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We investigate the following problem: for a given A≥ 0, find the infimum of the set of B ≥ 0
such that the inequality ‖x(k)‖2

2 ≤A‖x(r)‖2
2+B‖x‖2

2, for k,r ∈N∪{0}, 0≤ k < r , holds for
all sufficiently smooth functions.
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1. Introduction. Let G = R or G = T = [0,2π). By L2(G), we will denote the spaces

of all measurable functions x :G→R such that

‖x‖2 = ‖x‖L2(G) :=
{∫

G

∣∣x(t)∣∣2dt
}1/2

<∞. (1.1)

Denote by Lr2(G) (r ∈ N) the space of all functions x such that x(r−1) are locally

absolutely continuous and x(r) ∈ L2(G), and set Lr2,2(G) = L2(G)∩Lr2(G) (in the case

G = T, we mean that spaces L2(G) and Lr2(G) consist of 2π -periodic functions). Note

that Lr2(G)⊂ L2(G) if G = T.

It is well known that the exact inequality of Hardy [3]

∥∥x(k)∥∥2
2 ≤ ‖x‖2(1−k/r)

2

∥∥x(r)∥∥2(k/r)
2 , k∈N, 0< k< r, (1.2)

holds for every function x ∈ Lr2,2(R).
For any A> 0 and any x ∈ Lr2,2(R), from inequality (1.2), we get

∥∥x(k)∥∥2
2 ≤

{(
k
Ar

)k/(r−k)
‖x‖2

2

}(r−k)/r{
Ar
k
∥∥x(r)∥∥2

2

}k/r
. (1.3)

Using Young’s inequality

ab ≤ a
p

p
+ b

p′

p′
,

1
p
+ 1
p′
= 1, 1≤ p <∞, a,b > 0, (1.4)

with p = r/(r −k) and p′ = r/k, we get, for anyA> 0 and any x ∈ Lr2,2(R), the following

inequality:

∥∥x(k)∥∥2
2 ≤A

∥∥x(r)∥∥2
2+

r −k
r

(
k
Ar

)k/(r−k)
‖x‖2

2. (1.5)
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This inequality is the best possible in the next sense: for a given A> 0, the infimum

of constants B such that the inequality

∥∥x(k)∥∥2
2 ≤A

∥∥x(r)∥∥2
2+B‖x‖2

2 (1.6)

holds for all functions x ∈ Lr2,2(R) is equal to

r −k
r

(
k
Ar

)k/(r−k)
. (1.7)

As is well known, inequality (1.2) (and consequently (1.5)) holds true for any func-

tion x ∈ Lr2,2(T). However, the constant (1.7) is not the best possible in general (for a

given constant A). Therefore, the main problem which we will study in this paper is the

following.

For a given A ≥ 0, find the infimum of constants B such that inequality (1.6) holds

for all functions x ∈ Lr2,2(T).
We will denote this infimum by Ψ(T;r ,k;A). We will investigate also the analogous

problem in the presence of some restrictions on the spectrum of functions x ∈ Lr2,2(T).
Note that Babenko and Rassias [1] investigated the problem on exact inequalities for

functions x ∈ Lr2,2(T). They have found, for a given A≥ 0, the infimum of constants B
such that the inequality

∥∥x(k)∥∥2
2 ≤A‖x‖2

2+B
∥∥x(r)∥∥2

2 (1.8)

holds for all functions x ∈ Lr2,2(T).
For more information related to this subject, see, for example, [2, 4, 5, 6].

2. Main results

Theorem 2.1. Let k,r ∈N, k < r . Then for any A≥ 0 and any x ∈ Lr2,2(T),
∥∥x(k)∥∥2

2 ≤A
∥∥x(r)∥∥2

2+
(
v2k

0 −Av2r
0

)‖x‖2
2 =A

∥∥x(r)∥∥2
2+ϕ

(
A,v0

)‖x‖2
2 (2.1)

holds if v0 is such that η(v0+1)≤A≤ η(v0), where

η(v)= v
2k−(v−1)2k

v2r −(v−1)2r
. (2.2)

Given A, the constant ϕ(A,v0) in (2.1) is the best possible; that is,

Ψ(T;r ,k;A)= (v2k
0 −Av2r

0

)
, (2.3)

where v0 is such that η(v0+1)≤A≤ η(v0).

Proof. Let

ev(t) := 1
2π

eivt, v ∈ Z, t ∈R,

cv(x) =
∫ 2π

0
x(t)ev(t)dt

(2.4)
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be Fourier coefficients of a function x, and let

∑
v∈Z

cv(x)ev(t) (2.5)

be the Fourier series of a function x.

For any x ∈ Lr2,2(T), 0< k< r , and any A≥ 0, using Parseval’s equality, we get

∥∥x(k)∥∥2
2 =

∑
v∈Z
v≠0

∣∣cv(x)∣∣2v2k

=A
∑
v∈Z
v≠0

∣∣cv(x)∣∣2v2r +
∑
v∈Z
v≠0

∣∣cv(x)∣∣2v2r

[
v2k

v2r −A
]

=A∥∥x(r)∥∥2
2+

∑
v∈Z
v≠0

∣∣cv(x)∣∣2[v2k−Av2r ]

≤A∥∥x(r)∥∥2
2+max

v∈N
[
v2k−Av2r ] ∑

v∈Z
v≠0

∣∣cv(x)∣∣2

=A∥∥x(r)∥∥2
2+max

v∈N
[
v2k−Av2r ]‖x‖2

2.

(2.6)

Set

ϕ(A,v) := v2k−Av2r ; (2.7)

then the last inequality can be written in the form

∥∥x(k)∥∥2
2 ≤A

∥∥x(r)∥∥2
2+max

v∈N
ϕ(A,v)‖x‖2

2. (2.8)

Our goal now is to find for a given A≥ 0 the value of

max
v∈N

ϕ(A,v). (2.9)

We consider the difference

δv =ϕ(A,v)−ϕ(A,v−1)

= v2k−Av2r −(v−1)2k+A(v−1)2r

=A[(v−1)2r −v2r ]−[(v−1)2k−v2k]

= [(v)2r −(v−1)2r
][v2k−(v−1)2k

v2r −(v−1)2r
−A

]
.

(2.10)

Set, for v ∈N,

η(v) := v
2k−(v−1)2k

v2r −(v−1)2r
; (2.11)

then the last equality can be written in the form

δv =
[
(v)2r −(v−1)2r

][
η(v)−A]. (2.12)



2520 LAITH EMIL AZAR

It is not difficult to see that

sgnδv = sgn
[
η(v)−A]. (2.13)

We now study the function η(v).
Note that η(1)= 1, η(v)→ 0 as v →∞ (since k < r ), and, for v ≥ 1,

η(v) > η(v+1). (2.14)

Indeed, using Cauchy’s theorem,

η(v)= k
r
θ2k
v

θ2r
v
, v−1< θv < v. (2.15)

Thus, inequality (2.14) is equivalent to the inequality

k
r
θ2k
v

θ2r
v
>
k
r
θ2k
v+1

θ2r
v+1

(2.16)

or

(
θv
θv+1

)2r−2k
< 1. (2.17)

The last inequality is true since θv < θv+1 and 2r −2k > 0.

If, for a given A≥ 0, the value v0 is such that η(v0+1)≤A≤ η(v0), then for v ≤ v0,

taking into account equality (2.13), we obtain that δv ≥ 0, and consequently,

ϕ(A,1)≤ϕ(A,2)≤ ··· ≤ϕ(A,v0
)
. (2.18)

In the case v > v0, we get δv ≤ 0 and then

ϕ
(
A,v0

)≥ϕ(A,v0+1
)≥ ··· . (2.19)

Therefore,

max
v∈N

ϕ(A,v)=max
v∈N

[
v2k−Av2r ]=ϕ(A,v0

)
(2.20)

if η(v0+1)≤A≤ η(v0). Thus inequality (2.1) is proved.

We now show the evidence of equality (2.3). Let x(t) = cosv0t. Then the inequality

becomes an equality since

∥∥x(k)∥∥2
2 =πv2k

0 , ‖x‖2
2 =π,

∥∥x(r)∥∥2
2 =πv2r

0 . (2.21)

The function Ψ(T;r ,k;A) defined by (2.3) is continuous, linear on any interval [η(v+
1),η(v)], and for any v ≥ 1,

Ψ
(
T;r ,k;η(v+1)

)= v2k(v+1)2r −v2r (v+1)2k

(v+1)2r −v2r . (2.22)
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Claim that

v2k
0 −Av2r

0 <
r −k
r

(
k
Ar

)k/(r−k)
. (2.23)

To do this, we will consider the function

f(A)= r −k
r

(
k
Ar

)k/(r−k)
−v2k+Av2r . (2.24)

Differentiating the function f , we get

f ′(A)= v2r −
(
k
r

)r/(r−k)( 1
A

)r/(r−k)
(2.25)

and the condition f ′(A)= 0 implies

A0 = kr v
2k−2r . (2.26)

Now we have f(A0)= 0 and our statement is proved.

Let Π2n+1 be the set of trigonometric polynomials of order less than or equal to n.

Then in view of the Bernstein-type inequality, we have, for any τ ∈Π2n+1 and any k∈N,

∥∥τ(k)∥∥2
2 ≤n2k‖τ‖2

2. (2.27)

Therefore, for x = τ , inequality (1.6) holds with A = 0 and B = n2k. Let now A > 0. By

repeating (with obvious modifications) the proof of Theorem 2.1, we obtain that for any

k,r ∈N, k < r , and any τ ∈Π2n+1, the following holds:

∥∥τ(k)∥∥2
2 ≤A

∥∥τ(r)∥∥2
2+B‖τ‖2

2 =A
∥∥τ(r)∥∥2

2+max
v∈N
v≤n

ϕ(A,v)‖τ‖2
2. (2.28)

We now compute the value

max
v∈N
v≤n

ϕ(A,v). (2.29)

Let η(v0+1)≤A≤ η(v0), where v0 ≤n. Then

max
v∈N
v≤n

ϕ(A,v)=ϕ(A,v0
)=max

v∈N
ϕ(A,v). (2.30)

If η(v0+1)≤A≤ η(v0), where v0 ≥n+1, we get, taking into account the relations

ϕ(A,1)≤ϕ(A,2)≤ ··· ≤ϕ(A,n)≤ ··· ≤ϕ(A,v0
)
, (2.31)

that

max
v∈N
v≤n

ϕ(A,v)=ϕ(A,n)=n2k−An2r (2.32)

if A≤ η(n). Therefore, we have proved the following theorem.
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Theorem 2.2. For any k,n,r ∈N, k < r , any τ ∈Π2n+1, and any A≥ 0,

∥∥τ(k)∥∥2
2 ≤A

∥∥τ(r)∥∥2
2+B‖τ‖2

2, (2.33)

where

B =ϕ(A,v0
)

(2.34)

if η(v0+1)≤A≤ η(v0), v0 ≤n, and

B =ϕ(A,n) (2.35)

if A≤ η(n). Inequality (2.33) is the best possible for any A≥ 0.

Consider the set of functions x ∈ Lr2,2(T) such that cv(x)= 0 for |v| ≤n−1 (we will

denote this set of functions by Lr2,2(T;n)). The following inequality is well known for

functions x ∈ Lr2,2(T;n):

∥∥x∥∥2
2 ≤

1
n2r

∥∥x(r)∥∥2
2. (2.36)

Thus, for any k < r ,

∥∥x(k)∥∥2
2 ≤

1
n2r−2k

∥∥x(r)∥∥2
2. (2.37)

Then inequality (1.6) for functions x ∈ Lr2,2(T;n) holds with B = 0 and A≥ 1/n2r−2k.

By repeating (with obvious modifications) the proof of Theorem 2.1, we obtain that

for any k,r ∈N, k < r , any x ∈ Lr2,2(T;n), and any 0≤A≤ 1/n2r−2k,

∥∥x(k)∥∥2
2 ≤A

∥∥x(r)∥∥2
2+max

v∈N
v≥n

ϕ(A,v)‖x‖2
2. (2.38)

We need to find the value of

max
v∈N
v≥n

ϕ(A,v). (2.39)

Note that

η(n)= n
2k−(n−1)2k

n2r −(n−1)2r
≤ n

2k

n2r . (2.40)

To show this, assume that

η(n) >
n2k

n2r , (2.41)

then we get

(
n

n−1

)2r
<
(

n
n−1

)2k
(2.42)

which is impossible since n/(n−1) > 1 and k < r .
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First let η(v0+1)≤A≤ η(v0) where v0 ≤n. Then

ϕ(A,n)≥ϕ(A,n+1)≥ ··· (2.43)

and therefore

max
v∈N
v≥n

ϕ(A,v)=ϕ(A,n) (2.44)

if η(v0+1)≤A≤n2k−2r .

Let now η(v0+1)≤A≤ η(v0) where v0 ≥n+1. In this case, we get

max
v∈N
v≥n

ϕ(A,v)=max
v∈N

ϕ(A,v)=ϕ(A,v0
)
. (2.45)

Thus we have proved the following theorem.

Theorem 2.3. For any k,n,r ∈N, k < r , any x ∈ Lr2,2(T;n), and any 0≤A≤n2k−2r ,

inequality (1.6) holds where B = ϕ(A,n) if η(v0 + 1) ≤ A ≤ n2k−2r , v0 ≤ n, and B =
ϕ
(
A,v0

)
if η(v0+1)≤A≤ η(v0), v0 ≥n+1. Inequality (1.6) is the best possible for any

0≤A≤n2k−2r .
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