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We introduce and discuss the generalized Klein-Gordon second-order partial differential
equation in the Robertson-Walker space-time, using the Casimir second-order invariant op-
erator written in hyperspherical coordinates. The de Sitter and anti-de Sitter space-times are
recovered by means of a convenient choice of the parameter associated to the space-time
curvature. As an application, we discuss a few properties of the solutions. We also discuss
the case where we have positive frequency exponentials and the creation and annihilation
operators of particles with known quantum numbers. Finally, we recover the Minkowskian
case, that is, the case of null curvature.
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1. Introduction. The study of quantum field theories on a gravitational background

can be seen as a theory for interacting quantized gravity and matter [1, 6]. In the con-

text of linear theories, de Sitter and anti-de Sitter space-times are the most studied

ones because, together with Minkowski space-time, they are the space-times which have

maximal symmetry [16]. Here, we call our space-time the Robertson-Walker space-time,

because the particular cases contained in our space-time are the de Sitter, anti-de Sitter,

and Minkowski space-times, depending on the value of a certain parameter [8].

In a recent paper, Bros et al. [2] presented a study of quantum scalar fields on the de

Sitter space-time based on analiticity in the complexified Riemannian manifold. More

recently, Takook [15] discussed a covariant quantization of free spinor fields in a 4-

dimensional de Sitter space-time.

On the other hand, Notte Cuello and Capelas de Oliveira [10] discussed the Dirac

wave equation in the de Sitter universe, using the factorization of the second-order

Casimir invariant operator associated to the so-called Fantappié-de Sitter group. The

same authors [11] presented and solved the Klein-Gordon and Dirac equations using

spherical harmonics with spin weight.

This paper is organized as follows: in Section 1, we present the generalized Klein-

Gordon wave equation in the Robertson-Walker space-time. In Section 2, we solve the

second-order partial field equation using a convenient coordinate system which sepa-

rates the angular part, where the solution is given by hyperspherical harmonics, and

another partial differential equation containing the separated radial and temporal parts.

It is worth noting that other coordinate systems are possible. For example, Capelas de

Oliveira et al. [3] used canonical hyperspherical coordinates to solve the generalized

Klein-Gordon second-order partial differential wave equation in the n-dimensional de
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Sitter space-time and Redmount and Takagi [13] resorted to the so-called Rindler hy-

perspherical coordinates to discuss a field theory in de Sitter space-time for a free and

massless field embedded in a flat Minkowskian space-time. Polarski [12] discussed the

scalar wave equation on static de Sitter and anti-de Sitter spaces with four dimensions,

using polyspherical coordinates.

In Section 3, we present some properties of the function, a hypergeometric function,

which is a solution of the ordinary differential equation associated to the mass and

dimensionality terms and reobtain the classical result where Chernikov and Tagirov [5]

construct the quantum theory for a scalar field in de Sitter universe. We also recover,

as a particular case, the positive frequency exponentials in a 4-dimensional space-time

which were obtained by Tagirov [14] and by Wyrozumski [17], where the latter discusses

an alternative construction of the vacuum in a (1+3)-dimensional de Sitter space-time.

Finally, we present our conclusions and perspectives.

2. Generalized Klein-Gordon wave equation. In this section, we present and discuss

the generalized Klein-Gordon wave equation in the Robertson-Walker space-time.

We call a generalized Klein-Gordon partial second-order differential equation a Klein-

Gordon wave equation, which is obtained using the Casimir second-order invariant

operator associated to the so-called Fantappié-de Sitter group [8], that is,
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with i,j = 0,1,2, . . . ,d+2. Here, r0 is the radius of the universe and A2 is the so-called

Cayley-Klein absolute given by
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with i= 1,2, . . . ,d+2. In order to have a physical meaning, we take x0 = icτ where c is

the speed of light and τ is the time. The constant in the second member is given by

Ω2 = k
(
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�
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)2
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4

. (2.3)

The constantsm and � have the usual meaning and the second term on the right-hand

side, where d denotes the dimension, is due to the curvature. The parameter k= 0,1,−1

is associated to the Minkowski, de Sitter, and anti-de Sitter space-times, respectively. If

we consider k = −1, we have the SO(3,2) group; k = 1, the SO(4,1) group, and k = 0,

the Poincaré group associated to their respective space-times.

To simplify our partial differential equation, we introduce the variables

√
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obtaining the partial differential equation

{
∂2
i +ρiρj∂i∂j+2ρi∂i

}
Ψ
(
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)= Ω2

A2
Ψ
(
ρi
)
, (2.5)

where i,j = 0,1,2, . . . ,d+2, A2 = 1+ρ2
i −t2 and Ω2 as given above.

To solve this partial differential equation, we can introduce the canonical hyperspher-

ical coordinates [3] but the separated equations contain a term of mixed derivatives.

Thus we use here the following system of coordinates:

iρ0 = tanτ secξ,

ρ1 = tanξ cosθ1,

ρ2 = tanξ sinθ1 cosθ2,

ρ3 = tanξ sinθ1 sinθ2 cosθ3,

...=
...

ρd = tanξ sinθ1 ···sinθd−1 cosθd,

ρd+1 = tanξ sinθ1 ···sinθd−1 sinθd cosφ,

ρd+2 = tanξ sinθ1 ···sinθd−1 sinθd sinφ,

(2.6)

0 ≤ θj ≤ π with j = 1,2, . . . ,d and 0 ≤ φ ≤ 2π . We then get, after a separation of

variables, the regular solution of the equation obtained, for the angular part, as follows:

e±imdφ
d−1∏
k=0

(
sinθk+1

)mk+1Cmk+1+(d−k)/2
mk−mk+1

(
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)
, (2.7)

where Cνµ (x) are the Gegenbauer polynomials of degree µ and order ν and n =m0 ≥
m1 ≥ ··· ≥md ≥ 0.

As for the partial differential equation in the ξ and τ variables, we can write
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(2.8)

where n = 0,1,2, . . . . (some authors call (2.8), a partial differential equation, the ra-

dial differential equation, because the other partial differential equation contains the

angular part only).

3. Solution of the field equation. In Section 1, we presented the generalized Klein-

Gordon field equation and separated the angular equation which admits the hyper-

spherical harmonics as solution (in [3], we use canonical hyperspherical coordinates

and we obtain the same angular equation, but the remaining differential equation is

different). Here, we solve the equation in the ξ and τ variables. With this aim, we intro-

duce another separation of variables

Ψ(ξ,τ)= R(ξ)T(τ) (3.1)
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and we obtain two ordinary differential equations as follows:
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where Λ is a constant.

Introducing Λ = s(s + d+ 1) with s = 0,1,2, . . . , we can write the solution of the

equation in the ξ variable in terms of the hypergeometric function, that is,

R(ξ)=Asinnξ 2F1

(
n−s,n+s+d+1;n+ d+2

2
;sin2 ξ

2

)
, (3.3)

where A is a constant.

In the case that considers the de Sitter universe, this solution can be written in terms

of the Gegenbauer polynomials

T(ξ)= sinnξCn+(d+1)/2
s−n (cosξ), (3.4)

where s−n≥ 0 and Cνµ (x) are the Gegenbauer polynomials.

Finally, we must solve the following ordinary differential equation:

[
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d
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where Ω2 is given by (2.3).

To solve this ordinary differential equation, we introduce the change of variable

T(τ)= coss τF(τ) (3.6)

and we obtain
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where 2t = 1−sinτ .

The solution of the equation in variable τ can be obtained in terms of the hypergeo-

metric function and then

T(τ)= coss τ 2F1
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where 2ν = 1−√1−4M2 and M2 = k(mcr0/�)2. Using the theory of hypergeometric

functions, we can obtain the second linearly independent solution.

4. Some properties of the solutions. To discuss a few properties of the solutions of

(3.5), it is convenient to introduce a change of independent variable of the type

sinτ = itanβ. (4.1)
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We then obtain the equation
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dβ2
+(d+1)tanβ

d
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+s(s+d+1)+ Ω2

cos2β

]
T(β)= 0. (4.2)

Finally, introducing another change of dependent variable

T(β)= cos(d+1)/2βF(β), (4.3)

we can write

[
d2

dβ2
+
(
q2+ M2

cos2β

)]
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where q = s+ (d+1)/2. This ordinary differential equation is the same equation ob-

tained by Chernikov and Tagirov [5] using another procedure. Two solutions of the

ordinary differential equation are given by [4]

F±qν(β)=A(q,ν)e±iqβ2F1

(
ν,1−ν ;q+1;

1±itanβ
2

)
, (4.5)

whereA(q,ν) is a normalization constant and 2F1(a,b;c;x) is the hypergeometric func-

tion. We note that the equation in the β variable is invariant under the change β→−β
and the two solutions are linearly independent.

We list below some properties of the above hypergeometric function (solutions of

the differential equation):

(a) complex conjugate: [F+qν(β)]∗ = F−qν(β),
(b) parity: F+qν(β)= F−qν(−β),
(c) Wronskian: W[F+qν(β),F−qν(β)]= 2/i,
(d) free wave: F±q0(β)∝ e±iqβ.

In [5], the authors give a complete list of the properties of this function and discuss

the field commutator and the transition to second quantization.

To finish this section, we introduce the change of variable sinτ = icotβ, in (3.5) and

we get

{
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d
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}
T(β)= 0. (4.6)

The solution of the above equation can be written as follows:

T(β)= sin(d+2)/2βP
s+d/2(cosβ), (4.7)

and where 
 and Ω are related by the expression
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where Pµν (x) are associated Legendre functions.
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We now consider the case d = 1. Taking 
 = −N −3/2, where N is an integer, and

using a relation involving the associated Legendre functions [9], we obtain

T(β)= sin3/2β
{
PN+3/2
s+1/2 (cosβ)− 2i

π
QN+3/2
s+1/2 (cosβ)

}
, (4.9)

which are proportional to the positive-frequency solutions (to write the positive-freque-

ncy solutions, we take d = 1 in (2.7) and (3.4) and use the equations for T(β)). These

solutions are the same solutions obtained by Chernikov and Tagirov in [5], where they

discuss the creation and annihilation operators of particles with known quantum num-

bers, and by Wyrozumski [17] using the methodology of Fourier transform. Finally, if

we consider k= 0 or r0 →∞, we recover the Minkowskian case (Klein-Gordon equation

in the Robertson-Walker universe, private communication, 2004).

5. Conclusions and perspectives. In this paper, we discussed the second-order field

equation associated to the Robertson-Walker space-time, that is, the generalized Klein-

Gordon wave equation, using an alternative methodology, by means of Casimir second-

order invariant operator. We solved this equation using a convenient system of coordi-

nates. We separated the differential equation in its angular part, solved in terms of the

Gegenbauer polynomials, and another partial differential equation which is solved in

terms of hypergeometric functions. A few properties of this particular hypergeometric

function were presented. As a particular case, when we have d= 1 (4-dimensional case)

we recovered Chernikov and Tagirov’s as well as Wyrozumski’s results, that is, the

positive-frequency solutions, which were obtained with different procedures. Finally,

we note that for 
 = ±1/2 we have M = 0 and then the second-order field equation is

conformal invariant.

A natural continuation of this paper is the calculation of the solution of Dirac equa-

tion by means of the factorization method, using the spin weight operators, associated

to the Casimir second-order invariant operator (on the first-order field equation, private

communication, 2001). On the other hand, we can discuss the polynomial solutions of

the generalized Laplace differential equation, which depend on the dimension. When

we considered d= 1, we recovered our recent result [7].
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