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We study the mapping properties of singular integral operators defined by mappings of finite
type. We prove that such singular integral operators are bounded on the Lebesgue spaces
under the condition that the singular kernels are allowed to be in certain block spaces.
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1. Introduction and results. For n € N, n > 2, let K(-) be a Calderon-Zygmund ker-
nel defined on R", that is,

Ko(y)=Q)IyI™, (1.1)

where Q € L' (8" 1) is a homogeneous function of degree zero that satisfies
[, e0dom) -0 (1.2)

with do () being the normalized Lebesgue measure on the unit sphere.
Let B, (0,1) be the unit ball centered at the origin in R™. For a ¢* mapping & :
B,(0,1) — R4, d = 1, consider the singular integral operator

To0f (x) = p.v. JB o f(x—®(y))Ka(y)dy, (1.3)

n(0,1)

where, p.v. denotes the principal value.

It is known that if ® is of finite type at 0 (see Definition 2.2) and Q € €!(S"!), then
Tp,o is bounded on L? for 1 < p < oo [15]. Moreover, it is known that Ty o may fail to be
bounded on L? for any p if the finite-type condition is removed. In [8], Fan et al. showed
that the L” boundedness of the operator Ty still holds if the condition Q € 6! (S" 1)
is replaced by the weaker condition Q € L9(S"!) for some g > 1. Subsequently, the L?
(1 < p < ) boundedness of Ty o was established under conditions much weaker than
Q € L9(S" 1) [1, 6]. In particular, Al-Qassem et al. [1] established the L? boundedness
of Ty, under the condition that the function Q belongs to the block space 32'0(3"71)
introduced by Jiang and Lu in (see [14]). In fact, they proved the following theorem.

THEOREM 1.1. Let Ty o be given by (1.3). Suppose that Q € Bg’O(S"‘l) for some q > 1.
If ® is of finite type at 0, then for 1 < p < o« there exists a constant C, > 0 such that

HTd),QfHLP(Rd) < Cpllfllzp (ra) (1.4)

for any f € LP (R%).
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It should be pointed out here that the condition Q € Bg‘O(S"‘l) in Theorem 1.1 was
recently proved to be nearly optimal. In fact, Al-Qassem et al. [2] showed that if the
condition Q € 32'0(5"*1> is replaced by Q € Bg‘V(S”’l) for some v < 0, then the corre-
sponding classical Calderon-Zygmund operator

Tof () =py. [ Flx-3)Ka(y)dy (1.5

may fail to be bounded on L” atany 1 < p < .
Fefferman [11] and Fefferman and Stein [12] studied singular integrals on product
domains. Namely, they studied operators of the form

(Paf)(x,y) =p.V. JJRnXRmf(x—u,y—v)KQ(u,v)dudv, (1.6)

where n,m > 2,

Ko(u,v) =Q(lultu, v~ v) [ul v,

QeLl'(S"1xs™ 1), Q(tx,sy) = Q(x,y) foranyt,s>0, 1.7)

J Q(u,-)do(u) =0, J Q(,v)do(v) =0.
sn-1 gm-1

In [12], it was shown that Pg is bounded on L? (R™*™) for 1 < p < « if Q satisfies
some regularity conditions. Subsequently, the L? (1 < p < o) boundedness of Py was
established under weaker conditions on Q, firstin [7] for Q € L4(S" 1 xS™~1) withg > 1
and then in [9] for Q € U;+1 B (S"~1x §m-1) which contains Ugs1 L1(S" 1 xS™1) as
a proper subspace, where 32'1 represents a special class of block space on §*~! x §™~1;
for p = 2, it was proved by Jiang and Lu in [13]). The definition of block spaces will be
recalled in Section 2 (see Definitions 2.2 and 2.3).

The analogue of the operators Ts ¢ in (1.3) on product domains is defined as follows.

For N,M € N, let ® : B,(0,7) — RN and ¥ : B,,,(0,7) — RM be €~ mappings. Define
the singular integral operator Pq ¢,y by

(Poovf)(x,¥) =p.v. ﬂB - (01)f(x—<1>(u),y—‘I’(v))KQ(u,v)dudv. (1.8)

Using the ideas developed in [4, 8], we can easily show that Pq ¢y is bounded on L?
(1 < p < ) provided that ® and ¥ are of finite type at 0 and Q € L4(S" ! xS™~1) for
some q > 1. However, the natural question that arises here is as follows.

QUESTION 1.2. Suppose that Q € ;. Bg’l(S”*1 xS™~1) and ® and ¥ are of finite
type at 0. Is the operator Pq ¢y bounded on L” (1 <p < 0)?

In this paper, we will answer this question in the affirmative. In fact, we have the
following theorem.
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THEOREM 1.3. Let Po oy be given by (1.8). Suppose that Q € BY' (S"~1 xSm-1) for
some q > 1.If® and ¥ are of finite type at 0, then for 1 < p < o there exists a constant
Cp > 0 such that

[[Pa.ew ()| @yxgmy < Collfllr @y xrp) (1.9

for any f € LP (RN x RM).

Regarding the condition Q € Bg‘l(S"*1 x SM-1) in Theorem 1.3, we should remark
here that in a recent paper [5], Al-Salman was able to obtain a similar result to that in
[2]. More precisely, Al-Salman showed that the size condition Q € 32'1 (S"1xsm-1y jg
sharp in the sense that if Q € By (§"~1 x§™-1) is replaced by Q € BY'' #(Sn-1 x§m-1)
for some ¢ > 0, then the operator Pg may fail to be bounded on L? for any p.

Also, in this paper we will give a similar result for the truncated singular integral
operator

Pi gy f(x,¥) = sup

£1,62>0

ﬂE( )f(X—CI’(u),y—‘I’(v))KQ(u,v)dudv , (1.10)
&1,82,V

where E(g1,&2,7) = {(u,v) ER*XR™: &) < |lu| <r, & < |v| <7}, x € RN and y € RM.
In fact, we have the following.

THEOREM 1.4. Let P§ 4y be given by (1.1) with v = 1. Suppose that Q € Bg‘l(S"*1 X
S™-1) for some q > 1. If ® and ¥ are of finite type at 0, then for 1 < p < « there exists a
constant Cy, > 0 such that

[1PS & (O)|p @ivsrrry < Cpll £ llLe @ <) (1.11)
for any f € LP (RN x RM),

It is worth pointing out that, as in the one-parameter setting, we can show that the
L? boundedness of the operators Po gy and Pg 4y may fail for any p if at least one of
the mappings ® and Y is not of finite type at 0.

2. Some definitions and lemmas. We start by the following definition.

DEFINITION 2.1. Let U be an open set in R” and © : U — R4 a smooth mapping. For
X0 € U, it is said that © is of finite type at xy if, for each unit vector n in R4, there is a
multi-index « so that

3 [0(x) ]y, # 0. (2.1)

DEFINITION 2.2. For 1 < g < oo, it is said that a measurable function b(x,y) on
S xSm-1 jg a g-block if it satisfies the following:
(i) supp(b) < I, where I is a cap on S~ 1 xS§™~1  that is,

I={x"eS" ! :|x —x{| <a}x{y eS™"t: |y -yi| <B} (2.2)

for some o, B > 0, x;, € S"1, and ¥, € S™1;
(i) I1bllga < [I|71/9", where 1/g+1/q’ = 1.
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DEFINITION 2.3. The class Bq Lgn-1x Sm-1) 1 < g < oo, consists of all functions
Qe L'(§" 1 xSs™1) of the form Q = 37, cyb,, where each c, is a complex number;
each b, is a g-block supported on a cap I, on $"~! x§™~!; and

T({eut) = i lcu ] <1+ (log |Ilu|>2) < 0. (2.3)

In dealing with singular integrals along subvarieties with rough kernels, an approach
well-established by now is to decompose the operator into an infinite sum of Borel
measures then to seek certain Fourier transform estimates and certain L? estimates of
Littlewood-Paley type. For more details, we advise the readers to consult [1, 3, 4, 6, 7,
8, 10], among others. A particular result that we will need to prove our results is the
following result in [4] which is an extension of a result of Duoandikoetxea in [7].

THEOREM 2.4. Let M,N € N and let {0} (”) :k,jeZ 0<l<N, 0<s <M} bea
family of Borel measures on R"™ x R™ with a',i‘ljo) =0 and O'ko =0 for every k,j € 7.
Let{a;,b;:1<l<N,1<s<M}<R*"\(0,2), {B(l),D(s):1<l<N,1<s<M}cN,
{o,Bs:1<l<N,1<s<M}<R* andletL;:R" - RED gnd Q, : R™ — RPY be linear
transformations for 1 <1 < N, 1 < s < M. Suppose that for some B > 1 and py € (2, )
the following hold for k,j€7Z,1 <l <N,1 <s <M, and (§,n) € R" x R™:

M) llogs Il < B2
(i) | (ls (£,n)] <BZ|CLZBL1(§)| oq/B|bJBQS(n)| Bs/B

(i) &,Elf (&, r])f[r,ilj L9 e )| < B?|af BLL(E)|%/BIBIEQ,(n)|~Bs/B;

(@v) 16,57 (E,m) — 645" (E.m)| < B2afPLy(5) |- /B b1 Qs () |Bs/B;

W) 1645 &) =67 Em - 65TV En) + 07TV E )| < BRlalPLI(E)|/E x

D15 Qs () |BsB;

i) | A(ls 1)(§ n - a_liljls 1)(§ n| <B2|a Ll(§)|oq/3

(vii) | *l 7 Em = o TV € m) | = BB Qs ()15

(viii) for arbltrary functions gi,; on R x R™,

1/2
2
( Z |.gk,j| )
k,jez

1/2
2
(L,s)

k,jez
Then for p;, < p < po, where p|, is the conjugate exponent of py, there exists a positive
constant Cy such that

(2.4)

Po Po

NM
> oy < CpB?[I f 1w wnxwm), (2.5)
k,jez Ll”([R"X[Rm)
(1/2)
2
( 2. ‘U(NM)*f‘ ) < CpB2lI f Il (nxrm) (2.6)
k,jez LP (RMXR™M)

hold for all f in L¥ (R" x R™). The constant C,, is independent of the linear transforma-
tions {Ll} L, and {QS}S 1-
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Itis clear that inequality (2.4) is one of the key elements in Theorem 2.4. In particular,
the range of the parameter p where (2.5) and (2.6) hold is completely determined by
the largest po where (2.4) holds. Clearly, if (2.4) holds for large py — o, then (2.5) and
(2.6) hold for all 1 < p < oo. It turns out that to prove our results, we will indeed run
into the case where we need to obtain (2.5) and (2.6) for all 1 < p < c0. However, in our
case this obstacle can be resolved. In fact, we will show that inequality (2.4) holds for
all pg =4,8,16,.... Our main tools to achieve this are Lemma 2.5 and Theorem 2.6.

By a quick investigation of the proof of [7, Lemma 1], we have the following.

LEMMA 2.5. Let {vyj:k,j € Z} be a sequence of Borel measures in R™ x R™ and let
Vv*(f) = supy jez |kl * f1. Suppose that for some q > 1 and A > 0,

IV*(Oll; < Allfllg 2.7)

for every f in L1(R™ x R™). Then the vector-valued inequality

1/2 1/2
2
‘( > Vi gkl ) ASUP (vl ( > gl )
Po k,jez

k,jeZ
holds for |1/po—1/2] = 1/2q and for arbitrary functions {gx,j} on R" x R™.

(2.8)

144

Clearly, if inequality (2.7) holds for all 1 < g < o, then inequality (2.8) holds for
all po = 4,8,16,... which is the case that we will need to prove our results. But in
many applications including the ones in this paper inequality (2.7) is not always freely
available for all 1 < g < . However, this problem can be resolved by repeated use of
Theorem 2.4 and Lemma 2.5 along with a certain bootstrapping argument (see (2.15)-
(2.22)). To be more specific, we prove the following theorem.

THEOREM 2.6. Let m,n,M,N € N, B> 1, a,b =2, x,f > 0, and let L : R" — RN
and Q : R™ — RM pe linear transformations. Let {/\(ls k,jez L=1,2, s=1,2} be
a sequence of nonnegative Borel measures on R" x R™ with H/\,il”;) | <B? 1=<ls<?2.
Suppose that

M) 1A (Em)| < B2lakBL(E)|-/B|bIEQ(n)|~F/%;
(ii) \A‘”(& n - AP (€| < B2a*BL(E)|/F|b/BQ(n)|~FIE;

(iii) \A}fﬁ(g m =AY (E,n)| < B2akBL(E)|~/B|biBQ (n)|F/%;

(W) 1857 (E,m)- A?&P(g m-AZY (& m+AL" (5] < B2|akEL(E)|%E|b/BQ (n) |BI;
W NGV E ) -ALY (€ m)| < B2akPL(E)|¥/E;
o) AP (&) - ALY (€, m) | < B2BIEQ () |FE.

Suppose also that the maximal functions M-S (f) = supy jcz | I)\kj)l xfl,1<1l,s<2,

satisfy

MBS ()], <B2Ifp (2.9)

forall (1,s) € {(1,2),(2,1),(1,1)}, 1 <p < oo, and f € LP (R" x R™).
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Then the inequality
IM@2 ()], < CB2I1 £l (2.10)

holds for all 1 < p < oo, and f in L? (R" x R™). The constant C is independent of B and
the linear transformations L and Q.

PROOF. Let d be a fixed positive integer. For 1 < u < d, we let 1T;j :RY — R* be
the projection operator. By a similar argument to that in [10], we may assume that
N <n, M <m, L =my, and Q = m;. Choose and fix a Schwartz function ¢ € ¥$(R)
such that (qS)(t) =1if |t] <1/2 and ((f))(t) = 0if |t| = 1. Define @ on RN and /; on
RM by () (w) = () (lakBw]?) and (§;)(z) = (p)(|b/Bz|2). Define the sequence of
measures {I; j} by

fij(Em) = A7 € - AP () (@) (TRE) - AGY (Em)

. (LD A ) (2.11)
X () (rofn) + A (€,m) (@) (T E) () (g m) -
Then one can easily verify that
T ()| < CB2 (@8 |L(E) )" (b7 | Q) |)*F'%* (2.12)

1/2

for (§,n) € R" X R™. Let g(f) = (Zgjez Tk,j * f1?)
By (2.11) we have

and I (f) = supy jez |ITk,j1 * f1.

M@ f(x,y) < g(f)(x,5) +C((Mpy ®idgn-n) @ idgu) (M2 f(x,7))
+C(idgn ® (Mgm ® idgm-n)) (MPV f(x,y)) (2.13)

+C((Mgy @ idgn-n) ® (Mgy ® idgm-v)) (MTV f(x,5)),

I*f(x,5) < g(f)(x,5) +2C((Mgy ® idgn-v) @ idgn ) (M2 f(x,))
+2C (idgn ® (Mgy @ idgm-u)) (MPV f(x,y)) (2.14)

+2C ((Mgy @ idgn-v) ® (Mpy @ idgm-a)) (MY f(x,5)),

where Jga is the classical Hardy-Littlewood maximal function on R4.
By Plancherel’s theorem and (2.12), we get

lg(Hllrz < CB2I 12 (2.15)
which implies by (2.9) and (2.14) that
IIT*(A)]l;2 = CB?I1 £ 2. (2.16)

By applying Lemma 2.5 (for g = 2) along with the trivial estimate ||Ty ;|| < CB?, we get

1/2
‘ ( 2. |gk,.i\2)
k,jez

< Cp,B? (2.17)

1/2
( 2 \Tk,j*gk,ﬂz)

k,jez

po po
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for all pg satisfying 1/4 = [1/po—1/2|. By Theorem 2.4, (2.12), and (2.17), we obtain
> 4
19 (N)llr < CoB*If e for 5 <p <4 (2.18)
which implies by (2.9) and (2.14) that
* 2 4
IT* ()]l < CB2N flle for§<p<4. (2.19)

Reasoning as above, we get

lg(Hllp» < CpB?IIflir  for % <p<8. (2.20)
By repeating the above argument we eventually get
lg(H)llp < CpB®IIflir for1<p <o (2.21)
which when combined with (2.9) and (2.13) implies that
(M@ (f)]|p < CpBIIfllr forl<p < co. (2.22)

For p = o0, the inequality holds trivially. The proof of the theorem is complete. O

For p=>2,k,jeZ_, let D(k,j,p)={(u,v) € R"xR™: pk-l < |u| < pk, pi-l <|v| <
p/}. For suitable mappings I': R — RN, A: R”™ — RM and b : " 1 xS" 1 -~ R, we
define the measures {AM’ Akjip - k,j € Z_} and the related maximal operator A;-j’r‘ Ap
on RN x RM by

o @nsio =[], FO0O.AN B ) ey dxdy,

% (2.23)
Ag‘r,A_pf(X,y) = ki}él;ﬁ | |Aiz,r,/\,k,j,p| * f )]

For L € N, let f; denote the class of polynomials of [ variables with real coefficients.
FordeNand & = (R,...,R4) € (s41)4, define the maximal function Jtg f on R4 by

¥

Mg f(x) = su([))% ) | f(x—=(t))]|dt. (2.24)

The following result can be found in [15].

LEMMA 2.7. For1 < p < o, there exists a positive constant C, such that
M fll, < Coll £1Ip (2.25)

for f € LP (R%). The constant Cp may depend on the degrees of the polynomials R,...,
Rgq, but it is independent of their coefficients.
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LEMMA 2.8. Let ®:B,(0,1) - RN and ¥ : B;,(0,1) — RM be C® mappings and let,
P =(P1,...,PN) :R" = RN and 2 = (Q1,...,Qum) : R™ — RM be polynomial mappings. Let
b(-,-) be a function on S"~! x Sm~1 satisfying the following conditions:

() 1Dl pan-1xsm-1) < 11719 for some q > 1 and for some cap I on S"~! xS™~1;
(i) IDllp1gn-1xgm-1) < 1. Let p = 21080/IIDT and B(I,p) = log(1/1]) if |I| < e~! and
letp=2andB(I,p) =1if|I| =e 1, where [-] is the greatest integer function.

If® and ¥ are of finite type at 0, then for 1 < p < c and f € LV (RN x RM) there exists
a positive constant C, which is independent of b such that

2
HAZ,?}’,‘Y,p(f)HLn(RNX[RM) =G [B(I,p)] L r RN xrM),S (2.26)
2
183 000 P Lo vaony = CoLBAPI I ILF o sy (2.27)
PROOF. We will only present the proof of (2.26). By the definition of A;‘ s, Ve notice
that AZ@’\M f(x,») is dominated by
1 .
Supf _ _ mJ [D(u,v)| | (Mg puf (-, =¥ ()))(x)|do(w)dv, (2.28)
jez. Jpi-l<vi<pi [U]™ Jgn-1
where
o dt
Mg ph(x) = sup [h(x-2(tu))|—. (2.29)
kez_ Jpk-1 t

By Lemma 2.7 we immediately get

1/p
HAZ,?}’,‘Y,D(f)HLV(lRNX[RM) SCV[B(I’p)](JIRM||%‘I’,Bof("y)“fl’([RN)dy) ’ (230)

where

¥y p,9(¥) = sup gy -¥w))| Do) 4y, (2.31)

jez_Jpi-l<lvi<pi lvm

and by is a function on $™~! defined by bo(v) = Jgn-1 Ib(u,v)|do (u). By the arguments
in the proof of the L¥ boundedness of the corresponding maximal function in the one-
parameter setting in [1, Theorem 3.8], we obtain (2.26). This ends the proof of our
theorem. O

By Lemma 2.7 we immediately get the following.

LEMMA 2.9. Let® = (Py,...,Py) :R" = RN and 2 = (Q4,...,Qun) : R™ — RM pe poly-
nomial mappings. Let b(-,-) be as in Lemma 2.8. Then for 1 < p < o, there exists a
constant Cp such that

8% 50, D], = Co[BUDPILF lr @vcas (2.32)

for f € LP (RN x RM),
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3. Certain Fourier transform estimates. We will need the following two lemmas
from [8].

LEMMA 3.1. Let®:B(0,1) — R? be a smooth mapping and let Q be a homogeneous
function on R" of degree 0. Suppose that ® is of finite type at 0 and Q € L4(S"1) for
some q > 1. Then there are No e N, 6 € (0,1], C >0, and jo € Z_ such that

_iE ) A
o e T B dy | = Cllas (2418 (3.1)
“l<jy|<2l

ly|n

for all j < jo and € € R4,

LEMMA 3.2. Letm € N and let R(-) be a real-valued polynomial on R"™ with deg(R) <
m—1. Suppose that P(y) = > |x=m aay‘x +R(y),Q is a homogeneous function of degree
zero, and Q € L1(S"1) for some q > 1. Then there exists a constant C > 0 such that

-1/2q'm
0 ,
LJ—I<|yI<2J’eLP(y)(y)dy‘ SC”QMQ(SHI)(ZW 2 |alx’> 52

n
|| oo

holds forall j € Z_ and a, € R.

LEMMA 3.3. Let ® : B,(0,1) — RN and ¥ : B,,(0,1) — RM be C® mappings and let
b(-,-), 1, p, and B(,p) be as in Lemma 2.8. Suppose that ® and ¥ are of finite type at
0. Then there are No,My € N, 6 € (0,1], C > 0, and jo,ko € Z_ such that

| Bgawrip &M | = CIBU )] (pNok[E]) D2 (pMod | ) ~0/BER) (3.3)

for all k < ko, j < jo, and (&€,n) € RN xRM,

PROOF. We start by the proof of (3.3) for the case |I| < e”!. By the definition of
Aqu)’\l,’k’j‘p, we get

A 1
BpamnspEml =Cllog ()| [ Sc0nBdo ), (3.4)
where
isaon DX, )
SB=|[ | emenbtan, )5
k(. &) ook x| (3.5)
Now, by Lemma 3.1,
[log1/1111-1 -
gm0 DX, )
ig-®(x)
|Sk(y’§)’ = g') J(Smfl Ip“‘*“zfs\x\<p(k*1)2(f+1)e [x|n d ‘
[log1/[11]-1
=C Z J'Smfl ||B(.'y)”Lq(sn,1)(pNO(k*I)ZNQ(SJrl)'g')f(S (36)
5=0

<CpNo [ 1B o, (p"0H1E])
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Therefore, by Lemma 2.8(i) and Holder’s inequality, we have
|8 o i p &) | = CoONIIITH (pNok|g]) =0 3.7)

which, when combined with the trivial bound \@B’q,’\y,k’j’p(g,n)l < C[log(1/|I])]%, im-
plies

. 1\7° ~5/llo
Baanao €| = 1o (7) | (orokiEn 00 (3.8)

Similarly, we have

. 1\7? o
|85 0w k.0 (&1 | sC[log<m)] (pMod [~ 0/Hos DI, (3.9)

Combining estimates (3.8) and (3.9) yields the estimate in (3.3) when |I| < e~!.

The proof of (3.3) for the case |I| = e~! follows by exactly the same argument as
that for the case |I| < e~! but this time we replace p and log(1/|I|) by 2 and log(2),
respectively, and use the observation that |I|~1/ 4" < e. This concludes the proof of our
lemma. |

By Lemma 3.2 and the same argument employed in the proof of Lemma 3.3, we get
the following.

LEMMA 3.4. Let Nyo,My € N, and let B(-, -), I, p, and B(1,p) be as in Lemma 2.8. Let
Ry () and R>(-) be real-valued polynomials on R™ and R™, respectively, with deg(R;) <
No—1anddeg(R») < Mp—1.LetP(x) = lex\:No aaxlx +Ri(x)andQ(y)= Z\B\:Mo bﬁyﬁ+
R2(y). Then there exists a constant C > 0 such that for all k,j € Z and a,, hﬁ € R,

H el PXY) 40
D(k.j.p) x|y m

~1/24NoB,p) ~1/2qaMoB(1,p) (3.10)
sC[B(I,p)]2<pN0" > Iam|> (pM‘” > |bﬁ|)

lo] =N |Bl=My

THEOREM 3.5. Let®:B,(0,1) — RN and ¥ : B,,,(0,1) — RM be C* mappings and let
b(-,"), 1, p, and B(I,p) be as in Lemma 2.8. Suppose that ® and ¥ are of finite type at
0. Then for 1 < p < o and f € L? (RN x RM), there exists a positive constant C, which is
independent of b such that

185 4y » Pl < Co[BAD 1 f1lp- (3.11)
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PROOF. Without loss of generality, we may assume that b > 0. Let No,My € N,
6 € (0,1], C > 0, and ko, jo € Z- be as in Lemma 3.3. For ® = (¥4,...,%y) and ¥ =
(Y1,...,¥Yv), we let ® = (Py,...,Py) and 2 = (Q;,...,QpM), Where

P = Y 0%,

ooNg -1 X 0x
L o' (3.12)
QW= Y E3F 0",
1Bl<Mo-1 P 0¥
forl1<s<Mand1<Il<N.Then,
| AB‘@,Y’k‘j’p(gv rl) _AB,@,\y,k’j,p(Ey TI) | =< C(pN0k|§‘) an—l Hj(x! n)dO’(X), (313)
where
Cinvin DX, )
H;(x,n) = J e i) 2202 gy | (3.14
50 pi-l<|y|<p [y|m Y )
By Lemma 3.1 and the argument in the proof of (3.3), we get
| Bpawisp EM = Apgyijp & 1
< CB(Up)]* (pN*1g1) P (pMod )~ P, '
Similarly, it is easy to verify that the following estimates hold:
|AE,<1>,‘1',k,j,p(§’ n) —AE,<1>,9,,k,j,p(§: |
< C[B(L,p)]* (pNok|g|) =2 /EER (pMod | ) O/ BT
|AB,<1>,‘1/,k,j,p(§: n) _AE,O},‘I’,k,j,p(E’ n - AB,@,Q,k,j,p(g’ n) +AE,OJ>,Q,k,j,p(§’ | (3.16)

< C[B(U,p)]* (pM0k &) EE (pod [y 2/1EE,
A i -
| Rp ko &M =Bpgns i, Em | < C[BU,p)]* (pNok g,
) ) e
Ak B =B o ks () | < CIBU, )] (o7 )/ HE 2,

By (3.3), (3.15)-(3.16), Theorem 2.6, and Lemmas 2.8 and 2.9, we get (3.11). This con-
cludes the proof of the theorem. |

4. Proof of Theorem 1.3. By assumption, Q can be written as Q = 2;":1 cuby, where
cy € C, b, is g-block supported on a cap I, on $"~! x$™"1 and Mg’l({cu}) satisfies
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(2.3). Every g-block function b, (-, -) has a companion function Bu (-,-) defined by

bu(x,y) =b,(x,¥) —Ln_l by (u,y)do (u) —Lm_l b, (x,v)do(v)

4.1)
+H b,(u,v)do(u)do (v).
gn—1ygm-1
It is easy to verify that each 171,, enjoys the following properties:
[ Butwdoa = [ Butv)dow) =0
gn-1 gm-1 (42)
1D, [[1a(sn-1xsm-1) < 4111714 1Byl sn-1xgm-1) < 4.
By the vanishing property on Q we have
Q=> cuby (4.3)
pu=1
and this yields
1Pasxfll, < 3 leul |75, . (4.4)
=1

where

Bu(u,v)

|u|n|v|mdudv. 4.5)

T;,Hf(x,y) =p.v. J]BMO,UXBMO’Df(xftb(u),yf‘I’(v))

Let Ng, My, ?, and 2 be given as in the proof of Theorem 3.5.For1 < I < N,1<s <M,
let ago = (1/ax!) (2" ®;/9x)(0) and bs g = (1/B1) (2" ¥s/2y")(0). For 0 < T < Np, 0 < k <
My, we define P = (P/,...,Py) and Q" = (Q},...,Qy) by

P (x)= > ajax”, forl=1,...,N,0<T<No-1;
lx|<T
K B (4.6)
Qs (¥)= > begy", fors=1,...,M,0<k<My—1;
IBl<k

PNo = @ and QMo =Y. For each y, let p, and B(I,,p,) be given by the same formulas
for p and B(I,p) in Lemma 2.8 with p, I, and B(I, p) replaced by p,, I, and B(I,,p,),

respectively. For each 0 < T < Ny, 0 < k < My, let A(ET"I?M = Ap, pT 0" k,jip,+ Then by
woKod P ok R
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Lemma 3.4 and the same argument as in the proofs of (3.3) and (3.15), we get

H (T,K)

2
Byukoopu SC[B(I,,,pu)] ;

Zalo@

=7

}—D(T/[B(Iuypu)]

:| —ak[B(Iy,pp)]

'A;T’;JP(EI’I)‘\C (Iyspu) ] ‘[ Z

lxl=T

M
z bsgns

S=K

x {pﬁj > ;

[Bl=K

:| ot [B(Iy,pp)]

) N
;7:’;(_]0 (E rl) A(T kl_]K[)) (E n). Iﬂrpu)]z[p;kz_ lg al,txgl
o =
[Bl=k

N
AT (g ) =AY <§,n)|<C[B(Iu,pu)]2[p;k S an&

bu,k,j,pu kg ou
lal=T | l=T
{ [Bl=K

’A;T‘,‘(Jp (Em =& (g —AD (g + ATV E, n)’

n —O(K/[B(Iu‘l?u)]

Z b gns

S=K

:|0(T/[B(1uypu)]

7 0k /[BIy,pp)]

stﬁns )

S=K

wikod P

N
> aa&l

=7

:|0‘T/[B(Iu,ﬂu)]

< C[B(Iy,py)] [ Z
=T
X [pﬁj >
[Bl=Kk

’A‘” L Em AT, n)‘ CBUypu)] z{pf," >

byk,j,pu
ll=T

M
z bs,an

S=K

:|0‘K/[B(Iylpu)]

N
> aiu&l

l=T1

]aT/[Buu.pp)]

:|0(K/[B(Iu,l)p)]

Z b gns

S=K

’

’AbT i Em Ay klfp”(é,n)‘ < C[B(Ipy)] { ‘B‘ZK
(4.7)

foruy=1,2,...;1<T<Ny—-1;1<k<My—1.
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By (3.3), (3.15)-(3.16), (4.7)-(4.8), Lemma 2.5, Theorems 2.4 and 3.5, and Lemma 2.9,
we get

1T, £y =

> A;f?,;{f?,ju*fH < Cpl BT i) *1.f s (4.8)
k,jez— p

for every f € LP(RNxRM), u=1,2,...,and for all p, 1 < p < c. Hence, (1.9) follows by
(2.3), (4.4), and (4.8).

Finally, a proof of Theorem 1.4 can be obtained using the above estimates and the
techniques in [4]. We omit the details.
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