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ON A DIFFERENCE EQUATION WITH MIN-MAX RESPONSE
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We investigate the global behavior of the (positive) solutions of the difference equation
xn+1 = αn + F(xn,. . . ,xn−k), n = 0,1, . . . , where (αn) is a sequence of positive reals and
F is a min-max function in the sense introduced here. Our results extend several results
obtained in the literature.
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1. Introduction. Let k be a positive integer and let R+ be the set of all positive reals.

We give the following definition.

Definition 1.1. A function F :Rk+1+ →R+ is called a min-max function if it satisfies

the inequality

∧k+1
j=1uj
∨k+1
j=1uj

≤ F(u1,u2, . . . ,uk+1
)≤ ∨k+1

j=1uj
∧k+1
j=1uj

, (1.1)

for all uj > 0, j = 1, . . . ,k+1, where, as usual, the symbol ∨nj=1uj stands for the maxi-

mum of the variables uj , j = 1, . . . ,n, and ∧nj=1uj stands for their minimum.

In Section 2, we give exact information on the form which a min-max function may

have.

Simple examples of min-max functions are

F1
(
u1,u2

)
:= u2

u1
, F2

(
u1,u2

)
:= u1

u2
(1.2)

which appear as the response functions, respectively, in the difference equation

yn+1 =α+ yn−1

yn
(1.3)

studied in [1] and in the difference equation

yn+1 =α+ yn
yn−1

(1.4)

studied in [2]. These two equations have completely different behavior; see Remark 3.6.

Also in [13, 14], the second author considered the closely related equation

xn+1 =αn+ xn−1

xn
, (1.5)
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where (αn) is either a periodic sequence (with period two) or a convergent sequence of

nonnegative real numbers.

Motivated by the above-mentioned works, in this paper, we study the behavior of the

difference equation

xn+1 =αn+F
(
xn,. . . ,xn−k

)
, n= 0,1, . . . , (1.6)

where the initial conditions x−k, . . . ,x0 are positive real numbers, (αn) is a sequence of

positive real numbers, and F is a min-max function.

Since a min-max function takes the value 1 at the diagonal of the spaceRk+1+ , it follows

that in case the sequence (αn) converges to a certain α, the positive real number

K :=α+1 (1.7)

is the unique asymptotic equilibrium of (1.6).

Our purpose here is to discuss the boundedness and persistence of (1.6), as well

as the attractivity of the asymptotic equilibrium α+ 1, where α is the limit of (αn)
whenever this exists. This follows immediately by Theorem 3.2, where we show that, if

1< liminfαn ≤ limsupαn <+∞, then any solution (xn) satisfies the relation

1≤ limsupxn
liminfxn

≤ limsupαn−1
liminfαn−1

. (1.8)

Thus, if the sequence (αn) converges to some α(> 1), then any solution with positive

initial values converges to the asymptotic equilibrium K = α+1. This generalizes [1,

Theorem 5.2] and part of [2, Theorem 1]. For the case αn = 1, for all n (in Theorem 3.3),

we show that any nonoscillatory solution converges to 2, while if F satisfies the addi-

tional (sufficient) conditions

ui <∨j≠iuj �⇒ F
(
u1,u2, . . . ,uk+1

)
<
∨j≠iuj
ui

, (1.9)

ui >∧j≠iuj �⇒ F
(
u1,u2, . . . ,uk+1

)
>
∧j≠iuj
ui

, (1.10)

then it is shown in Theorem 3.4 that all solutions converge to 2. Comparing this fact

with the results in [1], we see that the pair of conditions (1.9)–(1.10) seems also to be

necessary. Indeed, these conditions are not satisfied in case of (1.3) and, as it is shown

in [1, Theorem 4.1], it has (nontrivial) solutions which are periodic with period 2.

In Theorem 3.5, we show that if αn = α < 1, for all n, then there is a large class

of equations of the form (1.6) which have unbounded (positive) solutions. This result

extends [1, Theorem 3.1]. In the Section 4, we give two examples of difference equations

with min-max response to illustrate our results.

Also the so-called (2,2)-type equation defined in [6] (where about 50 types of differ-

ence equations are presented) includes the equation

xn+1 = A1xn+B1xn−1

A2xn+B2xn−1
. (1.11)
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Under appropriate choice of the parameters, (1.11) can be written as

xn+1 =α+ (β+γ)xn−1

βxn+γxn−1
, (1.12)

which is of the type (1.6). Thus in this paper, we push further the investigation origi-

nated in [6] for such a form of (2,2)-type difference equations.

For other closely related results, which mostly deal with difference equations and

inequalities whose response is (or it can be transformed into) a min-max function, see,

for instance, [7, 8, 9, 10, 11, 12, 13, 14] and the references cited therein.

2. On the min-max functions. In this section, we give a characterization of min-max

functions. The result is incorporated in the following theorem.

Theorem 2.1. A function F :Rk+1+ →R+ is a min-max function if and only if there are

nonnegative real-valued functions aj(u1,u2, . . . ,uk+1), bj(u1,u2, . . . ,uk+1), j = 1,2, . . . ,
k+1, such that

k+1∑
j=1

aj
(
u1,u2, . . . ,uk+1

)= k+1∑
j=1

bj
(
u1,u2, . . . ,uk+1

)= 1,

F
(
u1,u2, . . . ,uk+1

)=
∑k+1
j=1 aj

(
u1,u2, . . . ,uk+1

)
uj∑k+1

j=1 bj
(
u1,u2, . . . ,uk+1

)
uj
,

(2.1)

for all (u1,u2, . . . ,uk+1)∈Rk+1+ .

Proof. The “if ” part is easily proved by using the form of F and the conditions on

the coefficients aj , bj .
To show the inverse, assume that F(u1,u2, . . . ,uk+1) is a min-max function and fix

any element (u1,u2, . . . ,uk+1)∈Rk+1+ . We let

v :=∧k+1
j=1uj, w :=∨k+1

j=1uj, (2.2)

thus v =uj1 and w =uj2 , for two indices j1,j2 ∈ {1,2, . . . ,k+1}.
From the definition of the min-max functions, we know that the value F(u1,

u2, . . . ,uk+1) lies in the interval [v/w,w/v], thus there is a number a ∈ [0,1] such

that

F
(
u1,u2, . . . ,uk+1

)= aw
v
+(1−a) v

w
. (2.3)

Let

b := (1−a)v2

aw2+(1−a)v2
. (2.4)

It is clear that b belongs to the interval [0,1], and it depends on v , w (thus on

u1,u2, . . . ,uk+1). By some simple calculations, we obtain

(
bw+(1−b)v)(aw

v
+(1−a) v

w

)
= aw+(1−a)v (2.5)



2918 G. L. KARAKOSTAS AND S. STEVIĆ

and consequently we get

F
(
u1,u2, . . . ,uk+1

)= aw
v
+(1−a) v

w
= aw+(1−a)v
bw+(1−b)v . (2.6)

This proves the theorem since we can set aj(u1,u2, . . . ,uk+1) := 0, if j ≠ j1,j2, while

aj1(u1,u2, . . . ,uk+1)= 1−a and aj2(u1,u2, . . . ,uk+1)= a. Similar substitutions are used

for the denominator. The proof is complete.

Remark 2.2. The quotient of any two elements of the class of all f : Rk+1+ → R+
which satisfy an inequality of the form

∧k+1
j=1uj ≤ f

(
u1,u2, . . . ,uk+1

)≤∨k+1
j=1uj (2.7)

produces a min-max function.

3. The main results. Our first result refers to the boundedness of the solutions.

Theorem 3.1. Consider (1.6), where F is a min-max function and the sequence (αn)
satisfies

1<C := infαn ≤ supαn =: B <+∞. (3.1)

Then any solution (xn) with positive initial values satisfies the condition

min
{
∧k+1
j=1 xj,

LC
L−1

}
≤ xn ≤ L, (3.2)

for all n= 1,2, . . . , where

L :=max
{
∨k+1
j=1 xj,

BC
C−1

}
. (3.3)

Also, if αn =α= 1, for all n, then it holds that

M ≤ xn ≤ M
M−1

, (3.4)

for all n≥ 1, where

M :=min

{
∧k+1
j=1 xj,

∨k+1
j=1xj

∨k+1
j=1xj−1

}
. (3.5)

Proof. Let n> k+1. From (1.6), for all j ≥ 1, we have

C < xj ≤∨ni=1xi. (3.6)
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Also, for all j = k+2,k+3, . . . ,n, we get

xj ≤ B+
∨j−1
i=j−k−1xi
C

≤ B+ ∨
n
i=1xi
C

. (3.7)

These facts imply that

∨nj=1xj ≤max
{
∨k+1
i=1 xi,B+

∨ni=1xi
C

}
, (3.8)

from which we get

xn ≤∨ni=1xi ≤max
{
∨k+1
i=1 xi,

BC
C−1

}
, (3.9)

and therefore,

C < xm ≤ L, (3.10)

for all m= 1,2, . . . .
Next let n> k+1. From (3.10) and (1.6), it follows that for all j = k+2,k+3, . . . ,n, it

holds that

xj ≥ C+
∧j−1
i=j−k−1xi
L

≥ C+ ∧
n
i=1xi
L

. (3.11)

Therefore, we have

xj ≥min
{
∧k+1
i=1 xi,C+

∧ni=1xi
L

}
, (3.12)

for all j = 1,2, . . . . This implies that

∧ni=1xi ≥min
{
∧k+1
i=1 xi,C+

∧ni=1xi
L

}
(3.13)

and so

∧ni=1xi ≥min
{
∧k+1
i=1 xi,

LC
L−1

}
. (3.14)

This gives

xn ≥∧ni=1xi ≥min
{
∧k+1
i=1 xi,

LC
L−1

}
, (3.15)

which, together with (3.10), proves the first result of the theorem.
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Next assume that αn = 1, n= 0,1, . . . . To show inequality (3.4), we observe that

M ≤ xn ≤ M
M−1

, (3.16)

for all n= 1,2, . . . ,k+1. Also from (1.6), we get

xk+2 ≥ 1+ ∧
k+1
j=1xj
∨k+1
j=1xj

≥ 1+ M
M/(M−1)

=M,

xk+2 ≤ 1+ ∨
k+1
j=1xj
∧k+1
j=1xj

≤ 1+M/(M−1)
M

= M
M−1

.

(3.17)

These arguments and the induction complete the proof.

Theorem 3.2. Consider (1.6), where F is a continuous min-max function and the

sequence (αn) satisfies the condition

1< liminfαn ≤ limsupαn <+∞. (3.18)

Then any (positive) solution (xn) satisfies relation (1.8). Hence, if the sequence (αn)
converges to some α(> 1), then (xn) converges to (a constant, which, therefore, is equal

to) α+1=:K.

Proof. Let (xn) be a solution. From Theorem 3.1, the solution is bounded, thus

there are two-sided sequences, (ym) (upper full limiting sequence) and (zm) (lower full

limiting sequence) of (xn) (see, e.g., [3, 4, 5]), satisfying (1.6), for all integers m, and

such that

liminfxn = z0 ≤ zm, ym ≤y0 = limsupxn, (3.19)

for all m. Let a0 := liminfαn and a0 := limsupαn. Then from (1.6), we have

y0 ≤ a0+ y0

z0
, z0 ≥ a0+ z0

y0
. (3.20)

Combining these two relations, we obtain (1.8).

Theorem 3.3. Consider (1.6), whereαn = 1,n= 0,1, . . . , and F is a min-max function.

Then every nonoscillatory (positive) solution converges to the equilibrium K = 2.

Proof. Assume first that xn ≥ 2, for all n≥−k. Set un := xn−2. From Theorem 2.1,

we know that F may take the form (2.1), where the (nonnegative) functions aj , bj satisfy

k+1∑
j=1

aj
(
xn,. . . ,xn−k

)= k+1∑
j=1

bj
(
xn,. . . ,xn−k

)= 1. (3.21)
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Then we obtain

un+1 =
∑k+1
j=1 aj

(
xn,. . . ,xn−k

)
un+1−j∑k+1

j=1 bj
(
xn,. . . ,xn−k

)
xn+1−j

−
∑k+1
j=1 bj

(
xn,. . . ,xn−k

)
un+1−j∑k+1

j=1 bj
(
xn,. . . ,xn−k

)
xn+1−j

≤
∑k+1
j=1 aj

(
xn,. . . ,xn−k

)
un+1−j∑k+1

j=1 bj
(
xn,. . . ,xn−k

)
xn+1−j

≤ 1
2
∨nn−kuj.

(3.22)

Our intention is to show that limun = 0. To this end, we can either use [7, Lemma 1] or

proceed as follows.

Let (Ym) be an upper full limiting sequence of (un) with Ym ≤ Y0 = limsupun, for all

integersm. Then, from the previous arguments, it follows that it satisfies the inequality

Y0 ≤ 1
2
Y0, (3.23)

thus we have Y0 = 0. This and the fact that un ≥ 0 imply that limxn = 2.

Next, assume that xn ≤ 2, for all n ≥ −k. Set vn := 2−xn. From (1.3) and by using

the form of the function F , we obtain

vn+1 =
∑k+1
j=1 aj

(
xn,. . . ,xn−k

)
vn+1−j∑k+1

j=1 bj
(
xn,. . . ,xn−k

)
xn+1−j

−
∑k+1
j=1 bj

(
xn,. . . ,xn−k

)
vn+1−j∑k+1

j=1 bj
(
xn,. . . ,xn−k

)
xn+1−j

,

≤
∑k+1
j=1 aj

(
xn,. . . ,xn−k

)
vn+1−j∑k+1

j=1 bj
(
xn,. . . ,xn−k

)
xn+1−j

≤ 1
M
∨nj=n−kvj,

(3.24)

where M(> 1) is the number defined in Theorem 3.1. By using this fact and following

the same procedure as in the first case, we derive that limn→∞vn = 0, which implies

that limxn = 2, as desired.

Theorem 3.4. Consider (1.6), where αn = 1, n= 0,1, . . . , and F is a continuous min-

max function satisfying the properties (1.9) and (1.10). Then every (positive) solution

converges to the equilibrium K = 2.

Proof. Let (xn) be a solution. Then by Theorem 3.1, (xn) is bounded. Consider an

upper full limiting sequence (ym) and a lower full limiting sequence (zm) of (xn), as

above. From (1.6), we have

y0 ≤ 1+ y0

z0
, z0 ≥ 1+ z0

y0
(3.25)

and therefore, we get

y0z0 =y0+z0. (3.26)

This gives

1
y0
+ 1
z0
= 1. (3.27)
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If it happens that y0,z0 > 2, or y0,z0 < 2, then we should have 1/y0,1/z0 < 1/2 and

1/y0,1/z0 > 1/2, respectively. Both these arguments contradict (3.27). Therefore, we

must have

z0 ≤ 2≤y0. (3.28)

Assume that there is some j ∈ {−k−1, . . . ,−1} such that yj < y0 and let j0 be an index

such that

yj0 =∧−1
j=−k−1yj. (3.29)

Then from (1.9), we get

yj0 <∨j≠j0yj ≤y0 (3.30)

and so from (1.6) and condition (1.9), we have

y0 = 1+F(y−1, . . . ,y−k−1
)
< 1+ y0

yj0
≤ 1+ y0

z0
. (3.31)

This gives y0z0 < y0 + z0, contradicting (3.26). Thus we have yj = y0, for all j =
−k−1, . . . ,−1, and therefore,

y0 = 1+F(y−1, . . . ,y−k−1
)= 1+F(y0, . . . ,y0

)= 2. (3.32)

Similarly, we can use condition (1.10) to obtain z0 = 2. The proof is complete.

Our final result refers to the case α ∈ [0,1). We show that in this case, there are

equations of the form (1.3) which admit unbounded solutions.

Theorem 3.5. Consider the equation

xn+1 =α+
∑m
i=0aixn−2i−1∑m
i=0bixn−2i

, (3.33)

where m∈N, α∈ [0,1), and where the coefficients aj and bj , j = 0, . . . ,m, are nonneg-

ative constants which satisfy the conditions

m∑
i=0

ai =
m∑
i=0

bi. (3.34)

Then there exist unbounded solutions of (3.33).

Proof. Obviously, without loss of the generality, we can assume that
∑m
i=0ai =∑m

i=0bi = 1.
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Assume that α∈ (0,1). We choose the initial conditions such that

x−(2m+1), . . . ,x−1 >
1

1−α > 1+α,
α < x−2m,. . . ,x0 < 1.

(3.35)

We set

D :=∧mi=0x−(2i+1) (3.36)

and observe that

D >
1

1−α. (3.37)

From (3.33), we have

x1 =α+
∑m
i=0aix−(2i+1)∑m
i=0bix−2i

> α+
m∑
i=0

aix−(2i+1) > α+D,

x2 =α+
∑m
i=0aix1−(2i+1)∑m
i=0bix1−2i

< α+ 1∑m
i=0bix1−2i

=α+ 1
b0x1+b1x−1+···+bmx−2m+1

≤α+ 1
b0(α+D)+

(
1−b0

)(
1/(1−α))

≤α+ 1
b0
(
α+1/(1−α))+(1−b0

)(
1/(1−α)) =α+

1
b0α+1/(1−α) ≤ 1,

x3 =α+
∑m
i=0aix2−(2i+1)∑m
i=0bix2−2i

> α+
m∑
i=0

aix2−(2i+1)

≥α+min
{
x1,x−1, . . . ,x−2m+1

}≥α+min
{
x1,x−1, . . . ,x−2m−1

}
=α+min

{
x1,min

{
x−1, . . . ,x−2m−1

}}≥α+D.

(3.38)

Following the same procedure, we get

x2j+1 >α+D, x2j+2 < 1, (3.39)

for all j = 0,1, . . . ,m. By induction, we obtain

x(2m+2)j−(2s+1) > αj+D, (3.40)

for all j ∈N and s = 0,1, . . . ,m, as well as

α<x2n < 1, n=−m,−(m−1), . . . ,−1, . . . . (3.41)

Inequality (3.40) implies the desired result in case α> 0.

Assume that α= 0. Choose ε ∈ (0,1) and the initial conditions such that

x−(2m+1), . . . ,x−1 >
1

1−ε ,
0<x−2m,. . . ,x0 < 1−ε.

(3.42)
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From (3.33), we have

x1 =
∑m
i=0aix−(2i+1)∑m
i=0bix−2i

>
1/(1−ε)

1−ε = 1
(1−ε)2 >

1
1−ε ,

x2 =
∑m
i=0aix1−(2i+1)∑m
i=0bix1−2i

<
1−ε

b0x1+
(
1−b0

)(
1/(1−ε))

≤ 1−ε
b0
(
1/(1−ε)2)+(1−b0

)(
1/(1−ε)) < 1−ε.

(3.43)

Following the same procedure, we get

x2j+1 >
1

(1−ε)2 >
1

1−ε ,
x2j+2 < 1−ε,

(3.44)

for all j = 0,1, . . . ,m. By induction, we obtain

x(2m+2)j−(2s+1) >
1

(1−ε)j+1
, (3.45)

for all j ∈N and s = 0,1, . . . ,m, as well as

0<x2n < 1−ε, n= 1,2, . . . . (3.46)

From (3.45), the result follows.

Remark 3.6. Equation (3.33) includes the special case (1.3). Thus for α ∈ (0,1),
Theorem 3.5 applies and therefore, (1.3) has unbounded solutions with positive initial

values. On the other hand, (3.33) does not include the case (1.4) and as proved in [2],

for the same values of α, (1.4) has a global attractor.

Remark 3.7. By some modifications of the proof of Theorem 3.5, we can prove the

following result.

Theorem 3.8. Consider the equation

xn+1 =αn+
∑m
i=0aixn−2i−1∑m
i=0bixn−2i

, (3.47)

where m ∈ N, (αn) is a sequence of positive real numbers such that limn→∞αn =: A ∈
[0,1), and where the coefficientsaj and bj , j = 0, . . . ,m, are nonnegative constants which

satisfy the conditions

m∑
i=0

ai =
m∑
i=0

bi. (3.48)

Then there exist unbounded solutions of (3.47).
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4. Some illustrative examples

Example 4.1. Consider the difference equation

xn+1 =α+ βxn+γx2
n+δx2

n−1

βxn+γxnxn−1+δx2
n−1

, (4.1)

where all the coefficients are positive real numbers. The rational function on the right-

hand side is a min-max function, since it can be written in the form
((
β+γxn

)
/
(
β+γxn+δxn−1

))
xn+

(
δxn−1/

(
β+γxn+δxn−1

))
xn−1(

β/
(
β+γxn+δxn−1

))
xn+

((
γxn+δxn−1

)
/
(
β+γxn+δxn−1

))
xn−1

. (4.2)

Thus, from Theorems 3.2 and 3.4, we conclude that, for every fixed α≥ 1, any solution

of (4.1) converges to the equilibrium α+1. Notice that conditions (1.9) and (1.10) are

also satisfied.

Example 4.2. Consider the difference equation

xn+1 =α+
∑
ji∈{n,n−1,n−2}xj1xj2xj3

x3
n+x3

n−1+x3
n−2+6xnxn−1xn−2

, (4.3)

whereα≥ 0. This is a third-order difference equation whose response on the right-hand

side is a min-max function. Indeed, this can be written in the form

∑
ji∈{n,n−1,n−2}, j1≠j2≠j3≠j1

((
x2
j1+xj1xj2+xj1xj3

)
/
(
xn+xn−1+xn−2

)2
)
xj1∑

ji∈{n,n−1,n−2}, j1≠j2≠j3≠j1
((
x2
j1+2xj2xj3

)
/
(
xn+xn−1+xn−2

)2
)
xj1

. (4.4)

Here, again, Theorems 3.2 and 3.4 apply and we conclude that in caseα≥ 1, any solution

of (4.3) converges to α+1.
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