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The Kuramoto-Sivashinsky (KS) equation is known as a popular prototype to represent a sys-
tem in which the transport of energy through nonlinear mode coupling produces a balance
between long wavelength instability and short wavelength dissipation. Existing numerical
results indicate that the KS equation admits three classes (namely, regular shock, oscillatory
shock, and solitary wave) of nonperiodic traveling wave solutions and families of multiple
solutions in each class. However, the details of multiple solutions are still unclear because
of numerical accuracy. In this work, a rational spectral approach is used to compute these
multiple traveling wave solutions. Owing to the high accuracy of the employed method,
the new families of regular shock waves are found and the fine structure of each family is
recognized.
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1. Introduction. The Kuramoto-Sivashinsky (KS) equation

ut+uux+uxx+uxxxx = 0 (1.1)

arises as a model amplitude equation in many physical contexts with instability and dis-

sipation. It was originally derived to model phase turbulence in the Belusov-Zhabotinsky

reaction [15, 16], and thermal diffusive instability in flame fronts [20]. It has been used

to model the long waves on thin films [21], unstable drift waves in plasmas [6, 17]. It has

attracted much attention in the past several decades because it serves as a prototype

to study spatiotemporal chaos. Extensive numerical experiments of the initial value

problem of the KS equation have shown the existence of the periodic cellular patterns

[5, 12, 13, 18]. These simulations have also addressed the transitions of the dynamical

behavior from fixed points (steady solutions) to travelling waves, modulated travelling

waves (quasiperiodic solutions), heteroclinic orbits or steady solutions, eventually to

“chaos,” as the spatial period, that is, the cell length increases. On the other hand, from

a theoretical point of view, the existence of an inertial manifold of the KS equation

with periodic boundary conditions has been proved [7, 9, 19]. The existence of such a

manifold guarantees that the asymptotic behavior of its solutions can be described by

a finite-dimensional dynamical system. Low-dimensional behavior of the KS equation is

well described by combining the approximate inertial manifold calculations and O(2)
symmetry [1, 2, 8, 14].

On the other hand, the traveling wave solutions of the KS equation has been stud-

ied in a finite domain with periodic boundary condition [18] and in an unbounded
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domain [11]. In [11], the authors identified three classes (namely, regular shock, oscil-

latory shock, and solitary wave) of such solutions and also families of multisolutions

in each class. Such solutions are of particular interest as they resemble certain wave

disturbances that have been observed in experiments of falling films at low flow rates.

Furthermore, it is conjectured that the dynamical behavior of spatiotemporal chaos for

the KS equation is relevant to its structures and bifurcation of traveling wave solutions.

For example, if all the stationary and periodic solutions are unstable for some param-

eter range, chaotic behavior of the system is expected, since any orbit governed by the

equation has to wander around in the phase space, therefore, the orbits will then lie on

strange attractors.

However, the details of multiple solutions are still unclear because of numerical ac-

curacy. In this paper, a mapped Chebyshev pseudospectral method is used to compute

the nonperiodic travelling wave solutions of the KS equation (1.1). Owing to the high

accuracy of the employed method, the new families of regular shock waves are found

and the fine structure of each family is recognized. Furthermore, relations among three

classes of solutions are uncovered.

The rest of this paper is organized as follows. In Section 2, the problem is formulated

and a far-field analysis is presented to elucidate the possibility of three classes of sta-

tionary traveling wave solutions. Then, in Section 3, we present our numerical method

and apply it to obtain traveling wave solutions of the KS equation. Finally, in Section 4,

some comments and conclusion are given.

2. Preliminary analysis. Because we focus on traveling wave solutions, it is appro-

priate to carry out a moving coordinate transformation ∂/∂t→ ∂/∂t−c∂/∂x. This leads

to the governing equation

−cux+uux+uxx+uxxxx = 0 (−∞<x <∞), (2.1)

where c is the wave speed.

Assuming that u→ u± as x → ±∞, where u± are constants, (2.1) can be integrated

once to yield

−cu+ 1
2
u2+ux+uxxx =−cu++ 1

2
u2
+ = −cu−+

1
2
u2
−. (2.2)

It can be readily deduced that c = (1/2)(u++u−) if u+ �=u−, where c is indeterminate

at this stage if u+ = u−. Note that the case u+ = u− = c implies the trivial solution

u=u+ =u−. A scale transformation

U = u−c
u+−c , X = 1

2

(
u+−c

)
x (2.3)

converts (2.2) into

γUXXX+UX+U2 = 1 (2.4)
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with γ = (1/4)(u+ − c)2. Equation (2.4) is invariant under transformation U → −U ,

X → −X, which implies that if U(X) is a solution of (2.4), so is −U(−X). Hence, the

solutions are either antisymmetric or occur in pairs. It is easily shown that in the three-

dimensional phase space defined by coordinates (U,UX,UXX), there exist two critical

points, O1(1,0,0) and O2(−1,0,0), for the dynamical system corresponding to (2.4).

Assuming U = ±1+aeσX(a� 1), linearizing (2.4) about O1 and O2, one obtains the

characteristic equations

σ 3+σ ±2= 0. (2.5)

Roots of the above cubic equation can be written as

λ=∓λ1,±1
2

(
λ1+ iλ2

)
,±1

2

(
λ1− iλ2

)
, (2.6)

where

λ1 = 2
(3γ)1/2

sinhθ,

λ2 = 2
γ1/2 coshθ,

sinh3θ = 3(3γ)1/2.

(2.7)

AsX →∞, there is a one-dimensional stable manifold and a two-dimensional unstable

focus passing throughO1, a one-dimensional unstable manifold and a two-dimensional

stable focus through O2. As X → −∞, the roles of stability or instability are reversed.

Traveling wave solutions are classified according to the various ways of connecting a

manifold, stable asX →−∞, with another manifold which is stable asX →∞. Therefore,

three types of traveling wave solutions are predicted:

(1) regular shocks: these correspond to the heteroclinic orbits connecting O1 and

O2. U behaves in the far field as follows:

U �→±1+a±e∓λ1X (X �→±∞), (2.8)

(2) solitary waves: these correspond to the homoclinic orbits of O1 or O2 (in pairs).

For the case O1,

U �→ 1+ae−λ1X (X �→∞),

U �→ 1+be(1/2)λ1X cos
(

1
2
λ2X

)
(X �→−∞),

(2.9)

(3) oscillatory shocks: these are also the heteroclinic orbits between O1 and O2,

whereas, the far-field behavior is

U �→∓1+b±e∓λ1X cos
(

1
2
λ2X

)
(X �→±∞). (2.10)
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Before proceeding to the next section, we carry out a transformation X → λ1X, which

leads (2.4) to

νUXXX+(1−ν)UX = 1
2

(
1−U2), (2.11)

where ν = 1−(1/2)λ1. Equation (2.10) is used in our following numerical computation.

3. Numerical method and results. In this section, we will present an effective nu-

merical method for computing solitary wave solutions, which is called the rational

Chebyshev pseudospectral method by Boyd [3]. The earliest idea was by Grosch and

Orszag [10] and was given a complete treatment by Boyd [4].

3.1. Mapped Chebyshev pseudospectral method. The basis functions we used are

mapped Chebyshev polynomials:

TBn(X)= cos
(
ncot−1

(
X
L

))
, n= 0,1, . . . , (3.1)

where L is the mapped parameter. With the map t =X/√L2+X2, our basis functions, as

defined in (3.1), are equal to Tn(t), where Tn(t) are the usual Chebyshev polynomials.

The first five basis functions with L= 1 are

TB0(X)= 1, TB1(X)= X√
X2+1

, TB2(X)= X
2−1

X2+1
,

TB3(X)= X
(
X2−3

)
(
X2+1

)3/2 , TB4(X)= X
4−6X2+1(
X2+1

)2 .
(3.2)

The rate of convergence of the TBn(X) series is normally exponential but subgeometric.

The orthogonality relation with L= 1 is

∫∞
−∞
TBm(X)TBn(X)

1+X2
dX = πdn

2
δm,n, (3.3)

where d0 = 2, dn = 1 (n≥ 1), and δm,n is the Kronecker delta.

Since we are to solve (2.10) in an unbounded domain X ∈ (−∞,∞), it is convenient

to expand the solution as

U(X)=
N∑
n=1

rjφj(X), (3.4)

where N is a given positive integer. φj(X), j = 1,2, . . . ,N, are taken to be

φj(X)=


TB2j−1(X) for shock waves,

TBj−1(X) for solitary waves,
(3.5)
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which implies that the solutions are antisymmetric for shock waves. The corresponding

collocation points Xi, i= 1,2, . . . ,N are chosen as

Xi =




cot
(

2i−1
4N

π
)

for shock waves,

cot
(

2i−1
2N

π
)

for solitary waves.
(3.6)

Furthermore, we should have the boundary condition

U(X)|X=∞ =
N∑
j=1

rj =U∞, (3.7)

where U∞ = 1 for regular shock and solitary waves, and U∞ = −1 for oscillatory shock

waves. For the pseudospectral method, we have (2.10) to be satisfied at the collocation

points Xi, i = 1,2, . . . ,N. This result, together with (3.7), yields N+1 equations for the

N+1 unknowns rj , j = 1,2, . . . ,N, and ν .

The above N + 1 nonlinear equations can be solved with the Newton-Kantorovich

iteration method. Firstly, we give a guess U(0)(X) and ν(0), in the ith iterate, we suppose

U(i+1)(X)=U(i)(X)+∆(X), ν(i+1) = ν(i)+∆ν. (3.8)

By substituting (3.8) into the N+1 nonlinear equations and ignoring the higher-order

small terms, we arrive at N+1 linear equations, which can be solved by Gaussian elim-

ination.

3.2. Numerical results

3.2.1. Regular shocks. The regular shock wave solutions are antisymmetric, which

correspond to the heteroclinic orbits connecting the two fixed points of (2.4). Two new

families of solutions are found in our numerical computation. The first five members of

the first family are depicted in Figure 3.1 withγ=0.36083977,0.34877725,0.34930413,
0.34928172,0.34928266. It is worth noting that approximately, we have (γi+1 −γi)/
(γi+2−γi+1)≈−23. Although we only determine the first five members of this family,

we conjecture that there is a countable number of members with γ1,γ2, . . . ,γn → γc
between (0.34877725,0.36083977). The solution corresponding to γn has n “humps”

in the domain X ∈ (−∞,∞). We suppose that γc is very close to 0.34928266.

The first five members of the second family are shown in Figure 3.2 with γ =
0.12394728,0.11739917,0.11839120,0.11824900,0.11826914. Again, they have the re-

lation approximately (γi+1−γi/γi+2−γi+1) ≈ −7. We conjecture that there is also a

countable number of members in this family between the first two eigenvalues γ =
0.12394728 and γ = 0.11739917. Their eigenvalues approach a limit value, which is

estimated just less than 0.11826914.

3.2.2. Solitary waves. The solitary wave solutions correspond to the homoclinic or-

bits around either of the two fixed points of (2.4). Two families of such solutions are

obtained numerically.
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Figure 3.1. Numerical solutions for the first family of regular shocks: (a) γ =
0.36083977, (b) γ = 0.34877725, (c) γ = 0.34930413, (d) γ = 0.34928172, (e)
γ = 0.34928266.

The first five members of the first family are shown in Figure 3.3 withγ = 0.36975528,
0.34837892,0.34932100,0.34928100,0.34928271. It is clear that they are correspond-

ing to the first family of regular shock waves. For the same number “humps,” the eigen-

value of each member is very close to that of the member in the corresponding regular
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Figure 3.2. Numerical solutions for the second family of regular shocks: (a)
γ = 0.12394728, (b) γ = 0.11739917, (c) γ = 0.11839120, (d) γ = 0.11824900,
(e) γ = 0.11826914.

shocks family. We conjecture here that there is a countable number of members in this

family. Their eigenvalues approach a limit value γe, which should be close to γc up

to any decimal number, but different from γc . It is impossible to distinguish between

them numerically.



3846 BAO-FENG FENG

−20 −10 0 10 20

X

−2

−1

0

1

2

U
(X
)

(a)

−20 −10 0 10 20

X

−2

−1

0

1

2

U
(X
)

(b)

−20 −10 0 10 20

X

−2

−1

0

1

2

U
(X
)

(c)

−20 −10 0 10 20

X

−2

−1

0

1

2

U
(X
)

(d)

−20 −10 0 10 20

X

−2

−1

0

1

2

U
(X
)

(e)

Figure 3.3. Numerical solutions for the first family of solitary waves: (a) γ =
0.36975528, (b) γ = 0.34837892, (c) γ = 0.34932100, (d) γ = 0.34928100, (e)
γ = 0.34928271.

Similarly, the first five members of the second family are depicted in Figure 3.4 with

γ = 0.12410820,0.11737594,0.11839452,0.11824886,0.11826924. Again, the above

conjecture is confirmed by our numerical results.
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Figure 3.4. Numerical solutions for the second family of solitary waves: (a)
γ = 0.12410820, (b) γ = 0.11737594, (c) γ = 0.11839452, (d) γ = 0.11824886,
(e) γ = 0.11826924.

4. Comments and conclusion. In the present paper, a rational spectral method is

developed for solving nonlinear boundary problems with an application of finding the

stationary traveling wave solutions of Kuramoto-Sivashinsky equation. Because the ba-

sis functions used are mapped Chebyshev polynomials, this method does not require

the infinite domain to be truncated. The numerical results indicate that the rational

spectral method can produce very accurate numerical solutions.
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With the help of the new method, the new families of regular shock waves are found

and the fine structure of each family is recognized. Furthermore, relations among three

classes of solutions are uncovered.
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