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We give a description of all transmutation operators from the Bessel-Struve operator to the
second-derivative operator. Next we define and characterize the mean-periodic functions on
the space � of entire functions and we characterize the continuous linear mappings from
� into itself which commute with Bessel-Struve operator.
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1. Introduction. Let A and B be two differential operators on a linear space X. We

say that χ is a transmutation operator of A into B if χ is an isomorphism from X
into itself such that Aχ = χB. This notion was introduced by Delsarte in [2] and some

generalization and applications were given in [1, 3, 7, 10].

In the case where A and B are two differential operators having the same order and

without any singularity on the complex plan, acting on the space of entire functions on

C denoted here by �, Delsarte showed in [3] the existence of a transmutation operator

between A and B and gave some applications on the theory of mean-periodic functions

on C.

In this paper, we consider the operator �α, α>−1/2, on C, given by

�αf(z)= d
2f
dz2

(z)+ 2α+1
z

[
df
dz
(z)− df

dz
(0)

]
, (1.1)

where f is an entire function on C. We call this operator Bessel-Struve operator on C.

The Bessel-Struve kernel Sα(λ·), λ ∈ C, which is the unique solution of the ini-

tial value problem �αu(z) = λ2u(z) with the initial conditions u(0) = 1 and u′(0) =
λΓ(α+1)/

√
π Γ(α+3/2), is given by

Sα(λz)= jα(iλz)−ihα(iλz) ∀z ∈ C, (1.2)

where jα and hα are the normalized Bessel and Struve functions (see [4]).

Moreover, the Bessel-Struve kernel is a holomorphic function on C×C and it can be

expanded in a power series in the form

Sα(λz)=
+∞∑
n=0

(λz)n

cn(α)
, cn(α)=

√
πn!Γ(n/2+α+1)

Γ(α+1)Γ
(
(n+1)/2

) . (1.3)
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The Bessel-Struve intertwining operator χα is defined from the space � into itself by

χαf(z)=
+∞∑
n=0

dnf
dzn

(0)
zn

cn(α)
∀f ∈�, z ∈ C. (1.4)

The dual intertwining operator tχα of χα is defined on �′ (the dual space of �) by

〈tχαT ,g〉= 〈T ,χαg〉 ∀g ∈�, T ∈�′. (1.5)

The Bessel-Struve transform �α is defined on �′ by

�α(T)(λ)=
〈
T ,Sα(−iλ·)

〉 ∀λ∈ C. (1.6)

We use the transmutation operator χα to define the Bessel-Struve translation operators

τz,z ∈ C, associated with �α, and the Bessel-Struve convolution on � and �′. A function

f in � is said to be mean periodic if the closed subspace Ω(f ) generated by τzf ,z ∈ C,

satisfies Ω(f )≠�.

The objective of this paper is to characterize every transmutation operator of �α into

the second derivative operator from � into itself. Next, we study the mean-periodic

functions associated with the Bessel-Struve operator and we characterize the continu-

ous linear mappings from � into itself which commute with �α.

We point out that the harmonic analysis associated with differential and differential-

difference operators allows many applications as the study of integral representations

(see [9]), Plancherel, and reconstruction formulas and other applications as the use of

wavelets packets in the inversion of transmutation operators for the J. L. Lions operator

and the Dunkl operator (see [5, 6]).

The content of this paper is as follows.

In Section 2, we prove that the Bessel-Struve intertwining operator χα is a topological

isomorphism from � into itself satisfying

∀f ∈�, �αχαf = χα d
2

dz2
f ,

χαf(0)= f(0),
(
χαf

)′(0)= f ′(0)
c1(α)

.
(1.7)

Using this operator and its dual, we study the harmonic analysis associated with the

operator �α (Bessel-Struve transform, Bessel-Struve translation operators, and Bessel-

Struve convolution). Next, we determine all transmutation operatorsW from the Bessel-

Struve operator �α to the second derivative operator d2/dz2.

In Section 3, we study the mean-periodic functions associated with �α. Next, we give

the central result of the paper, which characterizes the continuous linear mappings

from � into itself which commute with �α.
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2. Bessel-Struve transmutation operators. In this section, we consider the normal-

ized Bessel and Struve functions which allow to define the Bessel-Struve kernel. Next,

we define the Bessel-Struve intertwining operator χα and its dual tχα; after that, we

study the harmonic analysis associated with the operator �α. The aim of this section is

to characterize every transmutation operator of �α into d2/dz2 from � into itself.

Let α>−1/2. The normalized Bessel function jα is the kernel defined on C by

jα(z)= 2αΓ(α+1)
Jα(z)
zα

= Γ(α+1)
+∞∑
n=0

(−1)n(z/2)2n

n!Γ(n+α+1)
, (2.1)

where Jα is the Bessel function of order α (see [4, 12]).

The normalized Struve function hα is the kernel defined on C by

hα(z)= 2αΓ(α+1)
Hα(z)
zα

= Γ(α+1)
+∞∑
n=0

(−1)n(z/2)2n+1

Γ(n+3/2)Γ(n+α+3/2)
, (2.2)

where Hα is the Struve function of order α (see [4, 12]).

This function has the following Poisson integral representation:

hα(z)= 2Γ(α+1)√
π Γ(α+1/2)

∫ 1

0

(
1−t2)α−1/2

sin(zt)dt. (2.3)

The function z→ hα(iλz), λ,z ∈ C, is the unique solution of the differential equation

�αu(z)= λ2u(z),

u(0)= 0, u′(0)= λΓ(α+1)√
π Γ(α+3/2)

.
(2.4)

The functions hα and jα are related by the formula

hα(z)= Γ(α+1)z√
πΓ(α+3/2)

∫ π/2
0

jα+1/2(zsinϕ)sinϕdϕ. (2.5)

The Bessel-Struve kernel is the function Sα defined on C by

Sα(z)= jα(iz)−ihα(iz). (2.6)

This kernel can be expanded in a power series in the form

Sα(z)=
+∞∑
n=0

zn

cn(α)
, cn(α)=

√
πn!Γ(n/2+α+1)

Γ(α+1)Γ
(
(n+1)/2

) , (2.7)

and has the following integral representation:

Sα(z)= 2Γ(α+1)√
π Γ(α+1/2)

∫ 1

0

(
1−t2)α−1/2

exp(zt)dt. (2.8)
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The function z→ Sα(λz), λ∈ C, is the unique solution of the differential equation

�αu(z)= λ2u(z),

u(0)= 1, u′(0)= λΓ(α+1)√
π Γ(α+3/2)

.
(2.9)

Notations.

(i) We denote by �, the space of entire functions on C, with the topology of the

uniform convergence on compact subsets of C. Thus � is a Fréchet space.

(ii) We denote by �′, the dual space of �.

Proposition 2.1. The operator χα defined by

χαf(z)=
+∞∑
n=0

dnf
dzn

(0)
zn

cn(α)
, ∀f ∈�, z ∈ C, (2.10)

is an isomorphism from � into itself satisfying the transmutation relation

∀f ∈�, �αχαf = χα d
2

dz2
f ,

χαf(0)= f(0),
(
χαf

)′(0)= f ′(0)
c1(α)

.
(2.11)

The inverse of χα is given by

χ−1
α (f)(z)=

+∞∑
n=0

�nα(f)(0)
z2n

(2n)!
+c1(α)

+∞∑
n=0

d
(
�nαf

)
dz

(0)
z2n+1

(2n+1)!
∀f ∈�, z ∈ C.

(2.12)

Proof. First we prove that the image of the function f in � by χα is an entire

function, and that χα is a continuous linear operator.

Since f is an entire function, from the Cauchy integral formula, we have

∀n∈N, dnf
dzn

(0)= n!
2iπ

∫
CR

f (w)
wn+1

dw, (2.13)

whereCR is a circle with center 0 and radiusR > 0. Hence there exists a positive constant

M such that

∀n∈N,
∣∣∣∣dnfdzn (0)

1
cn(α)

∣∣∣∣≤MR−n‖f‖R, (2.14)

where

‖f‖R =max
|z|≤R

∣∣f(z)∣∣. (2.15)

As R is arbitrary, the radius of convergence of the power series in (2.10) is infinite. Thus

χα(f) is an entire function.
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Using (2.14), we obtain

∀f ∈�,
∥∥χα(f)∥∥R ≤ 2M‖f‖2R. (2.16)

Thus χα defines a continuous linear mapping from � into itself. Furthermore, using

the fact that

∀n≥ 2, �α
(
zn
)= cn(α)

cn−2(α)
zn−2, (2.17)

we get

∀z ∈ C, �αχαf(z)=
+∞∑
n=2

dnf
dzn

(0)
zn−2

cn−2(α)
=

+∞∑
n=0

dn+2f
dzn+2

(0)
zn

cn(α)
= χα d

2

dz2
f(z).

(2.18)

It is clear that

χαf(0)= f(0),
(
χαf

)′(0)= f ′(0)
c1(α)

. (2.19)

Suppose now that χαf =0 for a certain f ∈�. Then, according to (2.10), (dnf/dzn)(0)=
0, n∈N. Hence f = 0, thus we prove that χα is a one-to-one mapping from � into itself.

Now we consider the operator ψ on � defined by

ψf(z)=
+∞∑
n=0

�nαf(0)
z2n

(2n)!
+c1(α)

+∞∑
n=0

d
(
�nαf

)
dz

(0)
z2n+1

(2n+1)!
∀z ∈ C. (2.20)

In the same way as for χα and by a simple calculation, we prove that ψ is a continuous

linear mapping from � into itself and

∀f ∈�, χαψf =ψχαf = f . (2.21)

Then χα is a topological isomorphism from � into itself.

Remarks 2.2. (i) The operator χα which is a transmutation operator from �α into

d2/dz2 on � will be called the Bessel-Struve intertwining operator on C.

(ii) Formula (2.10) means that the Taylor coefficients of the image of an entire function

by χα are multiplied by the Taylor coefficients of the Bessel-Struve kernel.

Corollary 2.3. (i) For λ,z ∈ C,

Sα(λz)= χα
(
eλ·
)
(z). (2.22)

(ii) Every function f in � can be expanded in a power series:

∀z ∈ C, f (z)=
+∞∑
n=0

�nαf(0)
z2n

c2n(α)
+c1(α)

+∞∑
n=0

d
(
�nαf

)
dz

(0)
z2n+1

c2n+1(α)
. (2.23)
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Definition 2.4. The dual intertwining operator tχα of χα is defined on �′ by

〈tχα(T),g〉= 〈T ,χα(g)〉 ∀g ∈�. (2.24)

Remark 2.5. From the properties of the operator χα, we deduce that the operator
tχα is an isomorphism from �′ into itself; the inverse operator (tχα)−1 is given by

〈(tχα)−1(T),g
〉= 〈T ,χ−1

α (g)
〉 ∀g ∈�. (2.25)

Notations.

(i) We denote by Expa(C), a > 0, the space of functions of exponential type a. It is

the space of functions f ∈� such that

Na(f)= sup
z∈C

∣∣f(z)∣∣e−a|z| <+∞. (2.26)

(ii) We denote by Exp(C), the space of functions with exponential type. It is given by

Exp(C)=∪a>0 Exp
a
(C). (2.27)

The space Exp(C) is endowed with the inductive limit topology.

(iii) We denote by �, the classical Fourier transform defined on �′ by

�(T)(λ)= 〈T ,e−iλ·〉 ∀λ∈ C. (2.28)

(iv) We denote by ∗o, the classical convolution product given by

T ∗o f (z)=
〈
Tw,f (w+z)

〉 ∀T ∈�′, f ∈�, z ∈ C. (2.29)

Definition 2.6. The Bessel-Struve transform �α of T ∈�′ is given by

�α(T)(λ)=
〈
T ,Sα(−iλ·)

〉 ∀λ∈ C. (2.30)

Remark 2.7. From Corollary 2.3(i) and Definition 2.4, we obtain

∀T ∈�′, �α(T)(λ)=�α
(tχα(T))(λ). (2.31)

Proposition 2.8. The Bessel-Struve transform �α is a topological isomorphism from

�′ into Exp(C).

Proof. According to [8], the classical Fourier transform � is a topological isomor-

phism from �′ into Exp(C). Then the result follows from (2.25) and (2.31).
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Lemma 2.9. Let f∈�. The Cauchy problem

�α,zu(z,w)= �α,wu(z,w),

u(0,w)= f(w), ∂
∂z
u(0,w)= f ′(w)

(2.32)

has a unique solution that is an entire function on C×C given by

u(z,w)= χα,zχα,w
[
χ−1
α (f)(z+w)

] ∀z,w ∈ C. (2.33)

Proof. From Proposition 2.1, (2.32) is equivalent to the Cauchy problem

∂2

∂z2
v(z,w)= ∂2

∂w2
v(z,w),

v(0,w)= χ−1
α (f)(w),

∂
∂z
v(0,w)= d

(
χ−1
α f

)
dz

(w),
(2.34)

where

v(z,w)= χ−1
α,zχ−1

α,wu(z,w). (2.35)

But the solution of (2.34) is given by

v(z,w)= χ−1
α (f)(z+w) ∀z,w ∈ C. (2.36)

Definition 2.10. The Bessel-Struve translation operators τz, z ∈ C, associated with

the operator �α, is defined on � by

τzf(w)= χα,zχα,w
[
χ−1
α (f)(z+w)

] ∀w ∈ C. (2.37)

The operator τz, z ∈ C, satisfies the following properties.

(i) For all z ∈ C, the operator τz is linear continuous from � into itself.

(ii) For all f ∈� and z,w ∈ C,

τzf(w)= τwf(z), τ0f(w)= f(w),
τz
(
τwf

)= τw(τzf), �ατzf = τz�αf .
(2.38)

(iii) The following product formula holds:

∀z,w ∈ C, τz
(
Sα(λ·)

)
(w)= Sα(λw)Sα(λz). (2.39)

Corollary 2.11. Let f ∈ � and z ∈ C. Then the function w → τzf(w) can be ex-

panded in the Taylor series:

∀w ∈ C, τzf (w)=
+∞∑
n=0

�nαf(z)
w2n

c2n(α)
+c1(α)

+∞∑
n=0

d
(
�nαf

)
dz

(z)
w2n+1

c2n+1(α)
. (2.40)
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Proof. For z,w ∈ C, we have

τzf(w)= χα,zχα,w
[
χ−1
α (f)(z+w)

]
. (2.41)

Applying Corollary 2.3(ii) to the function w → τzf(w), we obtain

τzf(w)=
+∞∑
n=0

�nα
[
τzf

]
(0)

w2n

c2n(α)
+c1(α)

+∞∑
n=0

d
(
�nα
[
τzf

])
dz

(0)
w2n+1

c2n+1(α)

=
+∞∑
n=0

τz
[
�nαf

]
(0)

w2n

c2n(α)
+c1(α)

+∞∑
n=0

τz
[d(�nαf )

dz

]
(0)

w2n+1

c2n+1(α)
,

(2.42)

which proves the result.

Definition 2.12. (i) The convolution product of two elements T and K in �′ is

defined by

〈T ∗K,f 〉 = 〈Tz,〈Kw,τzf(w)〉〉 ∀f ∈�. (2.43)

(ii) Let T ∈ �′ and f ∈ �. The convolution product of T and f is the function in �

defined by

T ∗f(z)= 〈Tw,τzf(w)〉 ∀z ∈ C. (2.44)

The convolution ∗ satisfies the following properties.

(i) Let T , K∈�′ and let f∈�. Then

T ∗(K∗f)= (T ∗K)∗f . (2.45)

(ii) Let T , K∈�′. Then

�α(T ∗K)=�α(T)�α(K). (2.46)

Proposition 2.13. Let T ∈�′ and let f ∈�. Then

(tχα)−1(T)∗χα(f)= χα
(
T ∗o f

)
,

tχα(T)∗o χ−1
α (f)= χ−1

α (T ∗f),
(2.47)

where ∗o is the classical convolution product given by (2.29).

Proof. From Definition 2.12, we have

∀z ∈ C, (tχα)−1(T)∗χα(f)(z)
=
〈(tχα)−1(T)ξ,τz

(
χα(f)

)
(ξ)

〉
= 〈Tξ,χ−1

α,ξτz
(
χα(f)

)
(ξ)

〉
.

(2.48)

But from Definition 2.10, we obtain

∀ξ ∈ C, χ−1
α,ξτz

(
χα(f)

)
(ξ)= χα,z(f )(ξ−z). (2.49)
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Thus

(tχα)−1(T)∗χα(f)(z)
= 〈Tξ,χα,z(f )(ξ−z)〉= χα,z(〈Tξ,f (ξ−z)〉)= χα(T ∗o f )(z), (2.50)

which proves the first relation.

For the second relation, we have

∀z ∈ C, tχα(T)∗o
(tχα)−1(f )(z)

= 〈tχα(T)ξ,χ−1
α (f)(ξ−z)

〉= 〈Tξ,χα,ξχ−1
α (f)(ξ−z)

〉
.

(2.51)

But

∀z,ξ ∈ C, χα,ξχ−1
α (f)(ξ−z)= χ−1

α,z
(
τzf

)
(ξ). (2.52)

So

∀z ∈ C, tχα(T)∗
(
χα
)−1(f )(z)= χ−1

α,z
〈
Tξ,τzf (ξ)

〉= χ−1
α (T ∗f)(z), (2.53)

which finishes the proof.

Now we are in position to derive the main result of this section.

Notations.

(i) We denote D = d/dz.

(ii) We denote by �D2 , the group of isomorphisms Y from � into itself such that

YD2 =D2Y . (2.54)

Theorem 2.14. Every transmutation operator W of �α into D2 from � into itself is

of the form

Wf(z)= (tχα)−1T0∗χα(f)(z)+
(tχα)−1T1∗χα(f)(−z) ∀z ∈ C, (2.55)

where T0,T1 ∈�′.

Proof. It is clear that every transmutation operator W of �α into D2 from � into

itself is of the form W = χαY , where Y ∈ �D2 . Then according to [3], every element Y
of �D2 has the form

Yf(z)= T0∗o f (z)+T1∗o f (−z), (2.56)

where T0,T1 ∈�′. Thus, we can write

∀z ∈ C, Wf(z)= χα
(
T0∗o f

)
(z)+χα

(
T1∗o f

)
(−z). (2.57)

Hence the result follows from Proposition 2.13.
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3. Mean-periodic functions and commutators of �α

3.1. Mean-periodic functions

Definition 3.1. A function f in � is said to be mean periodic if the closed subspace

Ω(f ) generated by τzf , z ∈C, satisfies

Ω(f )≠�. (3.1)

From Hahn-Banach theorem, this definition is equivalent to the following.

Definition 3.2. A function f in � is said to be mean periodic if there exists T ∈
�′\{0} such that

∀z ∈ C, T ∗f(z)= 0. (3.2)

Definition 3.3. Let λ∈ C and � ∈N. The function Sα,�(λ,·) is defined by

Sα,�(λ,z)= d�

dµ�
Sα(µz)

∣∣∣
µ=−iλ ∀z ∈ C. (3.3)

Lemma 3.4. Let λ∈ C and � ∈N. Then the function Sα,�(λ,·) is mean periodic and

∀z ∈ C, Sα,�(λ,z)= χα
(
ξ� exp(−iλξ))(z). (3.4)

Proof. Let λ ∈ C and � ∈ N. According to Proposition 2.8, there exists T ∈�′\{0}
such that

∀j = 0, . . . ,�,
dj

dµj
(
�α(T)

)
(µ)

∣∣∣
µ=λ = 0. (3.5)

Then from the properties of the Bessel-Struve translation for every z ∈ C, we can write

(
T ∗Sα,�(λ·)

)
(z)=

〈
T(w),

d�

dµ�
(
τw
(
Sα(µ·)

)
(z)

)∣∣∣
µ=−iλ

�

=
〈
T(w),

d�

dµ�
(
Sα(µz)Sα(µw)

)∣∣∣
µ=−iλ

�

=
�∑
j=0

(
�
j

) d�−j
dµ�−j

(
Sα(µz)

)∣∣∣
µ=−iλ

dj

dµj
�α(T)(µ)

∣∣∣
µ=λ

= 0.

(3.6)

Thus we prove that Sα,�(λ,·) is a mean-periodic function. The result follows from (1.3)

and (2.10).

Let f∈�. The following proposition characterizes the functions which belong to

Ω(f ).
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Proposition 3.5. Let f∈�, � ∈ N, and λ ∈ C. The function Sα,j(λ,·), 0 ≤ j ≤ �,

belongs to Ω(f ) if and only if for all T in �′ satisfying

∀z ∈ C, T ∗f(z)= 0, (3.7)

then

dj

dµj
(
�α(T)

)
(µ)

∣∣∣
µ=λ = 0, 0≤ j ≤ �. (3.8)

Proof. If Sα,j(λ,·), 0≤ j ≤ �, belongs to Ω(f ), then for all T∈�′ satisfying (3.7) we

have

〈
T ,Sα,j(λ,·)

〉= 0. (3.9)

Then

〈
T ,Sα,j(λ,·)

〉= dj

dµj

〈
T ,Sα(µ·)

∣∣∣
µ=−iλ

�

= dj

dµj
�α(T)(µ)

∣∣∣
µ=λ = 0.

(3.10)

The converse follows from the Hahn-Banach theorem.

Definition 3.6. Let f∈� be a mean-periodic function. The spectrum Sp(f ) of f is

the set

Sp(f )= {(λ,�),λ∈ C, � ∈N, Sα,j(λ·)∈Ω(f ), 0≤ j ≤ �}. (3.11)

Remarks 3.7. (i) From Proposition 3.5, we have

Sp(f )=
{
(λ,�), λ∈C, � ∈N, d

j

dµj
�α(T)(µ)

∣∣∣
µ=λ = 0, j = 0,1, . . . ,�, T ∈ (Ω(f ))⊥

}
.

(3.12)

(ii) If Sp(f )≠∅, we say that Ω(f ) admits a spectral analysis associated with �α.

Proposition 3.8. Let f ∈�. Denote by $(f ) the closed subspace of � generated by

{Dk�nαf}n∈N;k=0,1. Then Ω(f )= $(f ).

Proof. According to Corollary 2.11, we have, for every g ∈�,

Dg = lim
w→0

1
w
[
τwg−g

]
, (3.13)

�αg = lim
w→0

c2(α)
w2

[
τwg−g−wDg

]
, (3.14)

D�αg = lim
w→0

c3(α)
c1(α)w2

[
τwg−g−wg− w2

c2(α)
�αg

]
(3.15)

in the sense of the convergence in �.
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Suppose that g ∈ Ω(f ). Then, for every w ∈ C, τwg ∈ Ω(f ). Hence we conclude

that for k = 0,1, Dk�αg ∈ Ω(f ). By induction, we can prove that, for every n ∈ N and

k= 0,1, Dk�nαg ∈Ω(f ). In particular, for every n∈N and k= 0,1, Dk�nαf ∈Ω(f ). Thus

we conclude that $(f )⊂Ω(f ).
Let now g ∈ $(f ). Using once more Corollary 2.11, we prove that, for every w ∈ C,

τwg ∈ $(f ). In particular, for every w ∈ C, τwf ∈ $(f ). Hence, Ω(f )= $(f ).

Corollary 3.9. Let f ∈�. Then f is a mean periodic if and only if $(f )≠�.

Corollary 3.10. Let f ∈�. Then f is a mean-periodic function if and only if χ−1
α (f)

is a classical mean-periodic function.

Theorem 3.11. Let f ∈�. Then f is a mean-periodic function if and only if f is a limit

of finite linear combination of the functions Sα,j(λ,·), 0≤ j ≤ �, such that (λ,�)∈ Sp(f ).

Proof. To see this property, we can use Lemma 3.4 and a celebrated result about

classical mean-periodic functions established in [11, page 926].

Corollary 3.12. Every mean-periodic function such that Sp(f )=∅ is zero.

3.2. The commutator of �α

Notations.

(i) We denote by �α, the group of isomorphisms Y of � into itself such that

Y�α = �αY ; (3.16)

(ii) We denote by ϑα(f) (resp., ϑD2(f )), the closed subspaces of � generated by Yf ,

Y ∈ �α, (resp., �D2 ).

Proposition 3.13. (i) The group �α is isomorphic to �D2 .

(ii)

∀f ∈�, ϑα(f)= χαϑD2
(
χ−1
α (f)

)
. (3.17)

Proposition 3.14. The set of functions f in � satisfying

ϑα(f)≠� (3.18)

with the set of mean-periodic functions is identified.

Proof. From Proposition 3.13, f ∈� satisfies (3.18) if and only if χ−1
α (f) satisfies

ϑD2χ−1
α (f)≠�. (3.19)

But these functions are classical mean-periodic functions. The result follows from

Proposition 3.13.

Now we are able to state the main result of this paper.
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Theorem 3.15. Let L be a continuous linear mapping from � into itself. The following

statements are equivalent.

(i) L commutes with Bessel-Struve translation operators τz, z ∈ C, on �, that is, τzL=
Lτz, z ∈ C, on �.

(ii) L commutes with the Bessel-Struve operator �α on �, that is, �αL= L�α on �.

(iii) There exists a unique element T in �′ such that Lf = T ∗f , f ∈�.

(iv) There exists a complex Borel regular measure γ having compact support on C, for

which for all f ∈�,

L(f)(z)=
∫
C

(
τzf

)
(w)dγ(w) ∀z ∈ C. (3.20)

(v) There exists Ψ ,Φ ∈ Exp(C) such that for all f ∈�, Lf = Ψ(�α)f +DΦ(�α)f , where

Ψ(�α)f and DΦ(�α)f are given by

[
Ψ
(
�α
)
f
]
(z)=

+∞∑
n=0

a2n�nαf(z), ∀z ∈ C,

[
DΦ

(
�α
)
f
]
(z)= c1(α)

+∞∑
n=0

a2n+1
d
(
�nαf

)
dz

(z), ∀z ∈ C,
(3.21)

where Ψ(z)=∑+∞
n=0a2nzn and Φ(z)= c1(α)

∑+∞
n=0a2n+1zn.

Proof. (i)⇒(ii). From (3.13) and (3.14), we have

D(Lg)= lim
w→0

1
w
[
τwLg−Lg−wDLg

]= L( lim
w→0

1
w
[
τwg−g

])= L(Dg),
�α(Lg)= lim

w→0

c2(α)
w2

[
τwLg−g−wDLg

]= L( lim
w→0

c2(α)
w2

[
τwg−g−wDg

])= L(�αg).
(3.22)

Hence (i) implies (ii).

(ii)⇒(i). We decide the results from Corollary 2.11.

(i)⇒(iii). Assume that (i) holds. We define the functional T on � as follows:

〈T ,f 〉 = L(f)(0), f ∈�. (3.23)

It is clear that T is in �′ and Lf = T ∗f , f ∈�.

(iii)⇒(iv). It follows immediately from Hahn-Banach and Riesz representation theo-

rems.
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(iv)⇒(v). Suppose that for all f ∈�, we have

∀z ∈ C, L(f )(z)=
∫
C

(
τzf

)
(w)dγ(w), (3.24)

where γ is a complex Borel regular measure with compact support.

According to Corollary 2.11, we obtain for all z ∈C,

L(f)(z)=
+∞∑
n=0

�nαf(z)
∫
C

w2n

c2n(α)
dγ(w)+c1(α)

+∞∑
n=0

d
(
�nαf

)
dz

(z)
∫
C

w2n+1

c2n+1(α)
dγ(w).

(3.25)

Hence

Lf = Ψ(�α)f +DΦ(�α)f , (3.26)

where

Ψ(z)=
+∞∑
n=0

a2nzn, Φ(z)= c1(α)
+∞∑
n=0

a2n+1zn, (3.27)

with, for every n∈N,

an =
∫
C

wn

cn(α)
dγ(w). (3.28)

Since γ has compact support on C, for certain a and C , we have

∀n∈N, ∣∣an∣∣≤ C an

cn(α)
. (3.29)

Then we have

∀z ∈ C, ∣∣Ψ(z)∣∣≤ C +∞∑
n=0

(|z|a)n
cn(α)

= CSα
(|z|a)≤ Ce|z|a. (3.30)

Similarly we have

∀z ∈ C, ∣∣Φ(z)∣∣≤ c1(α)Ce|z|a. (3.31)

Thus we have proved that (v) is true.

(v)⇒(i). Suppose now that, for every f ∈� and z ∈ C,

(Lf)(z)=
+∞∑
n=0

a2n
(
�nαf

)
(z)+c1(α)

+∞∑
n=0

a2n+1
d
(
�nαf

)
dz

(z), (3.32)

for a certain ak ∈ C, k∈N, where the series converges in �.
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Hence, if f ∈ �, since τz�αf = �ατzf , z ∈ C, using (2.38) and the fact that τz is a

continuous linear mapping from � into itself, we obtain for every z,w ∈ C,

τw(Lf)(z)=
+∞∑
n=0

a2nτw
(
�nαf

)
(z)+c1(α)

+∞∑
n=0

a2n+1τw

(
d
(
�nαf

)
dz

)
(z)

=
+∞∑
n=0

a2n�nα
(
τwf

)
(z)+c1(α)

+∞∑
n=0

a2n+1
d
(
�nα
(
τwf

))
dz

(z)

= L(τwf )(z).
(3.33)

Hence (v) implies (i).
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