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ON THE LAGRANGE RESOLVENTS OF A DIHEDRAL
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The cyclic quartic field generated by the fifth powers of the Lagrange resolvents of a dihedral
quintic polynomial f(x) is explicitly determined in terms of a generator for the quadratic
subfield of the splitting field of f(x).
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Let f(x)= x5+px3+qx2+rx+s ∈Q[x] be an irreducible quintic polynomial with

a solvable Galois group. Let x1,x2,x3,x4,x5 ∈ C be the roots of f(x). The splitting field

of f is K = Q(x1,x2,x3,x4,x5). Let ζ be a primitive fifth root of unity. The Lagrange

resolvents of the root x1 are

r1 =
(
x1,ζ

)= x1+x2ζ+x3ζ2+x4ζ3+x5ζ4 ∈K(ζ),
r2 =

(
x1,ζ2)= x1+x2ζ2+x3ζ4+x4ζ+x5ζ3 ∈K(ζ),

r3 =
(
x1,ζ3)= x1+x2ζ3+x3ζ+x4ζ4+x5ζ2 ∈K(ζ),

r4 =
(
x1,ζ4)= x1+x2ζ4+x3ζ3+x4ζ2+x5ζ ∈K(ζ).

(1)

We set

Ri = r 5
i , i= 1,2,3,4. (2)

By [1, Theorem 2] we know that the Galois group of f is Z5 (cyclic group of order 5), D5

(dihedral group of order 10), or F20 (Frobenius group of order 20). When Gal(f ) �D5,

the splitting field K of f contains a unique quadratic subfield, say Q(
√
m) (m square-

free integer ≠ 1). In this note we show, for quintic polynomials f with Gal(f )�D5, that

the fields Q(Ri) (i = 1,2,3,4) are the same cyclic quartic field and we give a simple

explicit generator for this field. We prove the following theorem.

Theorem 1. If Gal(f )�D5, then

Q
(
Ri
)=Q

(√
−m(5+2

√
5
))
, i= 1,2,3,4, (3)

where Q(
√
m) is the unique quadratic subfield of the splitting field K of f .
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Proof. Expanding (x1,ζ)5 = (x1+x2ζ+x3ζ2+x4ζ3+x5ζ4)5 we obtain

R1 = l0+l1ζ+l2ζ2+l3ζ3+l4ζ4, (4)

where l0, l1, l2, l3, l4 ∈K are given in [1, page 391] and satisfy

l0+l1+l2+l3+l4 =
(
x1+x2+x3+x4+x5

)5 = 0. (5)

As Gal(f )�D5, by [1, Theorem 2, page 397] the discriminant D of f is a square in Q.

Thus, by [1, pages 392–397], l1, l2, l3, l4 are the roots of a quartic polynomial belonging

to Q[x], which factors over Q into two irreducible conjugate quadratics

(
x2+(T1+T2

√
D
)
x+(T3+T4

√
D
))(
x2+(T1−T2

√
D
)
x+(T3−T4

√
D
))

(6)

with T1, T2, T3, T4 ∈ Q. The roots of one of these quadratics (without loss of generality

the first) are l1 and l4, and the roots of the other are l2 and l3. Thus

l1+l4 =−T1−T2

√
D, l2+l3 =−T1+T2

√
D,

l1l4 = T3+T4

√
D, l2l3 = T3−T4

√
D.

(7)

Clearly [Q(li) : Q] = 2 (i = 1,2,3,4). Also li ∈ K (i = 1,2,3,4) so that Q(li) ⊆ K (i =
1,2,3,4). However K has a unique quadratic subfield Q(

√
m). Thus Q(li) = Q(√m),

i= 1,2,3,4. Hence

l1 = a+b
√
m, l4 = a−b

√
m, l2 = c+d

√
m, l3 = c−d

√
m, (8)

where a,b,c,d∈Q, b ≠ 0 and d≠ 0. Thus

l0 =−l1−l2−l3−l4 =−2a−2c. (9)

Next we define

g(x)= (x−R1
)(
x−R2

)(
x−R3

)(
x−R4

)∈K(ζ)[x]. (10)

Hence, as 1+ζ+ζ2+ζ3+ζ4 = 0, we obtain

R1 = l0+l1ζ+l2ζ2+l3ζ3+l4ζ4

= (a+b√m+2a+2c
)
ζ+(c+d√m+2a+2c

)
ζ2

+(c−d√m+2a+2c
)
ζ3+(a−b√m+2a+2c

)
ζ4 ∈Q(√m,ζ).

(11)

Similarly

R2 =
(
a+b√m+2a+2c

)
ζ2+(c+d√m+2a+2c

)
ζ4

+(c−d√m+2a+2c
)
ζ+(a−b√m+2a+2c

)
ζ3 ∈Q(√m,ζ),

R3 =
(
a+b√m+2a+2c

)
ζ3+(c+d√m+2a+2c

)
ζ

+(c−d√m+2a+2c
)
ζ4+(a−b√m+2a+2c

)
ζ2 ∈Q(√m,ζ),

R4 =
(
a+b√m+2a+2c

)
ζ4+(c+d√m+2a+2c

)
ζ3

+(c−d√m+2a+2c
)
ζ2+(a−b√m+2a+2c

)
ζ ∈Q(√m,ζ).

(12)
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Using Maple we find that

g(x)= x4+(10c+10a)x3+(5b2m+5d2m+80ac+35a2+35c2)x2

+(30cd2m+50c3+200a2c−20bcdm+30ab2m+20ad2m

+20b2cm+200ac2+50a3+20abdm
)
x−10b3dm2+150a3c

+25a2d2m+25b2c2m−5b2d2m2+275a2c2+25c4+10bd3m2

+50acd2m−50bc2dm+150ac3+50a2bdm+50c2d2m+5d4m2

+25a4+5b4m2+50a2b2m+50ab2cm.

(13)

The roots of g(x) are (again using Maple)

− 5
2
a− 5

2
c+ 1

2
(−a+c)

√
5+ 1

2

√
−m(10

(
b2+d2

)−(2b2+8bd−2d2
)√

5
)
,

− 5
2
a− 5

2
c+ 1

2
(−a+c)

√
5− 1

2

√
−m(10

(
b2+d2

)−(2b2+8bd−2d2
)√

5
)
,

− 5
2
a− 5

2
c− 1

2
(−a+c)

√
5+ 1

2

√
−m(10

(
b2+d2

)+(2b2+8bd−2d2
)√

5
)
,

− 5
2
a− 5

2
c− 1

2
(−a+c)

√
5+ 1

2

√
−m(10

(
b2+d2

)+(2b2+8bd−2d2
)√

5
)
.

(14)

The quantities under the radicals are X+Y√5 and X−Y√5, where

X =−10m
(
b2+d2), Y =m(2b2+8bd−2d2). (15)

As

X2−5Y 2 = 5m2(4b2−4bd−4d2)2, (16)

the roots of g(x) belong to the cyclic quartic field Q(
√
X±Y√5) [2, Theorem 1, page

134]. Further

X+Y
√

5= (−10+2
√

5
)
m
(

2b−d−d√5
2

)2

(17)

so that (as b ≠ 0 and d≠ 0)

Q
(√
X+Y

√
5
)
=Q

(√(−10+2
√

5
)
m
)
=Q

(√
−m(5+2

√
5
))
, (18)

as (−10+2
√

5)(−5−2
√

5)= (5+√5)2.
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