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ON A DIFFERENCE EQUATION WITH MIN-MAX RESPONSE
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We investigate the global behavior of the (positive) solutions of the difference equation
Xn+1 = &n + F(xXn,...,xn-k), n = 0,1,..., where () is a sequence of positive reals and
F is a min-max function in the sense introduced here. Our results extend several results
obtained in the literature.

2000 Mathematics Subject Classification: 39A10.

1. Introduction. Let k be a positive integer and let R be the set of all positive reals.
We give the following definition.

DEFINITION 1.1. A function F : R¥*! — R, is called a min-max function if it satisfies
the inequality

k+1 k+1

Nj=1Uj Vi=1Uj
— < F(uy,uz,..ukn) < 57—, (1.1
VAT U ANT_TUG
Jj=1"J Jj=1"J

forall uj >0, j=1,...,k+1, where, as usual, the symbol v;‘zluj stands for the maxi-
mum of the variables u;, j =1,...,n, and /\;‘zluj stands for their minimum.

In Section 2, we give exact information on the form which a min-max function may
have.
Simple examples of min-max functions are

U- u
Fy(u1,uz) = u—j Fz(ul,uz)::u—; (1.2)

which appear as the response functions, respectively, in the difference equation

Vi1 = o+ 2L (1.3)

n

studied in [1] and in the difference equation

Yn

n-1

Yn+1 = X+ (1.4)
studied in [2]. These two equations have completely different behavior; see Remark 3.6.
Also in [13, 14], the second author considered the closely related equation

Xn-1

Xn+1 = Kp + s (1.5)
Xn
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where (&) is either a periodic sequence (with period two) or a convergent sequence of
nonnegative real numbers.

Motivated by the above-mentioned works, in this paper, we study the behavior of the
difference equation

Xni1 = On+F(Xn,...,xXn-k), m=0,1,..., (1.6)

where the initial conditions x_g,...,Xxo are positive real numbers, (&) is a sequence of
positive real numbers, and F is a min-max function.

Since a min-max function takes the value 1 at the diagonal of the space RX*!, it follows
that in case the sequence (x;,) converges to a certain «, the positive real number

K:=x+1 (1.7)

is the unique asymptotic equilibrium of (1.6).

Our purpose here is to discuss the boundedness and persistence of (1.6), as well
as the attractivity of the asymptotic equilibrium « + 1, where « is the limit of (&)
whenever this exists. This follows immediately by Theorem 3.2, where we show that, if
1 < liminf o, < limsup «x,, < + 00, then any solution (x, ) satisfies the relation

limsup x,, - limsup &;,, — 1
~ liminfx, = liminfa,—-1"

(1.8)

Thus, if the sequence (x,) converges to some (> 1), then any solution with positive
initial values converges to the asymptotic equilibrium K = &« + 1. This generalizes [1,
Theorem 5.2] and part of [2, Theorem 1]. For the case «, = 1, for all n (in Theorem 3.3),
we show that any nonoscillatory solution converges to 2, while if F satisfies the addi-
tional (sufficient) conditions

V. .u.
JFLHg
ui<vj*iuj:F(ul,uz,...,ukH) < T, (19)
i
ANisilli
JFL]
ui>/\jﬂuj:F(ul,uz,...,ukﬂ) > T, (110)
i

then it is shown in Theorem 3.4 that all solutions converge to 2. Comparing this fact
with the results in [1], we see that the pair of conditions (1.9)-(1.10) seems also to be
necessary. Indeed, these conditions are not satisfied in case of (1.3) and, as it is shown
in [1, Theorem 4.1], it has (nontrivial) solutions which are periodic with period 2.

In Theorem 3.5, we show that if «, = « < 1, for all n, then there is a large class
of equations of the form (1.6) which have unbounded (positive) solutions. This result
extends [1, Theorem 3.1]. In the Section 4, we give two examples of difference equations
with min-max response to illustrate our results.

Also the so-called (2,2)-type equation defined in [6] (Where about 50 types of differ-
ence equations are presented) includes the equation

A1xXn +B1Xp-1

. 1.11
Apxn +BaXp-1 ( )

Xn+1 =
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Under appropriate choice of the parameters, (1.11) can be written as

(B+y)xn-1

, (1.12)
Bxn+YyxXn-1

Xn+1 = X+
which is of the type (1.6). Thus in this paper, we push further the investigation origi-
nated in [6] for such a form of (2,2)-type difference equations.

For other closely related results, which mostly deal with difference equations and
inequalities whose response is (or it can be transformed into) a min-max function, see,
for instance, [7, 8, 9, 10, 11, 12, 13, 14] and the references cited therein.

2. On the min-max functions. In this section, we give a characterization of min-max
functions. The result is incorporated in the following theorem.

THEOREM 2.1. A function F : R¥*! — R, is a min-max function if and only if there are
nonnegative real-valued functions a;(uy,uz,...,ux+1), bj(ui, uz,...,ux+1), j=1,2,...,
k+1, such that

k+1 k+1
> aj(ur,uo,.. ki) = 2. bj(un,uz, . upa) =1,
in1 j=1

k+1 (2.1)
zjzl aj(ul,uz,---,ukﬂ)uj

SK by (U, Uz, Uks1 ) U

F(ulqu)""uk+l) =

’

forall (U1, U2,..., Uks1) € [R{frl.

PROOF. The “if” part is easily proved by using the form of F and the conditions on
the coefficients a;, b;.

To show the inverse, assume that F(u1,uUo,...,Urs+1) iS @ min-max function and fix
any element (u1,uz,...,ur1) € RE*1, We let

e A k+1., e k+1,,
vi= A Uj, wi=Viiiuj, (2.2)

thus v = u;, and w = uj,, for two indices ji, j» € {1,2,...,k+1}.

From the definition of the min-max functions, we know that the value F(ui,
Up,...,Urs1) lies in the interval [v/w,w /v ], thus there is a number a € [0,1] such
that

w v
F(uy,uz,...,ugs1) =a—+1-a)—. (2.3)
v w

Let

. (Q-ap?
b= aw?+(1-a)v?’ (2.4)

It is clear that b belongs to the interval [0,1], and it depends on v, w (thus on
U1, U2,...,Uk+1). By some simple calculations, we obtain

(bw+(1—b)v)<az+(1—a)l):aw+(1—a)v (2.5)
v w
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and consequently we get

w v aw+(1—-a)v
F(ul,ug,...,ukﬂ):a?+(1—a)—— ( )

w bw+((1-b)v’ (2.6)

This proves the theorem since we can set a;j(ui,uz,...,uk+1) := 0, if j # j1,j2, while
aj, (ui,u2,...,ugs1) = 1—aand aj, (w1, uz,...,Uk+1) = a. Similar substitutions are used
for the denominator. The proof is complete. |

REMARK 2.2. The quotient of any two elements of the class of all f : Rk — R,
which satisfy an inequality of the form

k+1 k+1
/\jilujsf(ul,ug,...,ukﬂ)svjiluj (2.7)

produces a min-max function.

3. The main results. Our first result refers to the boundedness of the solutions.

THEOREM 3.1. Consider (1.6), where F is a min-max function and the sequence ()
satisfies

1<C:=infx, <supa, =:B < +o. 3.1)

Then any solution (x,,) with positive initial values satisfies the condition

min{/\’;ﬂxj,%} <x,<L, (3.2)
forallm =1,2,..., where
B
L:= max{vﬁllxj,c—_cl}. (3.3)

Also, if &, = x =1, for all n, then it holds that

M

MsxnsM_l, (3.4)
for allm > 1, where
k+1
Vi X
M:=mind Aktlyx, —2=120 L 3.5
{ Ik -1 5:3)

PROOF. Letn > k+ 1. From (1.6), for all j > 1, we have

C<xj<V! X (3.6)
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Also, forall j =k+2,k+3,...,n, we get

Jj-1
Vil 1 1 Xi v
Xj<B+ ”C’fl Lo py izt (3.7)
These facts imply that
n k+1 V?:lxi
VI X smax{v 1 xi, B+ T} (3.8)
from which we get
Xn < VI X; < max { vkl xg, CB_Cl } (3.9)
and therefore,
C<xm<=<L, (3.10)

forallm=1,2,....
Next let n > k+ 1. From (3.10) and (1.6), it follows that for all j = k+2,k+3,...,n, it
holds that

AN 1 Xi A x
xj=C+ JLkl e o b (3.11)
Therefore, we have
Xi
X; zmin{ Klx, C+ lLl } (3.12)
for all j =1,2,.... This implies that
k+1 Nizi Xi
AL X zmin{m*l xi,C+ l‘T} (3.13)
and so
L
AL lxl>mm{/\f*11xi,—c}. (3.14)
L-1
This gives
L
Xp = AL x> min{ ALy, L—Cl 75», (3.15)

which, together with (3.10), proves the first result of the theorem.
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Next assume that &, =1, n =0,1,.... To show inequality (3.4), we observe that

M
Mﬁxnﬁm, (3.16)
forallm=1,2,...,k+ 1. Also from (1.6), we get
k+1
ASTIX M
Xpao > 1+ 5 gy =M,
ke v L M/(M-1)
il (3.17)
Xppa <142 MIMZD) M
k+2 = Af:}x’ = M _M—ll
These arguments and the induction complete the proof. O

THEOREM 3.2. Consider (1.6), where F is a continuous min-max function and the
sequence () satisfies the condition

1 < liminf &, < limsup &y, < + 0. (3.18)

Then any (positive) solution (x,) satisfies relation (1.8). Hence, if the sequence (cy)
converges to some x(> 1), then (x,) converges to (a constant, which, therefore, is equal
to) x+1=:K.

PROOF. Let (x;,) be a solution. From Theorem 3.1, the solution is bounded, thus
there are two-sided sequences, (V;,) (upper full limiting sequence) and (z;,) (lower full
limiting sequence) of (x,) (see, e.g., [3, 4, 5]), satisfying (1.6), for all integers m, and
such that

liminfx, = zy <z, Ym < Yo = limsup xy, (3.19)

for all m. Let ag := liminf &, and a° := lim sup «,. Then from (1.6), we have

<a"+ 20 zysap+ 20 (3.20)
Yo Zo 0 0 Yo
Combining these two relations, we obtain (1.8). |

THEOREM 3.3. Consider (1.6), where &,, = 1,n = 0,1,..., and F is a min-max function.
Then every nonoscillatory (positive) solution converges to the equilibrium K = 2.

PROOF. Assume first that x, > 2, for all n > —k. Set u,, := x,, — 2. From Theorem 2.1,
we know that F may take the form (2.1), where the (nonnegative) functions aj, b; satisfy

k+1 k+1

Z ai(Xn,. . Xn-k) = Z bj(xn,...,xn-x) = 1. (3.21)
j=1 j=1
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Then we obtain

k+1 k+1
_ zjil Aj(Xnyeny Xn—k) Un+1-j Zjil Dj(Xn,..s Xn—k) Un+1—j
Un+1 Zk+lb ( - k+1b
i b (X, Xnok)Xne1-j 2o b (X, Xn-k) Xni1-j 322
k+1 :
i ai(Xny e Xk )Uni—j 1,
= Skl =5 Vn-kUj
Z; 1Dj(Xn, .o, Xnk) Xni1-j

Our intention is to show that limu,, = 0. To this end, we can either use [7, Lemma 1] or
proceed as follows.

Let (Y;,) be an upper full limiting sequence of (u,,) with Y, < Yy = limsupu,,, for all
integers m. Then, from the previous arguments, it follows that it satisfies the inequality

Yo < %Yo, (3.23)
thus we have Yy = 0. This and the fact that u,, > 0 imply that limx;,, = 2.

Next, assume that x;, < 2, for all n > —k. Set v,, := 2 — x,. From (1.3) and by using
the form of the function F, we obtain

k 1 k l
; 252185 (n, o Xnok) Vnei—j 201 b (X, oo, Xnok) Unsi—j
n+l = k 1 k 1 )
- (xny---:xn—k)xn+1—j Z - (Xn,---axn—k)xru—l—j
(3.24)
k+1
J 14 (Xn, s Xn-k) Uns1-j - 1 un v
Sk < Viewk Vi
- (Xny---:xn—k)xn+1—j M

where M (> 1) is the number defined in Theorem 3.1. By using this fact and following
the same procedure as in the first case, we derive that lim, . v, = 0, which implies
that limx,, = 2, as desired. O

THEOREM 3.4. Consider (1.6), where o¢,, =1, n =0,1,..., and F is a continuous min-
max function satisfying the properties (1.9) and (1.10). Then every (positive) solution
converges to the equilibrium K = 2.

PROOF. Let (x,) be a solution. Then by Theorem 3.1, (x,,) is bounded. Consider an
upper full limiting sequence (y,,) and a lower full limiting sequence (z,,) of (x,), as
above. From (1.6), we have

z
y051+321—§, zozl+372 (3.25)
and therefore, we get
Y0Zo = Yo + Zo. (3.26)
This gives
1.1 4 (3.27)

Yo 2o
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If it happens that yg,zg > 2, or Yy,2zo < 2, then we should have 1/yy,1/z9 < 1/2 and
1/y0,1/z9 > 1/2, respectively. Both these arguments contradict (3.27). Therefore, we
must have

Zp <2 <. (3.28)
Assume that there is some j € {-k—1,...,—1} such that y; < )¢ and let j, be an index
such that
Yio = AL Vi (3.29)
Then from (1.9), we get
Yijo < Vij#joYi=2Xo (3.30)

and so from (1.6) and condition (1.9), we have

Vo=1+F(y_1,...,Y-k-1) < 1420 21420
Yio Z0

(3.31)

This gives yozo < Yo + 2o, contradicting (3.26). Thus we have y; = yy, for all j =
—-k-1,...,—1, and therefore,

Yo=1+F(y-1,...,¥-k-1) = 1 +F(¥0,...,20) = 2. (3.32)

Similarly, we can use condition (1.10) to obtain zy = 2. The proof is complete. |

Our final result refers to the case & € [0,1). We show that in this case, there are
equations of the form (1.3) which admit unbounded solutions.

THEOREM 3.5. Consider the equation

m
Zi:o AiXn-2i-1

; 3.33
Sitobixn_oi ( )

Xn+1 = X+

where m € N, «x € [0,1), and where the coefficients a; and bj, j = 0,...,m, are nonneg-
ative constants which satisfy the conditions

M=
8

I
Mz
)

(3.34)

~
Il
(=)
~
I
(=)

Then there exist unbounded solutions of (3.33).

PROOE. Obviously, without loss of the generality, we can assume that > ya; =
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Assume that @ € (0,1). We choose the initial conditions such that

X_ Jee, X1 > > 14+,
(2m+1) 17 1"« (3.35)
X< X 2y, X0 < 1.
We set

D:= /\;y:lox_(zl'.,_l) (336)

and observe that

1
D > . 3.37)
1-«x

From (3.33), we have

m m
Zi:o AiX_(2i+1)

X1 =&+ > o+ D aixX_is1) > &+D,
' Zﬁo bix_2l‘ 1;) iX—(2i+1)
St AiX1-i+1) 1
Xo=&+~cm . o <O&t+tom
2 Z?:LO bix1-i Zﬁo bix1 2
=+ 1 s )
box1+b1x-1+- - +bpX-2mi1  bo(e+D)+(1-bo)(1/(1-))
. 1 (3.38)

T holar 1 -—0)+ (1-bo)(1/(1-0) T hoar1/(1-0) =

Sitoaixo (2i+1) &
i=0 AiX2—(2i+
s >+ Zaix2—(2i+l)

X3 =X+ m
2izobixa—o =

%

o+min{xy;,x_1,...,X_2ms1} = +min{x;,x_1,...,X_2m-1}

«+min{x;, min{x_y,...,X_2m-1}} = x+D.
Following the same procedure, we get
X2j41 > &X+D, X242 <1, (3.39)
for all j =0,1,...,m. By induction, we obtain
X(m+2)j-(2s+1) > &j+D, (3.40)
forall jeNand s =0,1,...,m, as well as
X<Xmp<l, m=-m,—(m-1),...,—1,.... (3.41)

Inequality (3.40) implies the desired result in case « > 0.
Assume that & = 0. Choose € € (0,1) and the initial conditions such that

_ yeey X1 > ——,
X—(2m+1) X-1 1—¢ (3.42)

0<X_om,y--yXo <1—¢€.
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From (3.33), we have

. SitoaiX—iv1y _ 1/(1—¢) 1 . 1
! Zﬁobix,zl' 1-¢ (1—6)2 1-¢’
o = Zfﬁgﬂaixl—(zwl) - 1-¢ (3.43)
Dicobixioo box1+(1—Dbo)(1/(1-¢))
< 1-¢ <l-¢
T bo(1/(1-€)2) +(1=bo)(1/(1~-¢)) '
Following the same procedure, we get
VR S
AR TIPSR P (3.44)
Xoj2 <1-g,
for all j =0,1,...,m. By induction, we obtain
1
X(@m+2)j—(2s+1) > TEPSILE (3.45)
forall jeNand s =0,1,...,m, as well as
O<xom<l—-g mn=1,2,.... (3.46)
From (3.45), the result follows. |

REMARK 3.6. Equation (3.33) includes the special case (1.3). Thus for « € (0,1),
Theorem 3.5 applies and therefore, (1.3) has unbounded solutions with positive initial
values. On the other hand, (3.33) does not include the case (1.4) and as proved in [2],
for the same values of «, (1.4) has a global attractor.

REMARK 3.7. By some modifications of the proof of Theorem 3.5, we can prove the
following result.

THEOREM 3.8. Consider the equation

m
it AiXn-2i-1

) 3.47)
Sitobixn-oi

Xn+1 = Kp +

where m € N, (xy) is a sequence of positive real numbers such that lim,, .. &, =: A €
[0,1), and where the coefficientsaj andbj, j = 0,...,m, are nonnegative constants which
satisfy the conditions

m m
> ai=> b;. (3.48)
i=0 i=0

Then there exist unbounded solutions of (3.47).
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4. Some illustrative examples

EXAMPLE 4.1. Consider the difference equation

2
Bxn +yx2+0x5_,
BxXn+yXnXn-1+0x5_,

Xnpil = X+ (4.1)

where all the coefficients are positive real numbers. The rational function on the right-
hand side is a min-max function, since it can be written in the form

((B+yxn) /| (B+yxn+06xn-1))Xn+ (6xn-1/(B+YXn+06Xn-1))Xn-1
(B/(B+yxn+06xn-1))Xn+ ((yXn+06xn-1)/(B+YXn+06xn-1))Xn-1"

(4.2)

Thus, from Theorems 3.2 and 3.4, we conclude that, for every fixed & = 1, any solution
of (4.1) converges to the equilibrium « + 1. Notice that conditions (1.9) and (1.10) are
also satisfied.

EXAMPLE 4.2. Consider the difference equation

Zjie{n,n—l,n—Z} X Xj2Xj3
X+ X5 | +XD 5 +6XpXn-1Xn_2

Xnil = X+ (4.3)

where & > 0. This is a third-order difference equation whose response on the right-hand
side is a min-max function. Indeed, this can be written in the form

2 2
Z-jiE{"’n—lyn—Z}, J1#j2#j3#51 ((le +Xj, Xj, +xJ'1XJ'3)/(X1’l +Xn-1 +X"*2) )le

2 2
ZjiE{",n*L"*Z}, J*R*R3*N ((le + ZXJAZXJ'S)/(XW +Xn-1+Xn-2) >Xj1

(4.4)

Here, again, Theorems 3.2 and 3.4 apply and we conclude that in case « > 1, any solution
of (4.3) converges to «+ 1.
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