.21),

we obtain

p(z)= |α|
α

{
zg′(z)−g(z)

zg(z)

}
(3.23)

and using (3.17), we have

∣∣p(z)∣∣< 1 (z ∈ U) (3.24)

and |p(0)| = |a2|. Applying Remark 2.5, we obtain

∣∣∣∣αf ′′(z)f ′(z)

∣∣∣∣≤ |z|+∣∣a2

∣∣
1+∣∣a2

∣∣|z| (z ∈ U). (3.25)

It follows that

1−|z|2Re(α)

Re(α)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣�
(

1
|α|

)(
1−|z|2Re(α)

Re(α)

)
|z|
(
|z|+∣∣a2

∣∣
1+∣∣a2

∣∣|z|
)

(3.26)

for all z ∈ U. We consider the function

Q(x)=
(

1−x2Re(α)

Re(α)

)
x
(
x+∣∣a2

∣∣
1+∣∣a2

∣∣x
) (

x = |z|; x ∈ [0,1]). (3.27)

Because Q(1/2) > 0, Q(x) satisfies

max
x∈[0,1]

Q(x) > 0. (3.28)
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Using this fact, (3.26) gives us that

1−|z|2Re(α)

Re(α)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣� 1
|α|max

|z|�1

{(
1−|z|2Re(α)

Re(α)

)
|z|
(
|z|+∣∣a2

∣∣
1+∣∣a2

∣∣|z|
)}
. (3.29)

From (3.29) and (3.18), we obtain (2.1). Using (2.1) and Theorem 2.2, we obtain that

the integral operator (2.4) belongs to the class �. Therefore, it follows from (2.4) and

(3.21) that Fα,β(z) is in the class �.

Corollary 3.4. Let α be a complex number with Re(α) > 0 and the function g(z)∈
� satisfying (3.18). Then, for

max
|z|�1

{(
1−|z|2Re(α)

Re(α)

)
|z|
(
|z|+∣∣a2

∣∣
1+∣∣a2

∣∣|z|
)}

� |α| � 1, (3.30)

the integral operator (3.3) is in the class �.

Proof. From Theorem 3.3 for β= 1/α, the condition Re(β)� Re(α) > 0 is identical

with |α|< 1 and we have Fα,β(z)= Fα(z).
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