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We give a criterion for q-valent analytic functions in the unit disk to belong to QK ,
a Möbius-invariant space of functions analytic in the unit disk in the plane for a nonde-
creasing function K : [0,∞) → [0,∞), and we show by an example that our condition is
sharp. As corollaries, classical results on univalent functions, the Bloch space, BMOA, and
Qp spaces are obtained.
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1. Introduction. For analytic univalent function f in the unit disk∆, Pommerenke [8]

proved that f ∈� if and only if f ∈ BMOA, which easily implies a result of Baernstein

II [4] about univalent Bloch functions: if g(z) ≠ 0 is an analytic univalent function

in ∆, then logg ∈ BMOA. We know that Pommerenke’s result mentioned above was

generalized to Qp spaces for all p, 0<p <∞, by Aulaskari et al. (cf. [2, Theorem 6.1]).

Their result can be stated as follows.

Theorem 1.1. Let f be an analytic function in ∆ such that

∫∫
|w−w0|<1

n(w,f)dA(w)≤A<∞, (1.1)

for all w0 ∈ C, where n(w,f) denotes the number of roots of the equation f(z)=w in

∆ counted according to their multiplicity and dA(z) is the Euclidean area element on ∆.

Then f ∈�(�0) if and only if f ∈Qp(Qp,0) for all p ∈ (0,∞).
Here, Qp and its subspace Qp,0, 0 < p <∞, denote the spaces of analytic functions

f in ∆ defined, respectively, as follows (cf. [1, 3]):

Qp =
{
f : f analytic in ∆, sup

a∈∆

∫∫
∆

∣∣f ′(z)∣∣2(g(z,a))pdA(z) <∞
}
,

Qp,0 =
{
f ∈Qp : lim

|a|→1

∫∫
∆

∣∣f ′(z)∣∣2(g(z,a))pdA(z)= 0

}
,

(1.2)

where g(z,a)= log1/|ϕa(z)| is a Green’s function in∆with pole at a∈∆, andϕa(z)=
(a−z)/(1− āz) is a Möbius transformation of ∆.

We know thatQ1 = BMOA, the space of all analytic functions of bounded mean oscil-

lation (cf. [5]), and for each p ∈ (1,∞), the space Qp is the Bloch space � (cf. [1]), which
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is defined as follows:

�=
{
f : f analytic in ∆, ‖f‖� = sup

z∈∆

(
1−|z|2)∣∣f ′(z)∣∣<∞}. (1.3)

Similar to the above we have Q1,0 = VMOA, the space of all analytic functions of

vanishing mean oscillation (cf. [5]), and Qp,0 =�0 for all p ∈ (1,∞), where �0 denotes

the little Bloch space defined by

�0 =
{
f ∈� : lim

|z|→1

(
1−|z|2)∣∣f ′(z)∣∣= 0

}
. (1.4)

In the present paper, we consider a more general space QK (see below) and show

that all the above-mentioned results are true for space QK . Our contribution gives an

extended version of Pommerenke’s theorem, which is also a slight improvement of all

the above results, and the proof presented here is independently developed.

Let K : [0,∞)→ [0,∞) be a right-continuous and nondecreasing function. Recall that

the space QK consists of analytic functions f in ∆ for which

‖f‖2
QK = sup

a∈∆

∫∫
∆

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z) <∞; (1.5)

f ∈QK belongs to the space QK,0 if

∫∫
∆

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z) �→ 0, |a| �→ 1. (1.6)

Modulo constants,QK is a Banach space under the norm defined in (1.5). It is clear that

QK is Möbius-invariant and a subspace of the Bloch space � (cf. [6]). For 0 < p < ∞,

K(t)= tp gives the space Qp . Choosing K(t)= 1, we get the Dirichlet space �.

By [6, Proposition 2.1] we know that if the integral

∫ 1/e

0
K
(

log
1
ρ

)
ρdρ =

∫∞
1
K(t)e−2tdt (1.7)

is divergent, then the space QK is trivial; that is, the space QK contains only constant

functions. From now on, we assume that the function K : [0,∞) → [0,∞) is right-

continuous and nondecreasing and that the integral (1.7) is convergent. Without loss of

generality, we can assume that K(1) > 0. For a general theory forQK spaces, see [6, 11].

2. Main results. A function f analytic in the unit disk is said to be q-valent if the

equation f(z)=w has never more than q solutions. Let

p(ρ)= 1
2π

∫ 2π

0
n
(
ρeiφ,f

)
dφ. (2.1)

If

∫ R
0
p(ρ)d

(
ρ2)≤ qR2, R > 0, (2.2)
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or

p(R)≤ q, R > 0, (2.3)

where q is a positive number, we say that f is areally mean q-valent or circumfer-

entially mean q-valent, respectively (cf. [7, pages 38 and 144]). It is clear that if f is

circumferentially mean q-valent, then f is areally mean q-valent.

Note that if (1.1) holds, f will be areally mean q-valent in ∆ for some q > 0. We know

that if f is univalent, then f must be areally and circumferentially mean 1-valent. Thus,

it is natural to conjecture that Pommerenke’s result and Theorem 1.1 are also true for

the areally and circumferentially mean q-valent functions.

We know that the space QK can be nontrivial if K is not too big at infinity (see condi-

tion (1.7)). For such functionsK, the properties ofQK depend essentially on the behavior

of K near the origin. From [6, Theorems 2.3 and 2.5], we know that QK =�(QK,0 =�0)
if and only if

∫ 1

0

(
1−r 2)−2K

(
log

1
r

)
r dr <∞. (2.4)

A natural idea is to look for an integral condition which is weaker than that given

by (2.4) such that f ∈ �(�0) if and only if f ∈ QK(QK,0) for some special f . For the

areally mean q-valent case, we present the main result in this paper as follows.

Theorem 2.1. Let f be an areally mean q-valent function in ∆. If

∫ 1

0

(
log

1
1−r

)2

(1−r)−1K
(

log
1
r

)
r dr <∞, (2.5)

then

(i) f ∈� if and only if f ∈QK ;

(ii) f ∈�0 if and only if f ∈QK,0.

Note that (2.4) implies (2.5) since (log1/(1−r))2 ≤ 4e−2/(1−r) for 0 < r < 1, but

the converse is not true. For example, K(t) = t gives that (2.5) holds but (2.4) fails. By

[6, Theorems 2.3 and 2.5], (2.5) is also necessary for Theorem 2.1(i) and (ii) in case f is

an areally mean q-valent function in ∆.

In the light of the following example it is impossible to drop the assumption of areally

mean q-valence of the functions f in Theorem 2.1. Indeed, choose K1(t)= t2α−1 and

f1(z)=
∞∑
j=1

2−j(1−α)z2j ,
1
2
<α< 1. (2.6)

It is easy to see that f1 ∈ � and (2.5) holds for K1. Since f1 has a gap series repre-

sentation, f1 is not an areally mean q-valent in ∆. The following argument shows that

f ∉QK1 .
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For r ∈ [3/4,1), we find k so that 1/2 ≤ 2k(1−r) < 1. Using the inequality logr ≥
2(r −1), 1/2< r < 1, we see that

∫ 2π

0

∣∣f ′1(reiθ)∣∣2dθ = 2π
∞∑
j=1

2j2αr 2j+1−2

≥ 2π(1−r)−2α
∞∑
j=1

(
2j(1−r))2α

exp
(−2j+2(1−r))

≥ 2−2α+1π(1−r)−2α
∞∑
j=1

2(j−k)(2α) exp
(−2j−k+2)

≥ 2−2α+1π(1−r)−2α
∞∑
j=0

(
2j2α exp

(−2j+2))

= C(α)(1−r)−2α.

(2.7)

Hence

sup
a∈∆

∫∫
∆

∣∣f ′1(z)∣∣2K1
(
g(z,a)

)
dA(z)

≥
∫∫
∆

∣∣f ′1(z)∣∣2K1

(
log

1
|z|

)
dA(z)

=
∫ 1

0
K
(

log
1
r

)
r dr

∫ 2π

0

∣∣f ′1(reiθ)∣∣2dθ

≥ C(α)
∫ 1

3/4
(1−r)−2α

(
log

1
r

)2α−1

r dr .

(2.8)

Since the last integral is divergent, we conclude that f1 ∉QK .

Theorem 2.2. Let f be a circumferentially mean q-valent and nonvanishing function

in ∆. If (2.5) holds, then logf ∈QK .

It is clear that the integral in (2.5) is convergent for K(t) = tp , p > 0. Thus, we have

the following result which extends Theorem 1.1.

Corollary 2.3. Let f be an areally mean q-valent function in ∆, 0<p <∞. Then

(i) f ∈� if and only if f ∈Qp ;

(ii) f ∈�0 if and only if f ∈Qp,0.

3. Proofs. In the proofs of Theorems 2.1 and 2.2, we need two lemmas, the first one

can be considered as a generalization of a result of Pommerenke (cf. [9, page 174]).

Lemma 3.1. Let f be areally mean q-valent in ∆. Then

∫ 2π

0

∣∣f ′(reiθ)∣∣2dθ ≤ 4qπ
(
M
(√
r ,f

))2

1−r ,
1
2
< r < 1, (3.1)

where M(r,f )= sup|z|=r |f(z)|, 0< r < 1.
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Proof. If 1/2< r < 1, we obtain

∫∫
|z|<√r

∣∣f ′(z)∣∣2dA(z)=
∫ √r

0
ρ
∫ 2π

0

∣∣f ′(ρeiθ)∣∣2dθdρ

≥ 1
4
(1−r)

∫ 2π

0

∣∣f ′(reiθ)∣∣2dθ.
(3.2)

Since f is areally mean q-valent, we deduce that

∫ 2π

0

∣∣f ′(reiθ)∣∣2dθ ≤ 4
1−r

∫∫
|z|<√r

∣∣f ′(z)∣∣2dA(z)

≤ 4
1−r

∫∫
|w|<M(√r ,f )

n(w,f)dA(w)

≤ 4qπ
(
M
(√
r ,f

))2

1−r ,

(3.3)

which proves Lemma 3.1.

Lemma 3.2. Let K be defined as in Section 1. Then

(i) QK,0 ⊂�0;

(ii) an analytic function f belongs to �0 if and only if there exists an r ∈ (0,1) such

that

lim
|a|→1

∫∫
∆(a,r)

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)= 0, (3.4)

where ∆(a,r)= {z ∈∆ : |ϕa(z)|< r}.
Proof. See [6, Thereom 2.4].

Now we turn to give the proofs of our main theorems.

Proof of Theorem 2.1. We first prove (i). Since QK ⊂ �, it suffices to prove that

if a Bloch function f is areally mean q-valent in ∆, then f ∈QK . We use the change of

variable w =ϕa(z) to deduce that

∫∫
∆\∆(a,1/2)

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)

=
∫∫
∆\∆(a,1/2)

∣∣(f(z)−f(a))′∣∣2K
(

log
1∣∣ϕa(z)

∣∣
)
dA(z)

=
∫∫

1/2<|w|<1

∣∣(f ◦ϕa(w)−f(a)
)′∣∣2K

(
log

1
|w|

)
dA(w)

=
∫ 1

1/2
K
(

log
1
r

)
r
∫ 2π

0

∣∣(f ◦ϕa
(
reiθ

)−f(a))′∣∣2dθdr.

(3.5)
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It is known that if g ∈�, then

∣∣g(z)−g(0)∣∣≤ 1
2
‖g‖� log

1+|z|
1−|z| . (3.6)

Choosing g = f ◦ϕa−f(a) and observing that ‖g‖� = ‖f‖�, we obtain

M
(
r ,f ◦ϕa−f(a)

)≤ 1
2
‖f‖� log

1+r
1−r . (3.7)

It follows from (3.5) and Lemma 3.1 that

∫∫
∆\∆(a,1/2)

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)

=
∫ 1

1/2
K
(

log
1
r

)
r
∫ 2π

0

∣∣(f ◦ϕa
(
reiθ

)−f(a))′∣∣2dθdr

≤ 4qπ
∫ 1

1/2
K
(

log
1
r

)(
M
(√
r ,f ◦ϕa−f(a)

))2(1−r)−1r dr

≤ qπC‖f‖2
�

∫ 1

1/2
K
(

log
1
r

)(
log

1
1−r

)2

(1−r)−1r dr .

(3.8)

On the other hand, we have

∫∫
∆(a,1/2)

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)

≤ ‖f‖2
�

∫∫
∆(a,1/2)

(
1−|z|2)−2K

(
g(z,a)

)
dA(z)

= ‖f‖2
�

∫∫
∆(0,1/2)

(
1−|w|2)−2K

(
log

1
|w|

)
dA(w)

≤ 4π‖f‖2
�

∫ 1/2

0
K
(

log
1
r

)
r dr .

(3.9)

Combining the upper bounds given by (3.8), (3.9), and (2.5), we see that f ∈QK , which

proves part (i) of Theorem 2.1.

To prove (ii), we assume that f is an areally mean q-valent function in ∆ which is

also in �0. By Lemma 3.2(i), it suffices to prove that f ∈QK,0. By Lemma 3.2(ii), there

exists an r0, 1/2< r0 < 1, such that

lim
|a|→1

∫∫
∆(a,r0)

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)= 0. (3.10)

Now we show that

lim
|a|→1

∫∫
∆\∆(a,r0)

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)= 0. (3.11)
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By the proof of part (i) and assumption (2.5), we see that

∫∫
∆\∆(a,r0)

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)

=
∫ 1

r0

K
(

log
1
r

)
r
∫ 2π

0

∣∣(f ◦ϕa
(
reiθ

)−f(a))′∣∣2dθdr

≤ 4qπ
∫ 1

r0

K
(

log
1
r

)(
M
(√
r ,f ◦ϕa−f(a)

))2(1−r)−1r dr

≤ qπ‖f‖2
�

∫ 1

r0

K
(

log
1
r

)(
log

1+r
1−r

)2

(1−r)−1r dr <∞

(3.12)

for all a∈∆. Thus, for any given ε > 0, there exists an r1, r0 < r1 < 1, such that

∫ 1

r1

K
(

log
1
r

)(
M
(√
r ,f ◦ϕa−f(a)

))2(1−r)−1r dr < ε (3.13)

for all a∈∆. Hence, what we need to prove is that

lim
|a|→1

∫ r1

r0

K
(

log
1
r

)(
M
(√
r ,f ◦ϕa−f(a)

))2(1−r)−1r dr = 0. (3.14)

In fact, we have

∫ r1

r0

K
(

log
1
r

)(
M
(√
r ,f ◦ϕa−f(a)

))2(1−r)−1r dr

≤ C(r0,r1
)
K
(

log
1
r0

)(
M
(
r2,f ◦ϕa−f(a)

))2,
(3.15)

where r2 =√r1 and C(r0,r1) is a constant depending on r0 and r1. Define ft(z)= f(tz)
for 0< t < 1 and then

(
M
(
r2,f ◦ϕa−f(a)

))2

≤ 2

(
1
4

∥∥f −ft∥∥2
�

(
log

1+r2

1−r2

)2

+(M(r2,ft ◦ϕa−ft(a)
))2

)
.

(3.16)

Since f ∈�0, ‖f −ft‖� → 0, t→ 1. Also,

max
|z|≤r2

∣∣ft ◦ϕa(z)−ft(a)
∣∣≤ 1−|a|2(

1−r2
)2 max

|w|≤t
∣∣f ′(w)∣∣, (3.17)

which implies that

lim
|a|→1

M
(
r2,ft ◦ϕa−ft(a)

)= 0. (3.18)
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Thus we have (3.14). Hence

lim
|a|→1

∫∫
∆

∣∣f ′(z)∣∣2K
(
g(z,a)

)
dA(z)= 0, (3.19)

which shows that f ∈QK,0. The proof of Theorem 2.1 is complete.

Proof of Theorem 2.2. Assume that f is a nonvanishing circumferentially mean

q-valent function in ∆. According to [7, Theorem 5.1], we have logf ∈ �. From

[7, Lemma 5.2] and the argument in the beginning of the proof of [7, Theorem 5.1],

we see that we can define a single-valued branch of f(z)1/q which is circumferentially

mean 1-valent in ∆ and such that on each circle {|w| = R} there exists a point which is

not assumed by f(z)1/q. It follows that

∫∞
−∞
n
(

logρ+iφ, 1
q

logf
)
dφ=

∫ 2π

0
n
(
ρeiφ,f 1/q)dφ≤ 2π,

∫∫
|w|<R

n(w, logf)dA(w)≤ 4πRq,
(3.20)

which means that logf is areally mean q1-valued in ∆ for some q1 > 0. It follows from

Theorem 2.1 that logf ∈QK .

4. Further discussion. In [10] we studied the conditions for analytic univalent Bloch

function f to belong to QK spaces. The log-order of the function K(r) is defined as

ρ = lim
r→∞

log+ log+K(r)
logr

, (4.1)

where log+x = max{logx,0}, and if 0 < ρ < ∞, the log-type of the function K(r) is

defined as

σ = lim
r→∞

log+K(r)
rρ

. (4.2)

Theorem 4.1. Let f be an analytic univalent function in ∆ and let K : [0,∞)→ [0,∞)
satisfy that K(t) = O((t log1/t

)p) as t → 0 for some p > 0. If the log-order ρ and the

log-type σ of K satisfy one of the conditions

(i) 0≤ ρ < 1,

(ii) ρ = 1 and σ < 2,

then f ∈� if and only if f ∈QK .

We note that Theorem 4.1 can be viewed as a consequence of Theorem 2.1. In fact,

conditions (i) and (ii) of Theorem 4.1 show that the space QK is not trivial. That is,

the integral (1.7) is convergent in this case. Suppose that K(t)=O((t log1/t)p), t→ 0.

There exist an r0 ∈ (1/2,1) and a constant C > 0 such that both log1/r ≤ 2(1−r) and

K
(

log
1
r

)
≤ C

(
log

1
r

log
(

log
1
r

)−1
)p

(4.3)
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hold for r0 < r < 1. Thus

∫ 1

0

(
log

1
1−r

)2

(1−r)−1K
(

log
1
r

)
r dr

=
∫ r0

0
+
∫ 1

r0

(
log

1
1−r

)2

(1−r)−1K
(

log
1
r

)
r dr

≤
(

log
1

1−r0

)2(
1−r0

)−1
∫ r0

0
K
(

log
1
r

)
r dr

+C
∫ 1

r0

(
log

1
1−r

)2

(1−r)−1

(
log

1
r

log
(

log
1
r

)−1
)p
rdr

≤ C1+C2

∫ 1

r0

(
log

1
1−r

)2+p
(1−r)p−1r dr

≤ C1+C2

∫∞
R0

e−pss2+pds

≤ C1+C2p−3−pΓ(3+p) <∞.

(4.4)

For a general analytic function f , we have the following theorem.

Theorem 4.2. Suppose that (2.5) holds. If

sup
a∈∆

∫∫
|z|<r

∣∣(f ◦ϕa(z)
)′∣∣2dA(z)=O

((
log

1
1−r

)2
)
, (4.5)

then

(i) f ∈� if and only if f ∈QK ;

(ii) f ∈�0 if and only if f ∈QK,0.

Proof. We know that

∫ 2π

0

∣∣(f ◦ϕa
(
reiθ

))′∣∣2dθ ≤ 4
1−r

∫∫
|z|<√r

∣∣(f ◦ϕa(z)
)′∣∣2dA(z)

≤ 1
1−r O

((
log

1
1−√r

)2
)

≤ C
1−r

(
log

1
1−r

)2

.

(4.6)

The proof can be completed by an argument similar to that used in the proof of

Theorem 2.1.
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