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SOME EXACT INEQUALITIES OF HARDY-LITTLEWOOD-POLYA TYPE
FOR PERIODIC FUNCTIONS
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We investigate the following problem: for a given A > 0, find the infimum of the set of B > 0
such that the inequality [|x® 3 < A|x™) |13 + Bllx||3, for k,¥ € NU{0}, 0 < k <7, holds for
all sufficiently smooth functions.
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1. Introduction. Let G =R or G =T = [0,2m). By L2(G), we will denote the spaces
of all measurable functions x : G — R such that

1/2
Ixllz = Iy = ”(, |x<t>|2dt} < o, (1.1)

Denote by L5(G) (r € N) the space of all functions x such that x"~V are locally
absolutely continuous and x" € L,(G), and set LQZ(G) = L,(G) nL5(G) (in the case
G =T, we mean that spaces L(G) and L5 (G) consist of 2mr-periodic functions). Note
that L5(G) C La(G) if G =T.

It is well known that the exact inequality of Hardy [3]

Ix® 5 < 2% xR keN, 0<k <7, (1.2)

holds for every function x € L}, (R).
For any A > 0 and any x € ng([R), from inequality (1.2), we get

- (r=k)/r
, K \Ko-k Ar N7
ol < ()" gt AT ) 1.3

Using Young’s inequality

P P’
absa—+h,,
p p

l+l,=1, l1<p<o,ab>0, (1.4)
p p

withp =7/(r —k) and p’ = r/k, we get, for any A > 0 and any x € L} ,(R), the following
inequality:

, s r—k/ k \KOK
I®IE <Al I3 () I (L5)
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This inequality is the best possible in the next sense: for a given A > 0, the infimum
of constants B such that the inequality

lIx®|13 < Allx™|[3 + Blix|13 (1.6)

holds for all functions x € L}, (R) is equal to

ﬂ( k >k/(r—k)- 1.7

v \ar

As is well known, inequality (1.2) (and consequently (1.5)) holds true for any func-
tion x € LQZ(T). However, the constant (1.7) is not the best possible in general (for a
given constant A). Therefore, the main problem which we will study in this paper is the
following.

For a given A > 0, find the infimum of constants B such that inequality (1.6) holds
for all functions x € L} , (T).

We will denote this infimum by ¥ (T;7,k;A). We will investigate also the analogous
problem in the presence of some restrictions on the spectrum of functions x € L} ,(T).

Note that Babenko and Rassias [1] investigated the problem on exact inequalities for
functions x € L} ,(T). They have found, for a given A > 0, the infimum of constants B
such that the inequality

lIx®13 < Allx 113+ Bl|x ™| |3 (1.8)

holds for all functions x € L} ,(T).
For more information related to this subject, see, for example, [2, 4, 5, 6].

2. Main results
THEOREM 2.1. Letk,v €N, k <. Then for any A = 0 and any x € L} ,(T),
x @1 < Allx ™15 + (Vg - AvgN)lIx13 = Allx P |F+ @ (A vo)IxI3 @21
holds if vy is such that n(vo+1) < A < n(vg), where

v2k_ (U _1)2k

nw) = m (2.2)
Given A, the constant @ (A, vy) in (2.1) is the best possible; that is,
Y (T;7,k;A) = (v3* - AvgT), (2.3)
where vg is such that n(vo+1) < A < n(vo).
PROOF. Let
ey (t) = %ei“, vez teR,
(2.4)

21
cy(x) :Jo x(t)ey, (t)dt
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be Fourier coefficients of a function x, and let
D cu(x)ey(t)
vel

be the Fourier series of a function x.
For any x € LQZ (T), 0 <k <v,and any A > 0, using Parseval’s equality, we get

Ix®lz = 3 lew(x)[Fv*

vez
v=+0

; [ v
=AY e ()P0 + Y e () [*v? [va]

vez vez
v+0 v+0

= Allx|z+ X few (o) |*[v** - Av¥T]

vez
v=0

< Allx"||5 +ma§<[v2k—Av27] S ev ) |?
ve

vez
v+0

= Allx"|[5 + max [v — Av?]||x|I3.
veN
Set
@A) = vk - Av?T;
then the last inequality can be written in the form
[Ix®1[3 < Allx ™|l + max @ (A, v) 1x3.
ve
Our goal now is to find for a given A > 0 the value of
max @ (A,v).
veN
We consider the difference
0y =@Av)—pA,v-1)
v AT —(v-1)*+ AW -1)7"
_ A[(U _ 1)27 _UZT] _ [('U _ 1)2k _,U2k]

_ 2r _ _1\2r UZk_(v_1)2k_
_[(v) (v 1) ]|:,U2y_(v_1)27- A -
Set, for v € N,

v2k_ (’U _1)2k.

n(w):= I _(w_1)’

then the last equality can be written in the form

Sy = [ —(w-1)*][nw)-Al.
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It is not difficult to see that
sgnd, =sgn[n(v)-AlJ. (2.13)

We now study the function n(v).
Note that n(1) =1, n(v) - 0 as v — o (since k < r), and, for v > 1,

nw)>nw+1). (2.14)
Indeed, using Cauchy’s theorem,
2k
n(v):ge—%y, v—-1<0, <v. (2.15)

Thus, inequality (2.14) is equivalent to the inequality

kot k03,

kO K 2.16
roy v o, 240
or
2r—-2k
<99_,,1> <1. (2.17)
v+

The last inequality is true since 0, < 0,1 and 2rv — 2k > 0.
If, for a given A > 0, the value v is such that n(vo+1) < A < n(vy), then for v < vy,
taking into account equality (2.13), we obtain that 6, > 0, and consequently,

QAL <@pA2) <---<@(A ). (2.18)

In the case v > vy, we get 6, < 0 and then

P(Av) = @(Avg+1)=---. (2.19)
Therefore,
max @ (A,v) = max [v?* - Av?"] = (A, vo) (2.20)
veN veN

if n(vo+1) <A <n(vy). Thus inequality (2.1) is proved.
We now show the evidence of equality (2.3). Let x(t) = cosvpt. Then the inequality
becomes an equality since

Ix @[ =mvgs,  Ixl3=m, (XT3 =g (2.21)
O

The function ¥ (T;v, k; A) defined by (2.3) is continuous, linear on any interval [n(v +
1),n(v)], and for any v > 1,

V(U + 1) -2 (v +1)%k

Y(T;7r,ksn(v+1)) = RS

(2.22)
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Claim that

k/(r—k)
ok 4 2r V—k< k- )
vy —Avg < - Ao . (2.23)

To do this, we will consider the function

FA) = ”T_k (%)W_k) — vk AP, (2.24)
Differentiating the function f, we get
Py — v <E>r/(r—k) <l>r/(r—k) (2.25)
r A
and the condition f’(A) = 0 implies
Ap = %vz"’”. (2.26)

Now we have f(Ap) = 0 and our statement is proved.
Let 12,41 be the set of trigonometric polynomials of order less than or equal to n.
Then in view of the Bernstein-type inequality, we have, for any T € I1>,,.1 and any k € N,

IIT® |5 < n2 |73 (2.27)

Therefore, for x = T, inequality (1.6) holds with A = 0 and B = n?*. Let now A > 0. By
repeating (with obvious modifications) the proof of Theorem 2.1, we obtain that for any
k,v €N, k <r, and any T € Ilp,.1, the following holds:

[Tl < AllT 5+ BITI3 = Allr][; + max o (A,v) 7. (.28)
ve

v=n

We now compute the value

max @ (A,v). (2.29)
veN

v=n

Let n(vo+1) < A <n(vy), where vy < n. Then

max@(A,v) = @(A,vg) =max@(A,v). (2.30)
veN veN

v=n

If n(vo+1) <A <n(vy), where vy > n+ 1, we get, taking into account the relations

PAD<@PA2)<---<@An)<--- <@(A), (2.31)
that
max @ (A,v) = @ (A,n) =n’k— An®r (2.32)
ve
v=n

if A < n(n). Therefore, we have proved the following theorem.
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THEOREM 2.2. Forany k,n,v e N,k <v, any T €Ilx,1, and any A > 0,
[T®z < Al Iz +BITIS, (2.33)
where
B=@(A,v0) (2.34)
ifn(vo+1) <A <n(vy), vo <n, and
B=@(A,n) (2.35)

if A < n(n). Inequality (2.33) is the best possible for any A > 0.

Consider the set of functions x € L}, (T) such that ¢, (x) = 0 for |[v]| <n—1 (we will
denote this set of functions by L%, (T;n)). The following inequality is well known for
functions x € L} , (T;n):

1

2 2
Il = 511l (2.36)
Thus, for any k <7,
2 1 2
[|x1f; < n2r—2k x5 (2.37)

Then inequality (1.6) for functions x € L}, (T;n) holds with B=0 and A > 1/n? 2k,
By repeating (with obvious modifications) the proof of Theorem 2.1, we obtain that
for any k,” €N, k <r, any x € L} ,(T;n), and any 0 < A < 1/n?" 2k,

Ix®1]3 sA|<x<f>|\§+ma§<p<A,v)||x||§. (2.38)
ve

v=n

We need to find the value of

max @ (A,v). (2.39)
veN
v=n
Note that
n2k—(m—1)%k  p2k
nn) = m = o (2.40)
To show this, assume that
n2k
nn) >, (2.41)
then we get
2r 2k
n n
(n—l) <(n—1) (2.42)

which is impossible since n/(n—1) > 1 and k <7.
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Firstlet n(vo+1) < A < n(vg) where vy < n. Then

AN zpANn+1)=--- (2.43)
and therefore
max @ (A,v) = p(A,n) (2.44)
YN

if n(vg+1) <A <n?-2r,
Let now n(vo+1) < A <n(vg) where vg > n+ 1. In this case, we get

max @ (A,v) =max@(A,v) = (A,vy). (2.45)
e

Thus we have proved the following theorem.

THEOREM 2.3. Foranyk,n,r e N,k <v,any x € L} ,(T;n), and any 0 < A < n*k=27,
inequality (1.6) holds where B = @(A,n) if n(vo+1) < A < n?k2" vy <n, and B =
@ (A,v9) ifn(vg+1) <A <n(vy), vo = n+1. Inequality (1.6) is the best possible for any
0<A<nk-2r
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