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We first prove some large deviation results for a mixture of i.i.d. random variables. Com-
pared with most of the known results in the literature, our results are built on relaxing some
restrictive conditions that may not be easy to be checked in certain typical cases. The main
feature in our main results is that we require little knowledge of (continuity of) the compo-
nent measures and/or of the compactness of the support of the mixing measure. Instead,
we pose certain moment conditions, which may be more practical in applications. We then
use the large deviation approach to study the problem of estimating the component and the
mixing measures.
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1. Introduction. The interests in the theory of exchangeable random variables come

from both its connection with that of i.i.d. random variables and its remarkable back-

ground in many applied areas such as statistics, population genetics, and so forth. From

the de Finetti theorem we know that an infinitely exchangeable sequence of random

variables taking values in a Polish space can be represented as a mixture of i.i.d. ran-

dom variables. With the large deviation principle (LDP) for i.i.d. sequence and its many

important applications in mind, it is natural to consider the LDP for exchangeable se-

quences. This topic was discussed in several papers; see, for example, [2, 3, 4, 7, 8]

and some other references cited therein. In these papers, to obtain a full LDP for an

exchangeable sequence, either certain continuity of the component measures or com-

pactness of the support of the mixing measure appearing in the de Finetti representa-

tion is assumed. For example, in [7], under a condition named exponential continuity,

it has been proved that if the support of the mixing measure is compact, then the cor-

responding sequence of exchangeable random variables satisfies a full LDP. Of course,

under these conditions, LDP for a mixture of more general large deviation systems can

also be derived (cf. [7]). However, we notice that such kinds of assumptions are a little

too restrictive for applications. In many interesting situations, the supports of the mix-

ing measures are not compact. We do not even know the component and/or the mixing

measures, and therefore we do not know how to check the above-mentioned conditions.

For these reasons we first consider, in Section 1, LDP for more general exchangeable

random sequences, with little knowledge of their mixing structure. The main purpose

is to cover some substantially new and interesting situations. In particular, our results

show that under a certain exponential tightness condition, the empirical measures of

any exchangeable random field satisfy a full LDP.
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Our investigation on the LDP turns out to have some significant implications to the

problem of making inference on the component and/or the mixing measures which

are usually unknown or contain some unknown key parameters. Suppose we have a

sample, (ξ1, . . . ,ξn), of exchangeable observations. A typical way to generate such a

sample is as follows: first choose a distribution Pθ at random from a family {Pθ, θ ∈Θ}
according to certain law µ, where Θ is a space of parameters; then sample from this

distribution. Thus it is easily seen that such a sample is typically suitable for making

inference on the component distribution Pθ . Suppose a realization of this sample is

obtained, one can, by using standard statistical methods, make inference or estimate

on the distribution Pθ from which this sample comes. However, from the point of view of

Bayesian statistics, it is important to make inference or estimate on the mixing measure

or the prior distribution in Bayesian terminology, µ. From such a sample given above, it

is not hard to find unbiased, even uniformly minimum variance unbiased estimators of

some functionals of µ that play key roles in statistics. But, by the LLN for exchangeable

random variables, such estimators are usually not consistent ones. Actually it is hard

to find consistent estimators from a single sample. To construct a consistent estimator,

a number of such samples are usually needed. From this point of view, in Section 3 we

propose estimators for µ or its functionals and use a large deviation approach to show

their consistency.

In Section 2 we formulate the main large deviation results followed by some exam-

ples. Section 3 is devoted to the proof of these results. In Section 4 we study the esti-

mate problem.

2. Large deviations. We consider a mixture of general i.i.d. random fields and start

with some notations. First, for a topological space Y , denote by �Y the Borel σ -field;

M1(Y) is the space of all probability measures on (Y ,�Y ). Now let X be a locally convex

Hausdorff topological vector space with the conjugate X′ and let X0 ⊂X be a separable

metric space in the relative topology. Let (Ω,�) be a given measurable space, Θ a Haus-

dorff topological space, and {Pθ, θ ∈ Θ} a family of probability measures on (Ω,�)
satisfying that for each A ∈ �, θ → Pθ(A) is measurable on (Θ,�Θ). Let {ξt, t ∈ Zd}
(d≥ 1) be a family of X0-valued random variables on (Ω,�) which are i.i.d. under each

Pθ . Let µ be a Radon probability measure on (Θ,�Θ) and define

P =
∫
Pθµ(dθ). (2.1)

Finally, let {Λn, n≥ 1} be a sequence of finite subsets of Zd satisfying Λn ↑ Zd. Denote

by |Λn| the cardinality of Λn. For each n≥ 1, define

ξ̄n = 1∣∣Λn∣∣
∑
t∈Λn

ξt (2.2)

and let Pnθ = Pθ ◦ ξ̄−1
n , Pn = P ◦ ξ̄−1

n which are probability measures on (X0,�X0). The

aim of this section is to study the LDP of {Pn, n≥ 1}. The main technique we will use

is the asymptotic value method provided in [1]. So we need the following exponential

tightness assumption:



LARGE DEVIATIONS FOR EXCHANGEABLE OBSERVATIONS . . . 2949

(H) for every a> 0, there is a compact set Ca ⊂X0, such that

limsup
n→∞

1∣∣Λn∣∣ logPn
(
Cca
)≤−a. (2.3)

Our main result is the following.

Theorem 2.1. Let Pn be defined as above and let (H) hold. If for each λ∈X′,

Mθ(λ)=
∫
e〈λ,ξ0〉dPθ <∞, µ-a.s., (2.4)

then {Pn, n ≥ 1} satisfies an LDP with a good rate function, that is, there is a function

I :X0 → [0,∞] such that for every A∈�X0 ,

− inf
x∈A0

I(x)≤ liminf
n→∞

1∣∣Λn∣∣ logPn(A)≤ limsup
n→∞

1∣∣Λn∣∣ logPn(A)≤− inf
x∈Ā

I(x) (2.5)

and I has compact level sets, that is, for any a> 0, {x : I(x)≤ a} is compact in X0, where

A0 and Ā are the interior and closure of A, respectively. In particular, if for all λ∈X′,

M(λ)≡
∫
e〈λ,ξ0〉dP <∞, (2.6)

then the above conclusions hold.

Remark 2.2. Assumption (H) is not a restrictive one. Indeed, in our case, to obtain

a full LD result with a good rate function, that is, with I having compact level sets, (H)

is a necessary condition. If X0 is compact, (H) is trivial. Some practically used sufficient

condition for (H) to hold can be found in [4, 5, 6]. In the case whereX = Rd, supθMθ(λ) <
∞ for some λ > 0 is sufficient for (H). In the case of a more general Banach space, see

Example 2.6.

Remark 2.3. As a special case, let X =M(E) be the space of all finite signed mea-

sures on some Polish space E, equipped with the weak topology, X0 = M1(E), and let

{ηt, t ∈ Zd} be a family of E-valued random variables on (Ω,�) that are i.i.d. under each

Pθ , ξt = δηt is the Dirac measure on ηt . Then under (H), {P((1/|Λn|)
∑
t∈Λn δηt ∈ ·), n≥

1} satisfies an LDP, since in this case (2.4) is automatically satisfied. In particular, if X0

is compact, then all the conditions in Theorem 2.1 are satisfied.

The following are some typical examples that satisfy the conditions of Theorem 2.1.

Example 2.4. Let X = X0 = R and Pθ the Gaussian distribution with mean α and

variance σ 2, and θ = (α,σ 2) ∈ Θ ⊂ R×R+, where R+ is the space of strictly positive

real numbers. Then (2.4) is satisfied for any λ∈R. In particular, if Θ is a bounded set,

then (H) is also satisfied. If Pθ is a Poisson distribution with mean θ ∈Θ⊂R+, then we

have the same conclusions.
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Example 2.5. Let Pθ be the Bernoulli distribution with parameter θ ∈ (0,1). Then

all the conditions in Theorem 2.1 are satisfied.

In the cases where Pθ is exponential or geometric, (2.4) is not satisfied. These cases

will be treated in the next theorem.

Example 2.6. The third application is to Banach-valued sequences. In this case, X0 =
B is assumed to be a separable Banach space with norm ‖·‖ and {ξn, n≥ 1} is an X0-

valued sequence. Sn =
∑n
i=1ξi. Suppose (i) there is a µ-null set Θ0 ⊂ Θ such that the

family {Pθ, θ ∈ Θc0} is tight, and (ii) ‖∫ eα‖ξ1‖dP·‖L∞(µ) <∞, for all α > 0. Note that de

Acosta [4] proved that the family {P(n−1Sn ∈ ·), n ≥ 1} is exponentially tight. Thus

our Theorem 2.1 and its proof imply that this family satisfies a full LDP with the good

rate function given by

I(x)= sup
λ∈B′

[〈λ,x〉−L(λ)], (2.7)

where L(λ)= log‖∫ exp〈λ,ξ1〉dP·‖L∞(µ). This complements [4, Theorem 5.1] by providing

the accompanying large deviation lower bounds, and thus the full LDP.

As pointed out in [7], some simple examples do not satisfy the moment condition

(2.4) or (2.6). For example, let ξ0 have exponential distribution with parameter θ >
θ0 ≥ 0 under Pθ [7, Example 3.3]. Then it is easy to check that (2.4) does not hold. For

such cases, it has been proved in [7] that if Θ is compact and {Pnθ , n ≥ 1, θ ∈ Θ} is

exponentially continuous (to be stated below), then under (H) {Pn, n≥ 1} also satisfies

an LDP. Based on this result, we can treat the case where Θ is not compact. To this end

we first recall that the family {Pnθ , n≥ 1, θ ∈Θ} is said to be exponentially continuous

if whenever θn→ θ, the family {Pnθn, n≥ 1} satisfies an LDP. We have the following.

Theorem 2.7. Assume that (H) holds and that {Pnθ , n ≥ 1, θ ∈ Θ} is exponentially

continuous. If for each λ∈X′, there exist δ > 0 and a compact set Θδ ⊂Θ with µ(Θδ) < 1,

such that ∫
e(1+δ)〈λ,ξ0〉dPθ <∞ for µ-almost all θ ∈Θcδ, (2.8)

then {Pn, n≥ 1} satisfies an LDP with a good rate function.

It is easy to check that (2.8) is satisfied in both the exponential and the geometric

cases.

Using the same argument, when Θ is countable, we can prove the following.

Theorem 2.8. LetΘ be countable, and for eachn≥ 1, let µn be a probability measure

on (Θ,�Θ) satisfying limn→∞ |Λn|−1 logµn(θ)= 0 for each θ. If the family {Pnθ , n≥ 1, θ ∈
Θ} satisfies that (1) for each θ, {Pnθ , n ≥ 1} satisfies an LDP; (2) for any λ ∈ X′, there

exist δ > 0 and a finite set Θδ ⊂Θ such that (2.8) holds; and (3) the sequence defined by

Pn =
∑
θ∈Θ

Pnθ µn(θ), n≥ 1, (2.9)

is exponentially tight, then {Pn, n≥ 1} satisfies an LDP.
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For all the above results, X′ can be replaced by any of its dense linear subspaces.

In the above theorems, the LD rate function should be

I(x)= sup
f∈Cb(X0)

[
f(x)−L(f)], (2.10)

where

L(f)= lim
n→∞

1∣∣Λn∣∣ log
∫
e|Λn|fdPn, (2.11)

which exists for f ∈ Cb(X0); see Section 3. At the same time, under the conditions

of any of these theorems, for each θ ∈ Θ, {Pnθ , n ≥ 1} satisfies an LDP with the rate

function given by

Iθ(x)= sup
f∈Cb(X0)

[
f(x)−Lθ(f)

]
, (2.12)

which has compact level sets, where Lθ(f) is defined similarly to L(f) with Pn replaced

by Pnθ . Our proofs of the theorems (Section 3) show that for someΘ0 ⊂Θwith µ(Θ0)= 1,

L(f)= supθ∈Θ0
Lθ(f), which suggests that one may consider whether we have

I = inf
θ∈Θ0

Iθ. (2.13)

This turns out to be a minimax problem. Equation (2.13) need not be true in general.

There are various conditions for a minimax theorem to hold; see [9] or [10]. Usually

three types of conditions for Λ(θ,f ) ≡ f(x)− Lθ(f) for fixed x ∈ X0 are involved:

(i) compactness or connectivity of the domains of the two arguments of Λ; and (ii)

convexity of Λ; (iii) certain continuity of Λ. Simple examples show that only two of

these conditions are insufficient for (2.13). From the results mentioned in [9, 10], we

can see that if one has compactness, then the solutions are satisfactory. The situation

is very complicated in the noncompact cases. Here we will not give further discussion.

3. Proof of the large deviations. To use the asymptotic value method [1] for a mea-

surable function f on (X0,�X0), define

Ln(f)=
∣∣Λn∣∣−1

log
∫
e|Λn|fdPn, n≥ 1, (3.1)

and for a subset Θ0 ⊂Θ, define

LΘ0,n(f )=
∣∣Λn∣∣−1

log
∫
Θ0

µ(dθ)
∫
e|Λn|fdPnθ , n≥ 1. (3.2)

The main task is to prove that for all f ∈ Cb(X0), the limit limn→∞Ln(f) exists. To this

end, we will use linear functionals to approximate bounded continuous functions. Set

�=
{

min
1≤i≤m

(〈
λi,·

〉+ci), λi ∈X′, ci ∈ R, m≥ 1
}
. (3.3)

The following is the key lemma for our proofs.
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Lemma 3.1. Let Θ0 be a measurable subset of Θ with µ(Θ0) > 0, λi ∈ X′, 1 ≤ i ≤m.

If there exists δ > 0 such that (2.8) holds for every λi and θ ∈ Θ0, then for any ci ∈ R,

1≤ i≤m, and M > 0, with g =min1≤i≤m(〈λi,·〉+ci), the limit

LΘ0(g∧M)= lim
n→∞LΘ0,n(g∧M) (3.4)

exists and is finite, where a∧b =min(a,b).

To prove this lemma, we need the following result which was proved in [1] (see [1,

Lemma L.6.1 and its proof]).

Lemma 3.2. For fixed n≥ 1 and θ ∈Θ. Let f1, . . . ,fn be measurable and such that

(1) for any linear combination f =∑n
i=1αifi, the limit

Lθ(f)≡ lim
n→∞

1∣∣Λn∣∣ log
∫
e|Λn|fdPθ (3.5)

exists;

(2) (d/dt)Lθ(tf + (1 − t)g)|t=0 exists for each pair of convex combinations f =∑n
i=1αifi and g =∑n

i=1βifi.
Then Lθ(min1≤i≤nfi) exists and there is a convex combination f0 =

∑n
i=1α

0
i fi such that

Lθ
(

min
1≤i≤n

fi
)
= inf

{
Lθ

( n∑
i=1

αifi

)
, αi ≥ 0,

n∑
i=1

αi = 1

}
= Lθ

(
f0
)
. (3.6)

Proof of Lemma 3.1. Write gi = 〈λi,·〉+ci. Then under our assumptions, for each

θ ∈Θ0, the limits

Lθ

( m∑
i=1

αigi+αm+1M
)
= lim
n→∞

1∣∣Λn∣∣ log
∫
e|Λn|(

∑m
i=1αigi+αm+1M)dPnθ

=
m∑
i=1

αici+αm+1M+ log
∫
e
∑m
i=1αi〈λi,ξ0〉dPθ

(3.7)

are finite in some open convex set A1 containing

A=
{(
α1, . . . ,αm+1

)∈ Rm+1 :αi ≥ 0,
m+1∑
i=1

αi = 1

}
(3.8)

and for any (α1, . . . ,αm+1) and (γ1, . . . ,γm+1) in A, if we set f =∑m
i=1αigi+αm+1M and

h=∑m
i=1γigi+αm+1M , then (d/dt)Lθ((1−t)f+th)|t=0 exists. Hence from Lemma 3.2

we know that there exists gθ0 =
∑m
i=1αigi+αm+1M with (α1, . . . ,αm+1) ∈ A, such that

gθ0 ∧g∧M = g∧M and

h(θ)≡ Lθ(g∧M)= lim
n→∞

1∣∣Λn∣∣ log
∫
e|Λn|(g∧M)dPnθ = Lθ

(
gθ0
)
. (3.9)

θ→ h(θ) is measurable on (Θ0,�Θ0). Since µ is a Radon measure, by Luzin’s theorem,

for every k ≥ 1, there is a closed subset Θk of Θ0 with µ(Θck) < 1/k, such that h is
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continuous on Θk, and we can choose Θk to be increasing. Let Θ∞ = limk→∞Θk. Then

µ(Θ∞)= µ(Θ0). Define Θk,µ = Supp(µ|Θk), where µ|Θk is the restriction of µ to Θk. Then

Θk,µ ↑ and µ(Θk,µ)= µ(Θk). We will show that

LΘ0(g∧M)= lim
k→∞

sup
θ∈Θk,µ

Lθ(g∧M)= sup
θ∈∪∞k=1Θk,µ

h(θ). (3.10)

First notice that g∧M = gθ0 ∧g∧M ≤ gθ0 for each θ ∈Θ0, thus, by (2.4),

limsup
n→∞

LΘ0,n(g∧M)≤ limsup
n→∞

1∣∣Λn∣∣ log
∫
Θ0

µ(dθ)
∫
e|Λn|g

θ
0dPnθ

= limsup
n→∞

1∣∣Λn∣∣ log
∫
Θ0

µ(dθ)
∫
e|Λn|Lθ(g

θ
0 )dPnθ

= limsup
n→∞

1∣∣Λn∣∣ log
∫
Θ0

e|Λn|h(θ)µ(dθ)

= limsup
n→∞

lim
k→∞

1∣∣Λn∣∣
∫
Θk
e|Λn|h(θ)µ(dθ)≤ lim

k→∞
sup
θ∈Θk,µ

h(θ).

(3.11)

Notice that under (H) the sequence {∫Θ0
Pnθ µ(dθ), n≥ 1} is also exponentially tight; by

the above inequality and [1, Lemma 5.1] we know that l = supθ∈∪∞k=1Θk,µ
h(θ) is finite.

Therefore for any ε > 0, we can choose θ0 ∈∪∞k=1Θk,µ such that

h
(
θ0
)= Lθ0(g∧M) > l−

ε
2
. (3.12)

Suppose θ0 ∈ Θk,µ . Then by the continuity of h on Θk, we can choose a neighborhood

Vθ0 of θ0, such that for any θ ∈ Vθ0Θk,

h(θ) > h
(
θ0
)− ε

2
> l−ε. (3.13)

Thus by Jensen’s inequality, [1, Lemma 5.1], and Fatou’s lemma, we see that for suffi-

ciently large N,

liminf
n→∞ LΘ0,n(g∧M)= liminf

n→∞ LΘ0,n
(
(g∧M)∨(−N))

≥ liminf
n→∞

1∣∣Λn∣∣ log
∫
Vθ0

Θk
µ(dθ)

∫
e|Λn|[(g∧M)∨(−N)]dPnθ

≥ liminf
n→∞

1
µ
(
Vθ0Θk

) 1∣∣Λn∣∣
∫
Vθ0

Θk

(
log

∫
e|Λn|[(g∧M)∨(−N)]dPnθ

)
µ(dθ)

≥ 1
µ
(
Vθ0Θk

) ∫
Vθ0

Θk

(
liminf
n→∞

1∣∣Λn∣∣ log
∫
e|Λn|(g∧M)dPnθ

)
µ(dθ)

= 1
µ
(
Vθ0Θk

) ∫
Vθ0

Θk
h(θ)µ(dθ) > l−ε.

(3.14)

Hence liminfn→∞LΘ0,n(g∧M) ≥ l. Combining this with (2.8), we obtain (2.6), proving

the lemma.
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Proof of Theorem 2.1. Let g =min1≤i≤m(〈λi,·〉+ci)∈� andM > 0. Then for any

δ > 0, by assumption, there is Θ0 ⊂Θ with µ(Θ0)= 1 such that (2.8) holds for all θ ∈Θ0.

Thus, by Lemma 3.1, the limit L(g∧M)= limn→∞Ln(g∧M)= LΘ0(g∧M) exists and is

finite. Therefore from the proof of [1, Theorem T.1.3], we see that for all f ∈ Cb(X0),
the limit

L(f)= lim
n→∞Ln(f) (3.15)

exists and is finite. Hence by [1, Theorem T.1.2], {Pn, n ≥ 1} satisfies an LDP with the

good rate function given by

I(x)= sup
f∈Cb(X0)

[
f(x)−L(f)]. (3.16)

Proof of Theorem 2.7. From the proof of Theorem 2.1, we know that it suffices

to show that for all g ∈ � and M > 0, the limit L(g∧M) exists and is finite. To do

this, let gi = 〈λi,·〉 + ci and g = g1 ∧ ··· ∧ gm. Then under the assumptions of the

theorem, there exist δ > 0 and a compact set Θδ ⊂ Θ with µ(Θδ) < 1, and a Θ0 ⊂ Θcδ
with µ(Θ0) = µ(Θcδ) such that (2.8) holds for all θ ∈ Θ0. Then the lemma implies that

the limit LΘcδ(g∧M) = ŁΘ0(g∧M) exists and is finite. By the exponential continuity

of {Pnθ , n ≥ 1, θ ∈ Θ} and [4, Theorems 2.1 and 2.2], we know that the sequence

{∫Θδ Pnθ µ(dθ), n≥ 1} satisfies an LDP. Hence for any f ∈ Cb(X0), the limit

LΘδ(f )= lim
n→∞

1∣∣Λn∣∣ log
∫
Θδ
µ(dθ)

∫
e|Λn|fdPnθ (3.17)

exists and is finite. Therefore LΘδ(g∧M)∨(−N) exists and is finite for anyN > 0. Notice

that {∫Θδ Pnθ µ(dθ), n≥ 1} is also exponentially tight; again by [1, Lemma 5.1] we know

that for sufficiently large N,

lim
n→∞

1∣∣Λn∣∣
[

log
∫
Θδ
µ(dθ)

∫
e|Λn|((g∧M)∨(−N))dPnθ − log

∫
Θδ
µ(dθ)

∫
e|Λn|(g∧M)dPnθ

]
= 0.

(3.18)

This means that the limit LΘδ(g∧M) exists and is finite. Thus

L(g∧M)= lim
n→∞

1∣∣Λn∣∣ log
[∫

Θδ
µ(dθ)

∫
e|Λn|(g∧M)dPnθ +

∫
Θ0

µ(dθ)
∫
e|Λn|(g∧M)dPnθ

]

= (LΘδ(g∧M))∨(LΘcδ(g∧M))
(3.19)

exists and is finite.

Finally we prove Theorem 2.8. Let gi = 〈λi,·〉+ci, 1≤ i≤m,M > 0, g = g1∧···∧gm.

Then by our assumptions and the proof of the lemma, there is a finite set Θδ ⊂Θ, such

that for any θ ∈Θcδ, the limit

Lθ(g∧M)= lim
n→∞

1∣∣Λn∣∣ log
∫
e|Λn|(g∧M)dPnθ (3.20)
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exists and is finite, and there is a gθ0 =
∑m
i=1αigi+αm+1M with αi ≥ 0,

∑m+1
i=1 αi = 1,

such that Lθ(g∧M)= Lθ(gθ0 ), gθ0 ∧g∧M = g∧M . Thus for each θ ∈Θcδ,

liminf
n→∞ LΘcδ,n ≥ liminf

n→∞
1∣∣Λn∣∣ logµn(θ)

∫
e|Λn|(g∧M)dPnθ = Lθ(g∧M); (3.21)

that is,

liminf
n→∞ LΘcδ,n(g∧M)≥ sup

θ∈Θcδ
Lθ(g∧M). (3.22)

On the other hand,

limsup
n→∞

LΘcδ,n(g∧M)= limsup
n→∞

1∣∣Λn∣∣ log
∑
θ∈Θcδ

µn(θ)
∫
e|Λn|(g

θ
0∧g∧M)dPnθ

≤ limsup
n→∞

1∣∣Λn∣∣ log
∑
θ∈Θcδ

µn(θ)
∫
e|Λn|g

θ
0dPnθ

= limsup
n→∞

1∣∣Λn∣∣ log
∑
θ∈Θcδ

µn(θ)e|Λn|Lθ(g∧M) ≤ sup
θ∈Θcδ

Lθ(g∧M).

(3.23)

Hence the limit

LΘcδ(g∧M)= lim
n→∞LΘ

c
δ,n
(g∧M)= sup

θ∈Θcδ
Lθ(g∧M) (3.24)

exists and is finite. For θ ∈Θδ, since {Pnθ , n≥ 1} is exponentially tight and satisfies an

LDP, by [1, lemma 5.1], for large N,

Lθ(g∧M)= lim
n→∞

1∣∣Λn∣∣ log
∫
e|Λn|(g∧M)dPnθ (3.25)

exists and is equal to Lθ((g∧M)∨(−N)), hence finite. Therefore, the limit

LΘδ(g∧M)= lim
n→∞

1∣∣Λn∣∣
∑
θ∈Θδ

µn(θ)
∫
e|Λn|(g∧M)dPnθ =max

θ∈Θδ
Lθ(g∧M) (3.26)

exists and is finite and, furthermore,

L(g∧M)= (LΘδ(g∧M))∨(LΘcδ(g∧M)) (3.27)

exists and is finite, completing the proof.

4. Estimate of the mixing measure. Now we turn to the study of estimating the

mixing measure µ or some of its functionals such as expectation and moments. We

adopt almost all the setting given in Section 2, except that we replace the set of indices

Zd with N, that is, we are considering infinitely exchangeable observations {ξn, n≥ 1},
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simply to make the notations simple. Let µθ = Pθ ◦ξ−1
1 be the law of ξ1 on X0 under

Pθ . Let T be the mapping from Θ to M1(X0) with T(θ)= µθ , where M1(X0) is the space

of probability measures on X0. Denote T(µ) = µ ◦ T−1. We consider the problem of

estimating T(µ), instead of µ, since we can, if needed, make a certain change of the

space of parameters so that the mixing measure is T(µ). Let {ξi,j , 1 ≤ j ≤ n}, 1 ≤ i ≤
n, be n independent copies of {ξi, 1 ≤ i ≤ n}. We still denote by P the underlying

probability law. Define, for n≥ 1,

Ln,i = 1
n

n∑
j=1

δξi,j , 1≤ i≤n, Rn = 1
n

n∑
i=1

δLn,i . (4.1)

The following result implies that Rn is a (strongly) consistent estimator of T(µ).

Theorem 4.1. Assume (H). Then limn→∞Rn = T(µ) a.s. in the sense of weak conver-

gence.

Remark 4.2. From this theorem it is easily seen that if φ∈ Cb(M1(X0)), then

lim
n→∞

1
n

n∑
i=1

φ
(
Ln,i

)=
∫
φdT(µ)=

∫
φ
(
µθ
)
µ(dθ) a.s. (4.2)

In particular, if φ∈ Cb(X0), then

lim
n→∞

1
n2

n∑
i,j=1

φ
(
ξi,j

)=
∫
µθ(φ)µ(dθ) a.s. (4.3)

This suggests consistent estimators for expectation or more general moments of µ.

Obviously, the above theorem is a consequence of the following large deviation result.

Theorem 4.3. Assume (H). Then {Qn = P ◦R−1
n , n≥ 1} satisfies a full LDP onM1(X0)

endowed with the weak topology, with the good rate function J given by J(R) = H(R,
T(µ)), the relative entropy of R with respect to T(µ).

The proof of Theorem 4.3 is completed with the following three lemmas.

Lemma 4.4. Let Ln = (1/n)
∑n
i=1δξi . Then limn→∞P ◦L−1

n = T(µ) weakly.

Proof. For each θ ∈ Θ, by applying Sanov’s theorem, it is not hard to prove that

limn→∞Pθ ◦L−1
n = δµθ weakly. Thus for any f ∈ Cb(M1(X0)),

lim
n→∞

∫
fdP ◦L−1

n = lim
n→∞

∫
µ(dθ)

∫
fdPθ ◦L−1

n =
∫
f
(
µθ
)
µ(dθ)=

∫
fdT(µ), (4.4)

proving the lemma.
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Lemma 4.5. For any f ∈ Cb(M1(X0)), the limit

Λ(f )≡ lim
n→∞

1
n

log
∫
enf(ν)Qn(dν) (4.5)

exists and equals log
∫
efdT(µ). Moreover, for any pair f and g in Cb(M1(X0)), t →

Λ(tf +(1−t)g) is differentiable.

Proof. The first assertion is a consequence of Lemma 4.4, and thus the second

assertion easily follows.

Lemma 4.6. Assume (H). Then {Qn, n≥ 1} is exponentially tight on M1(X0).

Proof. For any a> 0, from (H) we know that there is a compact subset Ca ofM1(X0)
such that

P
(
Ln ∈ Cca

)≤ e−an ∀n≥ 1. (4.6)

Now define

Ka =
{
R ∈M1

(
M1
(
X0
))

: R
(
Ccak

)≤ a
k
, ∀k≥ 1

}
. (4.7)

Then Ka is compact in M1(M1(X0)) and, for each 1≤ i≤n,

P
(
δLn,i ∈Kca

)= P(δLn ∈Kca)= P
(
∃k≥ 1 |δLn

(
Ccak

)≥ a
k

)

= P(∃k≥ 1 | Ln ∈ Ccak
)≤ e−an

1−e−an
(4.8)

by (4.6). Note that Ka is convex. We have

P
(
Rn ∈Kca

)≤ n∑
i=1

P
(
δLn,i ∈KCa

)≤ ne−an

1−e−an , (4.9)

which implies the exponential tightness of {Qn, n≥ 1}.
Now the proof of Theorem 4.3 is completed by applying [1, Theorem T.1.4], with the

rate function being given by

J(R)= sup
f∈Cb(M1(X0))

[∫
fdR−Λ(f )

]
= sup
f∈Cb(M1(X0))

[∫
fdR− log

∫
efdT(µ)

]
(4.10)

which is just H(R,T(µ)).

Proof of Theorem 4.1. Let d(·,·) be any metric onM1(M1(X0)) that generates the

weak topology. Then from Theorem 4.1 we know that for any ε > 0, there is a constant

αε > 0 such that

P
(
d
(
Rn,T(µ)

)≥ ε)≤ e−αεn ∀n≥ 1. (4.11)

Then a standard argument gives the desired conclusion, completing the proof of

Theorem 4.1.
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