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The ideal extensions of semigroups—without order—have been first considered by Clifford
(1950). In this paper, we give the main theorem of the ideal extensions for ordered sets. If
P , Q are disjoint ordered sets, we construct (all) the ordered sets V which have an ideal P ′
which is isomorphic to P , and the complement of P ′ in V is isomorphic toQ. Conversely, we
prove that every extension of an ordered set P by an ordered set Q can be so constructed.
Illustrative examples of the main theorem in case of finite ordered sets are given.
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1. Introduction and definitions. The extension problem for groups is as follows:

given two groups H and K, construct all groups G which have a normal subgroup N
such that N is isomorphic to H (in symbol, N ≈ H) and G/N ≈ K (where G/N is the

quotient of G by N). G is called the Schreier’s extension or simply the extension of H
by K. Ideal extensions of semigroups have been considered by Clifford in [3] with expo-

sition of the theory appearing in [4, 10]. Ideal extensions of totally ordered semigroups

have been studied in [6, 7], and the ideal extentions of topological semigroups in [2, 5].

Ideal extensions of lattices have been considered in [8]. Ideal extensions of ordered

semigroups have been studied in [9]. The aim of this paper is to construct the ideal ex-

tensions of ordered sets. We are often interested in building more complex semigroups,

lattices, ordered sets, and ordered or topological semigroups out of some of “simpler”

structure and this can be sometimes achieved by constructing the ideal extensions. If

P and Q are two disjoint ordered sets, an ordered set V is called an ideal extension (or

just an extension) of P by Q if there exists an ideal P ′ of V which is isomorphic to P
and the complement V \P ′ of P ′ to V is isomorphic to Q. We give the main theorem of

such extensions, which is the following: if (P,≤P ) and (Q,≤Q) are two disjoint ordered

sets, r an arbitrary subset of P×Q, and

r̄ := {(a,b)∈ P×Q | ∃(a′,b′)∈ r such that a≤P a′, b′ ≤Q b
}
, (1.1)

then the set V := P ∪Q endowed with the order “≤” defined by ≤:= ≤P ∪≤Q∪ r̄ is an

ordered set and it is an extension of P by Q. Conversely, we prove that every extension

of P by Q can be so constructed. Some further results and applications of the main

theorem to finite ordered sets are also given.

Let (V ,≤) be an ordered set. A nonempty subset P ′ of V is called an ideal of V if

a∈ P ′ and V � b ≤ a implies b ∈ P ′ [1].

Each nonempty subset P ′ of an ordered set (V ,≤V ) with the relation “≤P ′” on P ′

defined by ≤P ′ := ≤V ∩ (P ′ ×P ′) is an ordered set. In the following, each subset P ′ of
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an ordered set (V ,≤V ) is considered as an ordered set endowed with the order ≤P ′ :=
≤V ∩(P ′ ×P ′). We denote by V \P ′ the complement of P ′ in V .

Definition 1.1. Let (P,≤P ), (Q,≤Q) be ordered sets and P∩Q=∅. An ordered set

(V ,≤V ) is called an ideal extension (or just an extension) of P by Q if there exists an

ideal P ′ of V such that

(
P ′,≤P ′

)≈ (P,≤P
)
,

(
V \P ′,≤V\P ′

)≈ (Q,≤Q
)
, (1.2)

where ≤P ′ :=≤V ∩(P ′ ×P ′) and ≤V\P ′ :=≤V ∩((V \P ′)×(V \P ′)).
Notation 1.2. If (V ,≤V ) is an extension of P by Q, we always denote by ϕ and ψ

the isomorphisms

ϕ :
(
P,≤P

)
�→ (P ′,≤V ∩(P×P ′)

)
,

ψ :
(
Q,≤Q

)
�→ (V \P ′,≤V ∩

(
(V \P ′)×(V \P ′))), (1.3)

respectively.

An extension V of P by Q is also denoted by

V
(
P,Q,ϕ : P �→ P ′,ψ :Q �→ V \P ′). (1.4)

Notation 1.3. For every r ⊆ P×Q, we always denote by r̄ the set defined by (1.1).

Clearly, r ⊆ r̄ .

2. The main theorem

Theorem 2.1. Let (P,≤P ), (Q,≤Q) be ordered sets such that P∩Q=∅. Let r ⊆ P×Q
and V := P∪Q. Define a relation “≤” on V as follows:

≤ :=≤P ∪≤Q∪ r̄ . (2.1)

Then (V ,≤) is an ordered set and it is an extension of P by Q. Conversely, let (V ,≤V ) be

an extension of P by Q. Suppose that there exists an r ⊆ P ×Q such that for the set r̄
defined above,

r̄ = {(a,b)∈ P×Q |ϕ(a)≤V ψ(b)
}
. (2.2)

Then the set P ∪Q endowed with the relation “≤” defined by ≤ := ≤P ∪≤Q ∪ r̄ is an

ordered set and (P∪Q,≤)≈ (V ,≤V ).
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Proof. (I) The set (V ,≤) is an ordered set. In fact let a ∈ V . If a ∈ P , then (a,a) ∈
≤P ⊆≤. If a ∈ Q, then (a,a) ∈ ≤Q ⊆≤. Let (a,b) ∈ ≤ and (b,c) ∈ ≤. Then (a,c) ∈ ≤.

Indeed we consider the following cases:

(1) (a,b)∈≤P , (b,c)∈≤P ,

(2) (a,b)∈≤P , (b,c)∈≤Q,

(3) (a,b)∈≤P , (b,c)∈ r̄ ,

(4) (a,b)∈≤Q, (b,c)∈≤P ,

(5) (a,b)∈≤Q, (b,c)∈≤Q,

(6) (a,b)∈≤Q, (b,c)∈ r̄ ,

(7) (a,b)∈ r̄ , (b,c)∈≤P ,

(8) (a,b)∈ r̄ , (b,c)∈≤Q,

(9) (a,b)∈ r̄ , (b,c)∈ r̄ .

We prove the above-mentioned cases as follows.

(1) If (a,b)∈≤P , (b,c)∈≤P , then (a,c)∈≤P ⊆≤.

(2) If (a,b)∈≤P , (b,c)∈≤Q, then b ∈ P∩Q. The case is impossible.

(3) Let (a,b)∈≤P , (b,c)∈ r̄ . Since (b,c)∈ r̄ , we have (b,c)∈ P×Q and there exists

(b′,c′)∈ r such that b ≤P b′, c′ ≤Q c. Since (a,c)∈ P×Q, (b′,c′)∈ r , a≤P b′, c′ ≤Q c,
we have (a,c)∈ r̄ ⊆≤.

(5) If (a,b)∈≤Q, (b,c)∈≤Q, then (a,c)∈≤Q.

(8) Let (a,b)∈ r̄ , (b,c)∈≤Q. Since (a,b)∈ r̄ , we have (a,b)∈ P×Q and there exists

(a′,b′)∈ r such that a≤P a′, b′ ≤Q b. Since (a,c)∈ P×Q, (a′,b′)∈ r , a≤P a′, b′ ≤Q c,
we have (a,c)∈ r̄ ⊆≤.

The cases (4), (6), (7), (9) are impossible since P and Q are disjoint.

Let (a,b)∈≤ and (b,a)∈≤. Then a= b. We put a instead of c in conditions (1), (2),

(3), (4), (5), (6), (7), (8), (9) above.

(1) If (a,b)∈≤P , (b,a)∈≤P , then a= b.

(2) If (a,b)∈≤P , (b,a)∈≤Q, then a∈ P∩Q. The case is impossible.

(3) Let (a,b)∈≤P , (b,a)∈ r̄ . Since r̄ ⊆ P×Q, we have a∈ P∩Q. The case is impos-

sible.

(5) If (a,b)∈≤Q, (b,a)∈≤Q, then a= b.

The cases (4), (6), (7), (9) are also impossible.

(II) P is an ideal of (V ,≤). In fact, let a∈ P and V � b ≤ a. Then b ∈ P . Indeed, since

b ≤ a, we have (b,a) ∈ ≤P , (b,a) ∈ ≤Q, or (b,a) ∈ r̄ . If (b,a) ∈ ≤P , then b ∈ P . If

(b,a)∈≤Q, then a∈ P∩Q. The case is impossible. If (b,a)∈ r̄ , then, since r̄ ⊆ P×Q,

we have a∈ P∩Q. The case is impossible.

(III) The identity mapping

iP :
(
P,≤P

)
�→ (P,≤∩(P×P)) | a �→ a (2.3)

is one-to-one and onto. Moreover, we have

≤P =≤∩(P×P). (2.4)
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Indeed, clearly,≤P ⊆≤∩(P×P). Let (a,b)∈≤∩(P×P). Since (a,b)∈≤, we have (a,b)∈
≤P , (a,b) ∈ ≤Q, or (a,b) ∈ r̄ . If (a,b) ∈ ≤Q, then a ∈ P ∩Q, which is impossible. If

(a,b)∈ r̄ (⊆ P×Q), then b ∈ P∩Q which is impossible. Thus we have (a,b)∈≤P .

By (2.4), the mapping iP is isotone and reverse isotone. Thus we have

(
P,≤∩(P×P))≈ (P,≤P

)
. (2.5)

We have (V \P,≤ ∩(V \P ×V \P)) ≈ (Q,≤Q). Since P ∩Q =∅ and V = P ∪Q, we have

V \P =Q. Moreover, the mapping

iQ :
(
Q,≤Q

)
�→ (Q,≤∩(Q×Q)) | a �→ a (2.6)

is an isomorphism.

The converse statement is as follows: let (P,≤P ), (Q,≤Q) be ordered sets, P∩Q=∅,

and (V ,≤V ) an extension of P by Q. Then there exist an ideal P ′ of V and mappings

ϕ :
(
P,≤P

)
�→ (P ′,≤V ∩

(
P ′ ×P ′)),

ψ :
(
Q,≤Q

)
�→ (V \P ′,≤V ∩

(
(V \P ′)×(V \P ′))) (2.7)

which are isomorphisms.

Let r ⊆ P ×Q such that for the set r̄ , we have r̄ = {(a,b) ∈ P ×Q | ϕ(a)≤Vψ(b)}.
From the first part of the theorem, the set P ∪Q endowed with the relation ≤:=≤P ∪
≤Q∪ r̄ is an ordered set. We consider the mapping

f : (P∪Q,≤) �→ (V,≤V
) | a �→ f(a) :=



ϕ(a) if a∈ P,
ψ(a) if a∈Q. (2.8)

The mapping f is clearly well defined. Moreover, the following hold.

(I) The mapping f is one-to-one. Let a,b ∈ P ∪Q, f(a) = f(b). If a,b ∈ P , then

f(a) :=ϕ(a), f(b) :=ϕ(b), ϕ(a) =ϕ(b), and, since ϕ is one-to-one, we have

a = b. Let a ∈ P , b ∈ Q. Then f(a) := ϕ(a) ∈ P ′, f(b) := ϕ(b) ∈ V \ P ′. The

case is impossible. The case a ∈ Q, b ∈ P is also impossible. If a,b ∈ Q, then

ψ(a)=ψ(b) and a= b.

(II) f is onto (since ϕ and ψ are onto).

(III) f is isotone. Let a,b ∈ P ∪Q, a ≤ b. Then f(a) ≤V f (b). Let a≤Pb. Since ϕ is

isotone, we have (ϕ(a), ϕ(b)) ∈ ≤V ∩ (P ′ × P ′) ⊆ ≤V . Since a,b ∈ P , we have

f(a) :=ϕ(a), f (b) :=ϕ(b). Then (f (a),f (b))∈≤V , that is, f(a)≤V f (b).
Let a≤Q b. Since ψ is isotone, we have

(
ψ(a),ψ(b)

)∈≤V ∩
(
(V \P ′)×(V \P ′))⊆≤V . (2.9)

Since a,b ∈ Q, we have f(a) := ψ(a), f(b) := ψ(b). Then (f (a),f (b)) ∈ ≤V ,

that is, f(a)≤V f (b).
Let (a,b) ∈ r̄ . By hypothesis, (a,b) ∈ P ×Q and ϕ(a)≤Vψ(b). Since a ∈ P ,

b ∈Q, we have f(a) :=ϕ(a), f(b) :=ψ(b). Then f(a)≤Vf (b).
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(IV) Let a,b ∈ P∪Q, f(a)≤V f (b). Then a≤ b. Indeed,

(1) let a,b ∈ P ; then f(a) := ϕ(a) ∈ P ′, f(b) := ϕ(b) ∈ P ′, and ϕ(a)≤Vϕ(b).
Since (ϕ(a),ϕ(b))∈≤V∩(P ′×P ′) andϕ is reverse isotone, we have (a,b)∈
≤P ⊆≤, so a≤ b.

(2) Let a ∈ P , b ∈ Q. Then f(a) := ϕ(a), f(b) := ψ(b), ϕ(a) ≤V ψ(b). Since

(a,b)∈ P×Q and ϕ(a)≤V ψ(b), we have (a,b)∈ r̄ ⊆≤.

(3) Let a ∈ Q, b ∈ P . Then f(a) := ψ(a) ∈ V \ P ′, f(b) := ϕ(b) ∈ P ′. Since

V � f(a) ≤V f (b) ∈ P ′ and P ′ is an ideal of V , we have f(a) ∈ P ′. The case

is impossible.

(4) Let a, b ∈Q. Then f(a) :=ψ(a)∈ V \P ′, f(b) :=ψ(b)∈ V \P ′, and ψ(a)≤V
ψ(b). Since (ψ(a),ψ(b))∈≤V ∩((V \P ′)×(V \P ′)) andψ is reverse isotone,

we have (a,b)∈≤Q ⊆≤.

Remark 2.2. Let (P,≤P ), (Q,≤Q) be ordered sets, P∩Q=∅, (V ,≤V ) an extension of

P by Q, and r ⊆ P×Q. From the first part of Theorem 2.1, the set P∪Q endowed with

the relation ≤ :=≤P ∪≤Q∪ r̄ , where r̄ :={(a,b)∈P×Q | ∃(a′,b′)∈ r such that a≤P a′,
b′ ≤Q b} is an ordered set. We remark that the mapping in (2.8) is an isomorphism if

and only if r̄ = {(a,b)∈ P×Q |ϕ(a)≤V ψ(b)}.
“If” part. Let f be an isomorphism. Let (a,b) ∈ r̄ . Since a ≤ b, we have f(a) ≤V

f (b). Since (a,b)∈ P×Q, we have f(a) :=ϕ(a), f(b) :=ψ(b). Thenϕ(a)≤V ψ(b). Let

(a,b)∈ P×Q, ϕ(a)≤V ψ(b). Since a∈ P , b ∈Q, we have f(a) :=ϕ(a), f(b) :=ψ(b).
Then f(a) ≤V f (b) and a ≤ b. Then we have a ≤P b, a ≤Q b, or (a,b) ∈ r̄ . If a ≤P b,

then b ∈ P ∩Q, which is impossible. If a ≤Q b, then a ∈ P ∩Q, which is impossible.

Thus we have (a,b)∈ r̄ .

“Only if” part. Compare the proof of Theorem 2.1.

Remark 2.3. If r̄ = ∅, then Theorem 2.1 is still valid. In the proof of the second

part of Theorem 2.1, condition (2) in (IV) is an impossible case. Let r̄ =∅, a∈ P , b ∈Q,

f(a)≤V f (b). Since a∈ P , b ∈Q, we have f(a) :=ϕ(a), f(b) :=ψ(b). Then ϕ(a)≤V
ψ(b). Since (a,b)∈ P×Q, ϕ(a)≤V ψ(b), we have (a,b)∈ r̄ =∅, which is impossible.

If r =∅, then r̄ =∅, and the first part of Theorem 2.1 is valid. In that case, we have

the trivial extension of P by Q.

3. Some further results. The following question is natural: is there an r ⊆ P×Q such

that r̄ = {(a,b)∈ P×Q |ϕ(a)≤V ψ(b)}? Under what conditions is that r unique?

Proposition 3.1. Let (V ,≤V ) be an extension of P by Q. If

r = {(a,b)∈ P×Q |ϕ(a)≤V ψ(b)
}
, (3.1)

then r̄ = r .

Proof. First of all, r ⊆ r̄ . Now, let (a,b) ∈ r̄ . Then (a,b) ∈ P ×Q and there exists

(a′,b′)∈ r such that a≤P a′, b′ ≤Q b. Since (a′,b′)∈ r , we haveϕ(a′)≤V ψ(b′). Since

a ≤P a′, we have (ϕ(a),ϕ(a′)) ∈ ≤V ∩ (P ′ ×P ′) ⊆ ≤V , that is, ϕ(a) ≤V ϕ(a′). Since
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b′ ≤Q b, we have (ψ(b′),ψ(b))∈≤V ∩((V \P ′)×(V \P ′))⊆≤V , that is, ψ(b′)≤V ψ(b).
Since (a,b)∈ P×Q and ϕ(a)≤V ψ(b), we have (a,b)∈ r .

Proposition 3.2. Let V be an extension of P by Q and let r = {(a,b)∈ P×Q |ϕ(a)
≤V ψ(b)}. The following are equivalent:

(1) the set r is the unique subset of P×Q such that r̄ = r ;

(2) if (a,b)∈ r , then a is minimal in P and b is maximal in Q.

Proof. (1)⇒(2). Let (a,b)∈ r , a′ ≤P a, b′ ≥Q b, a′ ≠ a, b′ ≠ b. Since a′ ≤P a and ϕ
is isotone, we have ϕ(a′) ≤V ϕ(a). Since b ≤Q b′ and ψ is isotone, we have ψ(b) ≤V
ψ(b′). Since (a,b) ∈ r , we have ϕ(a) ≤V ψ(b). Since (a′,b′) ∈ P ×Q and ϕ(a′) ≤V
ψ(b′), we have (a′,b′)∈ r . We consider the set

ρ := r \{(a′,b′)}. (3.2)

Since (a′,b′)∈ r and (a′,b′) ∉ ρ, we have ρ ⊂ r (⊆ P×Q). We prove that ρ̄ = r and get

a contradiction.

Let (x,y) ∈ ρ̄. Then there exists (x′,y ′) ∈ ρ such that x ≤P x′, y ′ ≤Q y . Since

the mappings ϕ and ψ are isotone, we have ϕ(x) ≤V ϕ(x′), ψ(y ′) ≤V ψ(y). Since

(x′,y ′) ∈ ρ (⊆ r), we have ϕ(x′) ≤V ψ(y ′). Since (x,y) ∈ P ×Q and ϕ(x) ≤V ψ(y),
we have (x,y)∈ r .

Now, let (x,y)∈ r . Then (x,y)∈ ρ̄. Indeed, since (x,y),(a′,b′)∈ r , we have (x,y)=
(a′,b′) or (x,y) ≠ (a′,b′). Let (x,y) = (a′,b′). Since (a,b) ∈ r , (a,b) ≠ (a′,b′), we

have (a,b) ∈ ρ. Since (a′,b′) ∈ P ×Q, (a,b) ∈ ρ, a′ ≤P a, and b′ ≥Q b, we have

(a′,b′)∈ ρ̄. Then (x,y)∈ ρ̄.

Let (x,y)≠ (a′,b′). Then, since (x,y)∈ r , we have (x,y)∈ ρ ⊆ ρ̄.

(2)⇒(1). Let ρ ⊆ P×Q such that ρ̄ = r . Then ρ = r . Indeed, first of all, ρ ⊆ ρ̄ = r . Let

(x,y)∈ r (= ρ̄). Then there exists (a,b)∈ ρ (⊆ ρ̄ = r) such that x ≤P a, b ≤Q y . Since

(a,b)∈ r , by hypothesis, a is minimal in P and b is maximal in Q. Then x = a, y = b.

Then (x,y)= (a,b)∈ ρ.

The following proposition is useful for applications. It helps us to draw the figure of

the extensions. As usual, for an ordered set P , we denote by “≤P ” (or “≤”) the order of

P and by “≺P ” (or “≺”) the covering relation of P . If a≤Pb and a≠ b, we write a<P b.

Proposition 3.3. Let (V ,≤) be the extension of (P,≤P ) by (Q,≤Q) constructed in the

first part of Theorem 2.1. Then, for the covering relation “≺” of V ,

≺=≺P ∪≺Q ∪
{
(a,b)∈ r |� ∃(a′,b′)∈ r , a≤P a′, b′ ≤Q b, (a′,b′)≠ (a,b)

}
. (3.3)

Proof. Let a≺ b. Then a< b and there does not exist t ∈ V such that

a< t < b. (3.4)

Since a< b, we have a≤P b, a≠ b or a≤Q b, a≠ b or (a,b)∈ r̄ .

We note that if (a,b)∈ r̄ , then a≠ b. This is because r̄ ⊆ P×Q, P∩Q=∅.
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(1) Let a <P b. Then a ≺P b. Indeed, let t ∈ P such that a <P t <P b. Since (a,t) ∈
<P ⊆<, we have a < t. Since (t,b) ∈<P⊆<, we have t < b. Then t ∈ V and a < t < b,

which is impossible by (3.4).

(2) Let a <Q b. As in the previous case, there does not exist t ∈ Q such that a <Q
t <Q b. Thus a≺Q b.

(3) Let (a,b)∈ r̄ .

First of all, we prove the following: if (a′,b′)∈ r , a≤P a′, b′ ≤Q b, then

(a′,b′)= (a,b). (3.5)

Let (a′,b′) ≠ (a,b). If a′ ≠ a, then (a,a′) ∈ <P ⊆<, (a′,b′) ∈ r ⊆ r̄ ⊆ ≤, a′ ≠ b′,
(b′,b) ∈ ≤Q ⊆≤, then a < a′ < b′ ≤ b, where a′ ∈ V , which is impossible by (3.4).

Similarly, if b′ ≠ b, we get a contradiction.

Since (a,b) ∈ r̄ , there exists (a′,b′) ∈ r such that a ≤P a′, b′ ≤Q b. Then, by (3.5),

a′ = a, b′ = b, so (a,b)∈ r . Moreover, by (3.5), there is no (a′,b′)∈ r such that a≤P a′,
b′ ≤Q b, (a′,b′)≠ (a,b).

Conversely, let a ≺P b. Then a ≺ b. Indeed, since a ≺P b, we have a <P b and there

does not exist t ∈ P such that a <P t <P b. Since (a,b) ∈<P⊆ <, we have a < b. Let

t ∈ V such that a < t < b. Since V � t < b ∈ P , P an ideal of V , we have t ∈ P . Since

(a,t)∈≤∩(P×P)=≤P , a≠ t, we have a<P t. Since (t,b)∈≤∩(P×P)=≤P , t ≠ b, we

have t <P b. Then a<P t <P b, t ∈ P , which is impossible.

Let a ≺Q b. Then a ≺ b. Indeed, since a ≺Q b, we have a <Q b and there is no t ∈Q
such that a <Q t <Q b. Since a <Q b, we have a < b. Let t ∈ V such that a < t < b. If

t ∈ P , then V � a < t ∈ P . Since P is an ideal of V , we have a∈ P , which is impossible.

Thus t ∈Q. We have a< t < b; a,t,b ∈Q. Then a<Q t <Q b, t ∈Q, which is impossible.

Let (a,b) ∈ r such that there is no (a′,b′) ∈ r such that a ≤P a′, b′ ≤Q b, (a′,b′) ≠
(a,b). Then a≺ b. Indeed, since (a,b)∈ r and r ⊆ r̄ ⊆≤, we have a≤ b. Since r ⊆ P×Q
and P∩Q=∅, we have a≠ b. Then a< b. Let t ∈ V such that a< t < b. Then

(1) let t ∈ P . Since t < b, we have t <P b, t <Q b, or (t,b) ∈ r̄ , t ≠ b. Then, since

(t,b) ∈ P ×Q and P ∩Q = ∅, we have (t,b) ∈ r̄ . Then there exists (t′,b′) ∈ r
such that t ≤P t′, b′ ≤Q b. Since a,t ∈ P , a < t, we have a <P t. Since t′ ≠ a, we

have (t′,b′)∈ r , a<P t′, b′ ≤Q b, (t′,b′)≠ (a,b), which is impossible;

(2) let t ∈Q. Since a< t, we have a<P t, a<Q t, or (a,t)∈ r̄ , a≠ t. Then (a,t)∈ r̄ ,

so there exists (a′, t′) ∈ r such that a ≤P a′, t′ ≤Q t. Since t,b ∈ Q, t < b, we

have t <Q b. Since t′ ≠ b, we have (a′, t′) ∈ r , a <P a′, t′ <Q b, (a′, t′) ≠ (a,b),
which is impossible.

4. Examples. We apply our results to the following examples. We always denote by

N= {1,2,3, . . .} the set of natural numbers and a|b means a divides b.

Example 4.1. We consider the ordered sets (P,≤P ) and (Q,≤Q) given below:

P := {p | p ∈N,p prime, 1<p ≤ 60 or p = 1
}
. (4.1)

That is,

P = {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59}. (4.2)
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“≤P ” is the order on P defined by

≤P := {(a,b)∈ P×P | a|b}. (4.3)

We have

≤P =
{
(1,1),(1,2),(1,3),(1,5),(1,7),(1,11),(1,13),

(1,17),(1,19),(1,23),(1,29),(1,31),(1,37),

(1,41),(1,43),(1,47),(1,53),(1,59),(2,2),

(3,3),(5,5),(7,7),(11,11),(13,13),(17,17),

(19,19),(23,23),(29,29),(31,31),(37,37),

(41,41),(43,43),(47,47),(53,53),(59,59)
}
.

(4.4)

Let Q := {2n.23 |n∈N} and let “≤Q” be the order on Q defined by

≤Q := {(a,b)∈Q×Q | a|b}. (4.5)

We have

2.23≤Q 22.23≤Q 23.23≤Q ··· ≤Q 2n.23≤Q ··· . (4.6)

We give the covering relation “≺” and (P,≤P ) is shown in Figure 4.1.

≺= {(1,2),(1,3),(1,5),(1,7),(1,11),(1,13),(1,17),(1,19),(1,23),

(1,29),(1,31),(1,37),(1,41),(1,43),(1,47),(1,53),(1,59)
}
.

(4.7)

2
3

5 7 11 13
17

19
23

29

31
37414347

53
59

(P,≤P )

Figure 4.1
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(Q,≤Q) is presented in Figure 4.2.

24.23

23.23

22.23

2.23

(Q,≤Q)

Figure 4.2

If a ∈ P ∩Q, then a = 1 and a = 2n.23 for some n ∈ N or a is a prime such that

a= 2n.23 for some n∈N, which is impossible. Thus the sets P and Q are disjoint.

Let r := {(2,2.23),(23,2.23)} (⊆ P ×Q). From the first part of Theorem 2.1, the set

V := P ∪Q endowed with the relation ≤ := ≤P∪ ≤Q ∪r̄ is an ordered set and it is an

extension of P by Q.

The determination of r̄ . Let (a,b) ∈ r̄ . Then (a,b) ∈ P ×Q and there exists

(a′,b′)∈ r such that a≤P a′, b′ ≤Q b. Since (a′,b′)∈ r , we have (a′,b′)= (2,2.23) or

(a′,b′)= (23,2.23).
(A) Let (a′,b′)= (2,2.23). Then a′ = 2, b′ = 2.23. Since a≤P a′ = 2, we have a= 1 or

a= 2. Since 2.23= b′ ≤Q b, we have b = 2n.23 for some n∈N. Thus (a,b)= (1,2n.23)
or (a,b)= (2,2n.23) for some n∈N.

(B) Let (a′,b′)= (23,2.23). Then a′ = 23, b′ = 2.23. Since a≤P a′ = 23, we have a= 1

or a= 23. Since 2.23= b′ ≤Q b, we have b = 2n.23 for some n∈N.

Thus (a,b)= (1,2n.23) or (a,b)= (23,2n.23) for some n∈N. Hence we have

r̄ ⊆ {(1,2n.23
)
,
(
2,2n.23

)
,
(
23,2n.23

)
; n∈N}. (4.8)

Since (1,2n.23) ∈ P ×Q, (2,2.23) ∈ r , 1 ≤P 2, 2.23 ≤Q 2n.23, we have (1,2n.23) ∈ r̄
for every n ∈ N. Since (2,2n.23) ∈ P ×Q, (2,2.23) ∈ r , 2 ≤P 2, 2.23 ≤Q 2n.23, we have

(2,2n.23)∈ r̄ for every n∈N. Similarly, (23,2n.23)∈ r̄ for every n∈N. Therefore, we

have

r̄ = {(1,2n.23
)
,
(
2,2n.23

)
,
(
23,2n.23

)
; n∈N}. (4.9)
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We give the covering relation “≺” and (V ,≤) is presented in Figure 4.3.

≺= {(1,2),(1,3),(1,5),(1,7),(1,11),(1,13),(1,17),(1,19),(1,23),

(1,29),(1,31),(1,37),(1,41),(1,43),(1,47),(1,53),(1,59),

(2,2.23),(23,2.23),
(
2.23,22.23

)
,
(
22.23,23.23

)
,
(
23.23,24.23

)
, . . . ,

(
2n−1.23,2n.23

)
, . . .

}
.

(4.10)

24.23

23.23

22.23

2.23

2

3
5 7 11 13 17

19
23

29

31
37414347

53
59

(V ,≤V )

Figure 4.3

Note. For a,b ∈ V , we have a ≤ b if and only if a|b. Let a,b ∈ V , a ≤ b. Since

≤:= ≤P ∪≤Q ∪ r̄ , we have a,b ∈ P , a|b or a,b ∈ Q, a|b or (a,b) ∈ r̄ . If (a,b) ∈ r̄ ,

then (a,b) = (1,2n.23) or (a,b) = (2,2n.23) or (a,b) = (23,2n.23) for some n ∈ N. If

(a,b) = (1,2n.23), then a = 1, b = 2n.23, where n ∈ N, then a|b. Similarly, if (a,b) =
(2,2n.23) or (a,b)= (23,2n.23), then a|b. Conversely, let a,b ∈ V , a|b. If a,b ∈ P , then

(a,b)∈≤P ⊆ r̄ ⊆≤. Let a∈ P , b ∈Q, then P � a|b = 2n.23 for some n∈N, thus a= 1

or a = 2 or a = 23. If a = 1, then (a,b) = (1,2n.23), n ∈ N, then (a,b) ∈ r̄ . Similarly,

if a = 2 or a = 23, then (a,b) ∈ r̄ . Let a ∈ Q, b ∈ P . Then 2n.23 = a|b ∈ P for some

n∈N. The case is impossible. If a,b ∈Q, then (a,b)∈≤Q ⊆≤.

As an application of the second part of Theorem 2.1, we give the following example.
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Example 4.2. Let (V ,≤V ), (P,≤P ), and (Q,≤Q) be the ordered sets defined by

V = {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59}∪{2n.23; n∈N},
≤V := {(a,b)∈ V ×V | a|b},
P = {1,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59},
≤P := {(a,b)∈ P×P | a|b},
Q := {2n.23 |n∈N},
≤Q := {(a,b)∈Q×Q | a|b}.

(4.11)

Then

(1) P is an ideal of V . Indeed, if a∈ P and V � b ≤V a, then, since b|a∈ P , we have

b = 1 or b = a, so b ∈ P ;

(2) V \P =Q.

Hence, V(P,Q,iP : P → P,iQ :Q→ V \P) is an extension of P by Q. Let r be an arbitrary

subset of P×Q such that

r̄ = {(a,b)∈ P×Q | iP (a)≤V iQ(b)
}

= {(a,b)∈ P×Q | a≤V b
}

= {(a,b)∈ P×Q | a|b}.
(4.12)

We have r̄ = {(1,2n.23),(2,2n.23),(23,2n.23); n ∈ N}. Indeed, let (a,b) ∈ r̄ . Then

(a,b) ∈ P ×Q and a|b. Since P � a|b = 2n.23, where n ∈N, we have a = 1 or a = 2 or

a= 23. Then (a,b)= (1,2n.23) or (a,b)= (2,2n.23) or (a,b)= (23,2n.23), n∈N.
On the other hand, since (1,2n.23) ∈ P ×Q and 1|2n.23, we have (1,2n.23) ∈ r̄ for

every n ∈ N. Since (2,2n.23) ∈ P ×Q and 2|2n.23, we have (2,2n.23) ∈ r̄ for every

n∈N. Similarly, (23,2n.23)∈ r̄ for all n∈N.

From the second part of Theorem 2.1, the set P∪Q endowed with the relation

≤ :=≤P ∪≤Q∪
{(

1,2n.23
)
,
(
2,2n.23

)
,
(
23,2n.23

)
; n∈N} (4.13)

is an ordered set and (P∪Q,≤)≈ (V ,≤V ).
We remark that for the set r1 := {(a,b) ∈ P×Q | a|b} we have r̄1 = {(a,b) ∈ P×Q |

a|b} (cf. Proposition 3.1).

As we have already seen, for the set r2 := {(2,2.23),(23,2.23)}, we have

r̄2 =
{(

1,2n.23
)
,
(
2,2n.23

)
,
(
23,2n2n.23

)
; n∈N}

= {(a,b)∈ P×Q | a|b}. (4.14)

This example shows that the subset r of P×Q, for which r̄ = {(a,b)∈ P×Q |ϕ(a)
≤V ψ(b)} mentioned in the second part of Theorem 2.1, in general, is not uniquely

defined.
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Example 4.3. This is an example of extensions for which r̄=r . Let P :={2,3,5,7,210}.
The set P endowed with the relation ≤P := {(a,b) ∈ P × P | a|b} is an ordered set.

(P,≤P ) is presented in Figure 4.4.

210

2

3 5

7

(P,≤P )

Figure 4.4

Let Q := {11,22,33,55,77}. The set Q with the relation

≤Q := {(a,b)∈ P×P | a|b} (4.15)

is an ordered set. (Q,≤Q) is presented in Figure 4.5.

22

33 55

77

11

(Q,≤Q)

Figure 4.5

The ordered sets P and Q are disjoint. Let

r := {(2,22),(3,33),(5,55),(7,77)
}
(⊆ P×Q). (4.16)

By the first part of Theorem 2.1, the set V := P∪Q endowed with the relation ≤:=≤P∪
≤Q∪ r̄ is an ordered set and it is an extension of P by Q.

For that extension, we have r̄ = r . Indeed, if (a,b)∈ r̄ , then there exists (a′,b′)∈ r
such that a≤P a′ and b′ ≤Q b. Since (a′,b′)∈ r , we have (a′,b′)= (2,22) or (a′,b′)=
(3,33) or (a′,b′)= (5,55) or (a′,b′)= (7,77). If (a′,b′)= (2,22), then a′ = 2, b′ = 22.

Since a ≤P a′ = 2, we have a = 2. Since 22 = b′ ≤Q b, we have b = 22. Thus we have

(a,b) = (2,22) ∈ r . Similarly, if (a′,b′) = (3,33), (a′,b′) = (5,55), or (a′,b′) = (7,77),
we have (a,b)∈ r . Besides r ⊆ r̄ , so r = r̄ .
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The covering relation “≺” of (V ,≤) is shown as follows:

≺= {(2,210),(3,210),(5,210),(7,210),(11,22),(11,33),(11,55),

(11,77),(2,22),(3,33),(5,55),(7,77)
}
.

(4.17)

(V ,≤) is presented in Figure 4.6.

210

2
3 5

7

22
33 55

77

11

(V ,≤)

Figure 4.6

We have r = {(a,b) ∈ P ×Q | iP (a) = a ≤V b = iQ(b)}. We remark that for each

(a,b)∈ r , the elementa is minimal in P and b is maximal inQ. According to Proposition

3.2, the set r is the unique element of P×Q such that r̄ = r .

Example 4.4. We consider the ordered sets P := {a,b,c,d,e} andQ := {x,y,k,l,m}
defined by Figures 4.7 and 4.8, respectively. Let r := {(a,y),(b,l),(c,m),(d,k)}. We

have

r̄ = {(a,y),(a,k),(a,l),(a,m),(b,l),(c,k),(c,m),(d,k)}. (4.18)

The covering relation of the extension V := L∪K of L by K is shown as follows:

≺= {(a,b),(a,y),(b,l),(c,d),(c,m),(d,k),(x,y),(y,k),(y,l),(y,m)}. (4.19)

V is presented in Figure 4.9.

b

a

d

c

e

(P,≤P )

Figure 4.7
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k
l

m

y

x

(Q,≤Q)

Figure 4.8

l m k

b y d

a x c

(V,≤)

Figure 4.9

For the same sets P and Q we take r := {(a,x),(b,l),(c,m),(d,k)}.
Then r̄ = {(a,x),(a,y),(a,k),(a,l),(a,m),(b,l),(c,k),(c,m),(d,k)}. The covering

relation of the extension V of L by K is shown as follows:

≺= {(a,b),(a,x),(b,l),(c,d),(c,m),(d,k),(x,y),(y,k),(y,l),(y,m)}. (4.20)

V is presented in Figure 4.10.

Using computer, one can design and implement a program which gives all the (ideal)

extensions of a finite ordered set P by a finite ordered set Q. Again, using a program

due to G. Lepouras, one can draw the figure of the ordered extension set.
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k l m

y

x
b d

a c

(V,≤)

Figure 4.10
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