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A study is made of the propagation of time-harmonic plane waves in an infinite, conducting,
thermoelastic solid permeated by a uniform primary external magnetic field when the entire
medium is rotating with a uniform angular velocity. The thermoelasticity theory of type II
(G-N model) (1993) is used to study the propagation of waves. A more general dispersion
equation is derived to determine the effects of rotation, thermal parameters, characteristic
of the medium, and the external magnetic field. If the primary magnetic field has a trans-
verse component, it is observed that the longitudinal and transverse motions are linked
together. For low frequency (χ� 1, χ being the ratio of the wave frequency to some stan-
dard frequency ω∗), the rotation and the thermal field have no effect on the phase velocity
to the first order of χ and then this corresponds to only one slow wave influenced by the
electromagnetic field only. But to the second order of χ, the phase velocity, attenuation co-
efficient, and the specific energy loss are affected by rotation and depend on the thermal
parameters cT , cT being the nondimensional thermal wave speed of G-N theory, and the
thermoelastic coupling εT , the electromagnetic parameters εH , and the transverse magnetic
field RH . Also for large frequency, rotation and thermal field have no effect on the phase
velocity, which is independent of primary magnetic field to the first order of (1/χ) (χ� 1),
and the specific energy loss is a constant, independent of any field parameter. However, to
the second order of (1/χ), rotation does exert influence on both the phase velocity and the
attenuation factor, and the specific energy loss is affected by rotation and depends on the
thermal parameters cT and εT , electromagnetic parameter εH , and the transverse magnetic
field RH , whereas the specific energy loss is independent of any field parameters to the first
order of (1/χ).

2000 Mathematics Subject Classification: 74F05.

1. Introduction. The study of propagation of thermoelastic and magnetothermoe-

lastic waves in a nonrotating medium was made by several authors. Biot [2] derived

the equations of thermoelasticity based on the Fourier’s law, which is concerned with

the interaction of the thermal field and elastic deformation such that these two fields

are linked together. Biot’s equations have been used for the investigation of the plane

thermoelastic waves. The main drawback of Biot’s equations is that they were based

on the Fourier’s law which predicts an infinite speed of propagation of heat. Lord

and Shulman [11] employed a modified version of the Fourier law to eliminate this

paradox and thereby established the generalized coupled heat conduction equation

which is hyperbolic in nature. They have derived equations of dynamic thermoelastic-

ity based on the modified Fourier’s law and these equations are usually regarded as the

basis of generalized thermoelasticity. Lord and Shulman’s equations have been used by
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several authors including Puri [16], Nayfeh and Nemat-Nasser [12] to study the plane

thermoelastic waves in an unbounded isotropic homogeneous elastic medium. Agarwal

[1] investigated the propagation of surface waves in generalized thermoelasticity.

Paria [14] and Wilson [24] investigated the propagation of magnetothermoelastic

waves in a nonrotating medium. These studies, based on the theory of classical coupled

thermoelasticity, were essentially concerned with the interaction of the electromagnetic

field, the thermal field, and the elastic field as well as the dispersion relation. The prop-

agation of harmonic plane waves in a rotating elastic medium has been investigated

by Schoenberg and Censor [22] in some details. It has been shown that the rotation

causes the elastic medium to be dispersive and anisotropic. This study included some

discussion on the free surface phenomenon in a rotating half-space. Results concerning

slowness surfaces, energy flux, reflected waves, and generalized Rayleigh waves have

been obtained.

It seems relevant from the above discussion that little attention has been given to the

study of propagation of thermoelastic plane waves in a rotating medium in the presence

of external magnetic field based on the generalized thermoelasticity. In view of the fact

that most large bodies, like the earth, the moon, and other planets, have an angular ve-

locity, it is important to consider the propagation of magnetothermoelastic plane waves

in an electrically conducting, rotating elastic medium under the action of the external

magnetic field with or without thermal relaxation. In this connection, Roychoudhuri and

Debnath [17, 18, 19, 21, 20] have studied propagation of magnetothermoelastic plane

waves in a rotating thermoelastic medium permeated by a primary uniform magnetic

field by using the generalized heat conduction equation of Lord and Shulman. In the

present problem, we have studied the propagation of time-harmonic coupled electro-

magnetoelastic dilatational thermal shear waves using the thermoelasticity theory of

type II [9] (Green-Naghdi (G-N) model 1993). This thermoelastic model possesses several

significant characteristics that differ from the traditional classical development in ther-

moelastic material behaviors: (i) it does not sustain energy dissipation, (ii) the entropy

flux vector (or equivalently heat flow vector) in the theory is determined in terms of the

same potential that also determines the stress, (iii) it permits transmission of heat flow

as thermal waves at finite speed. Several problems in thermoelasticity relating to this

Green-Naghdi theory of thermoelasticity of type II (without thermal energy dissipation)

have been studied by several authors [4, 5, 6, 7, 8, 23]. In this paper, G-N model of

thermoelasticity of type II is used to obtain a more general dispersion equation to as-

certain the effects of rotation, thermal parameter cT , the nondimensional thermal wave

speed characteristic of G-N theory, thermoelastic coupling constant εT and the external

magnetic field on the phase velocity and attenuation factor of the coupled electromag-

neto dilatational thermal shear waves. Special attention is given to study the effects on

the specific energy loss for both low and high frequencies. Though several problems

of coupled wave propagation have been studied in generalized magnetothermoelas-

ticity with/without thermal relaxation by previous researchers, it is believed that this

particular problem of coupled wave propagation in a rotating magnetoelastic solid us-

ing the theory of thermoelasticity of type II (G-N model) [9] has not been dealt with

before.
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2. Formulation of the problem and the basic equations. We consider an infinite ho-

mogenous, isotropic, thermally, and electrically conducting elastic solid permeated by

a primary uniform magnetic field �B0 = (B1,B2,B3). The elastic medium is characterized

by the density ρ and Lamé constants λ, µ and is uniformly rotating with an angular

velocity �Ω = Ω�n, where �n is the unit vector representing the direction of the axis of

rotation. The displacement equation of motion in the rotating frame of reference has

two additional terms—the centripetal acceleration �Ω×(�Ω× �u) due to the time-varying

motion only and the Coriolis acceleration 2 · �Ω× �̇u, where �u is the dynamic displace-

ment vector. These terms do not appear in the nonrotating medium. The dynamic dis-

placement vector is actually measured from a steady-state deformed position and the

deformation is assumed to be small. The displacement equations of motion with the

increase of temperature θ above the reference temperature T0 is

µ∇2�u+(λ+µ)�∇(�∇· �u)+ �J× �B−ν �∇θ = ρ[ �̈u+ �Ω×(�Ω× �u)+2�Ω× �̇u], (2.1)

where �J× �B is the electromagnetic body force, �J is the current density, �B = �B0+�b is the

total magnetic field, �b = (bx,by,bz) is the perturbed magnetic field which is assumed

to be small so that the products with �b and �u and their derivatives can be neglected

for linearization of the field equations, ν = (3λ+2µ)αt , αt is the coefficient of linear

thermal expansion of the solid, and dots represent the derivatives with respect to time t.
The coupled heat conduction equation of the theory of thermoelasticity (type II) with-

out energy dissipation proposed by Green and Naghdi [9] is

ρCν �̈θ+νT0 �̈∆= ρQ+k∗∇2θ, (2.2)

where Cν is the specific heat of the solid at constant volume, ρ is the density of the

medium, T0 is the initial reference temperature, k∗ is a material constant characteristic

of the theory, Q is the heat source function, and ∆ is the dilatation so that ∆ = div �u.

The finite thermal wave speed is (k∗/ρCν)1/2.

In the present problem, Q= 0, so that the heat conduction equation becomes

ρCνθ̈+νT0∆̈= k∗∇2θ. (2.3)

Equation (2.3) permits thermal wave propagation without damping. The equations

(2.1) and (2.3) are to be supplemented by generalized Ohm’s law in a continuous medium

with Maxwell’s electromagnetic field equations.

The electromagnetic field is governed by the Maxwell’s equations with the displace-

ment current and charge density neglected as

�∇× �H = �J, (2.4a)

�∇× �E =−∂B
∂t
, (2.4b)

�∇· �B = 0, (2.4c)

where �B = µe �H and µe is the magnetic permeability.
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The generalized Ohm’s law is

�J = σ
[
�E+
(
∂ �u
∂t
+ �Ω× �u

)
× �B

]
, (2.5)

where the time-independent part of �Ω× �u is neglected, σ is the electrical conductiv-

ity, ∂ �u/∂t is the particle velocity of the medium, and the small effect of temperature

gradient on �J is also ignored.

3. Plane wave solutions and dispersion relation. We consider the propagation of

plane waves in the rotating medium in the x-direction so that all quantities are propor-

tional to exp[i(kx−ωt)], where (ω/2π) is the wave frequency and (2π/k) is the wave

length. We will assume thatω is real, but kmay be complex. The analysis will be carried

out without any discussion of the time-independent stresses and displacements that

are caused by the centrifugal force and other possible body forces. We look for time-

varying dynamic solutions and as such, the time-independent part of the centripetal

acceleration as well as all body forces will be neglected. However, the time-dependent

part of the electromagnetic body force will be taken into consideration. In view of the

above assumptions, we write all field quantities in the form

�u= (p,q,r)= (p0,q0,r0
)
exp

[
i(kx−ωt)], (3.1)

θ = θ0 exp
[
i(kx−ωt)], (3.2a)

�J = (j1,j2,j3
)
exp

[
i(kx−ωt)], (3.2b)

�b = (bx,by,bz)= (b1,b2,b3
)
exp

[
i(kx−ωt)], (3.3)

�E = (Ex,Ey,Ez), (3.4a)

�Ω= (Ω1,Ω2,Ω3
)
, (3.4b)

where p0,q0,r0; j1,j2,j3; b1,b2,b3; Ω1,Ω2,Ω3, and θ0 are all constants.

It follows from (2.4c) that div�b = 0 which implies bx = 0, since initially �b = �0. Also,

it follows from (2.4a) that µe �J = �∇×�b so that

�J =
[

0,− ik
µe
bz,

ik
µe
by
]
, (3.5)

�J× �B0 =
[
− ik
µe

(
bzB3+byB2

)
,
ik
µe
byB1,

ik
µe
bzB1

]
. (3.6)

Thus, the term �J× �B in (2.1) can be replaced by �J× �B0 given by (3.6).

Substituting (3.1) and (3.2a) into (2.3), we find

θ0 =αp0, (3.7a)

α= ivT0kω2

k∗k2−ρCνω2
. (3.7b)

Again, �∇× �E =−∂�b/∂t gives

�E = (Ex,Ey,Ez)=
(
Ex,

ω
k
bz,−ωk by

)
. (3.8)
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Replacing �B by primary magnetic field �B0, (2.5) takes the form

�J = σ
[
�E+
(
∂u
∂t
+ �Ω× �u

)
× �B0

]
. (3.9)

Making use of (3.1) and (3.8) and neglecting the product terms, equation (3.9) with
�J = (Jx,Jy ,Jz) yields

Jx = σ
[
Ex−iω

(
qB3−rB2

)+B3
(
pΩ3−rΩ1

)−B2
(
qΩ1−pΩ2

)]
, (3.10)

Jy = σ
[
ω
k
bz−iω

(
rB1−pB3

)+B1
(
qΩ1−pΩ2

)−B3
(
rΩ2−qΩ3

)]
, (3.11)

Jz = σ
[
−ω
k
by−iω

(
pB2−B1q

)+B2
(
rΩ2−qΩ3

)−B1
(
pΩ3−rΩ1

)]
. (3.12)

Elimination of �J from (3.5) and (3.10), (3.11), and (3.12) gives

σ
[
Ex−iω

(
qB3−rB2

)+B3
(
pΩ3−rΩ1

)−B2
(
qΩ1−pΩ2

)]= 0, (3.13)

σ
[
ω
k
bz−iω

(
rB1−pB3

)+B1
(
qΩ1−pΩ2

)−B3
(
rΩ2−qΩ3

)]=− ik
µe
bz, (3.14)

σ
[
−ω
k
by−iω

(
pB2−qB1

)+B2
(
rΩ2−qΩ3

)−B1
(
pΩ3−rΩ1

)]= ik
µe
by. (3.15)

From (3.13) we get

Ex = iω
(
qB3−rB2

)−B3
(
pΩ3−rΩ1

)+B2
(
qΩ1−pΩ2

)
. (3.16)

We next put (3.1)–(3.4) into (2.1) and suppress the factor exp[i(kx−ωt)] throughout

the subsequent discussion to obtain the following equations:

p0
[
ρ
(
Ω2

1−Ω2−ω2)+(λ+2µ)k2+ivαk]+q0
[
ρ
(
2iωΩ3+Ω1Ω2

)]

+r0
[
ρ
(
Ω1Ω3−2iωΩ2

)]+ ik
µe

(
b3B3+b2B2

)= 0,
(3.17)

p0
[
ρ
(
Ω1Ω2−2iωΩ3

)]+q0
[
ρ
(
Ω2

2−Ω2−ω2)+µk2]+r0
[
ρ
(
Ω2Ω3+2iωΩ1

)]− ik
µe
b2B1=0,

(3.18)

p0
[
ρ
(
Ω1Ω3+2iωΩ2

)]+q0
[
ρ
(
Ω2Ω3−2iωΩ1

)]+r0
[
ρ
(
Ω2

3−Ω2−ω2)+µk2]− ik
µe
b3B1=0,

(3.19)

p0
[
σ
(
iωB3−B1Ω2

)]+q0
[
σ
(
B1Ω1+B3Ω3

)]+r0
[−σ(iωB1+B3Ω2

)]+b3

[
ik
µe
+ σω

k

]
= 0,

(3.20)

p0
[−σ(iωB2+B1Ω3

)]+q0
[
σ
(
iωB1−B2Ω3

)]+r0
[
σ
(
B2Ω2+B1Ω1

)]−b2

[
ik
µe
+ σω

k

]
= 0.

(3.21)

Equations (3.17)–(3.21) constitute a system of five equations with five unknowns, p0,

q0, r0 and the perturbed quantities b2, b3.
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Since �b = (0,by,bz) and �b-field is normal to the x-axis, we then choose the y-axis

and the z-axis such that �b-field is along the y-axis. Invoking the additional assumption

Ω1 = Ω2 = 0 and Ω3 = Ω ≠ 0 and considering that r0 ≡ 0 provided µk2 − ρω2 ≠ 0

(evident from (3.19)) so that B3 ≡ 0, we set the applied and perturbed magnetic fields

to be (B1,B2,0) and (0,b2,0), respectively.

This leads to the following three homogenous equations with three unknowns p0,

q0, and b2

p0
[−ρ(Ω2+ω2)+(λ+2µ)k2+ivαk]+2iωρΩq0+ ikµe B2b2 = 0, (3.22)

p0[−2iωρΩ]+q0
[
µk2−ρ(Ω2+ω2)]− ikB1

µe
b2 = 0, (3.23)

p0
[−σ(B1Ω+iωB2

)]+q0
[
σ
(
iωB1−ΩB2

)]−
[
ik
µe
+ σω

k

]
b2 = 0. (3.24)

Elimination of p0, q0, and b2 gives the dispersion equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ρ(Ω2+ω2
)+(λ+2µ)k2+ivαk 2iωρΩ

ikB2

µe

−2iωρΩ µk2−ρ(Ω2+ω2
) − ikB1

µe

σ
(
B1Ω+iωB2

)
σ
(
ΩB2−iωB1

) (
ik
µe
+ σω

k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (3.25)

It follows from the dispersion equation that the significant effects of the rotation

and the thermal field on the phase velocity ω/Re(k) are reflected through the terms

involvingΩ and the term containingα through the term k∗, characteristic of G-N theory.

In order to make further simplification of the dispersion equation, we assume �B0 =
(0,B2,0) so that (3.25) becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣

−ρ(ω2+Ω2
)+(λ+2µ)k2+ivαk 2iωρΩ

ik
µe
B2

−2iωρΩ µk2−ρ(Ω2+ω2
)

0

σiωB2 σΩB2
ik
µe
+ σω

k

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.26)

Expanding this determinant and substituting (Ω/ω) = Ω0 and the value of α from

(3.7b), we obtain

[{−ρω2(1+Ω2
0

)+(λ+2µ)k2}·(k∗k2−ρCνω2)−ν2k2T0ω2]

×[−ρω2(1+Ω2
0

)+µk2]( ik
µe
+ σω

k

)
+(k∗k2−ρCνω2)

×[−4ω2ρ2Ω2
(
ik
µe
+ σω

k

)
+ kσωB

2
2

µe

{
2ρΩ2−ρω2(1+Ω2

0

)+µk2}]= 0.

(3.27)



MAGNETOELASTIC PLANE WAVES IN ROTATING MEDIA . . . 3923

It is convenient to introduce the following dimensionless quantities:

χ = ω
ω∗ , ξ = kc1

ω∗ , εT = T0ν2

ρ2Cνc2
1

, εH = ω
∗νH
c2

1

, γH =
(
µe ·σ

)−1,

k∗

ρCνc2
1

= k
∗/ρCν
c2

1

= c2
T ,

(3.28)

where c1 = ((λ+2µ)/ρ)1/2 is the longitudinal elastic wave velocity, εT is the thermoe-

lastic coupling constant, cT is the nondimensional thermal wave speed of G-N theory,

depending on k∗, ω∗ is some standard frequency, νH is the magnetic viscosity.

We divide (3.27) by c2
1 and observe the following results for further simplification of

(3.27):

−ω
2

c2
1

(
Ω2

0+1
)+k2 = ω

∗2

c2
1

{
ξ2−χ2(1+Ω2

0

)}
, (3.29)

κ∗k2−ρCνω2 =−k∗ω
∗2

c2
1

(
ξ2− χ

2

c2
T

)
, (3.30)

ν2k2T0ω2

ρc2
1

= εT
c2
T
ξ2χ2 k∗ω∗4

c4
1

, (3.31)

µk2−ρω2(Ω2
0+1

)= ρω∗2{s2ξ2−χ2(Ω2
0+1

)}
, (3.32)

k2

σµe
−iω=−iω∗(χ+iξ2εH

)
, (3.33)

2ρΩ2−ρ(Ω2
0+1

)
ω2+µk2 = ρω∗2{χ2(Ω2

0−1
)+s2ξ2}, (3.34)

where s2 = (c2/c1)2 and c2
2 = µ/ρ.

Introducing the magnetic pressure number RH = B2
2/ρc

2
1µe as defined by Pai [13],

(3.27) takes the form

[{
ξ2−χ2(Ω2

0+1
)}(
ξ2c2

T −χ2)−εTξ2χ2]{s2ξ2−χ2(Ω2
0+1

)}(
χ+iξ2εH

)
+(ξ2c2

T −χ2)[−4Ω2
0χ

4(χ+iξ2εH
)+RHξ2χ

{
χ2(Ω2

0−1
)+s2ξ2}]= 0.

(3.35)

The equation indicates the influence of the rotation and the thermal field through cT
and εT on the phase velocity. In the absence of rotation (Ω0 = 0), the dispersion relation

(3.35) reduces to

(
s2ξ2−χ2)[(ξ2c2

T −χ2)(ξ2−χ2)(χ+iξ2εH
)

−χ2ξ2εT
(
χ+iξ2εH

)+RHχξ2(ξ2c2
T −χ2)]= 0.

(3.36)

In this case, the phase velocity is broken up into two factors. The first factor corre-

sponds to s2ξ2−χ2 = 0 which leads to a transverse elastic wave.

The other factor leads to

[(
ξ2−χ2)(χ+iξ2εH

)+RHχξ2](ξ2c2
T −χ2)−εTχ2ξ2(χ+iξ2εH

)= 0. (3.37)
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Equation (3.37) corresponds to the dispersion equation of coupled magnetoelastic di-

latational thermal waves influenced by k∗ through cT , a characteristic of the material

of G-N model and is not so far dealt with.

Setting RH = 0, the dispersion equation (3.37) reduces to

(
χ+iξ2εH

)[(
ξ2−χ2)(ξ2c2

T −χ2)−εTχ2ξ2]= 0. (3.38)

The first factor corresponds to quasistatic oscillations of the electromagnetic field,

not coupled with the displacement field (Parkus [15]). The second factor of (3.38) cor-

responds to dispersion equation (not considered so far) for purely thermoelastic waves

(G-N model) leading to (ξ2−χ2)(ξ2c2
T −χ2)−εTχ2ξ2 = 0 in contrast to the equation de-

rived by Chadwick [3] in classical coupled thermoelastic theory. The roots of this equa-

tion are real, indicating that purely thermoelastic waves in thermoelasticity of type II

(G-N model) are unattenuated and nondispersive (without energy dissipation), not yet

considered.

The roots of the dispersion equation for purely thermoelastic waves in thermoelas-

ticity of type II (G-N model) are ξ2 = (M1±N1)χ2, where M1 = (1/2c2
T )(c

2
T +1+εT ) and

N1 = (1/2c2
T )[(c

2
T −1)2+ε2

T +2εT (c2
T +1)]1/2 (imposing the condition that cT > 1) and

the phase speeds are CE,Tp = χc1/ξ = c1/
√
(M1±N1)= VE,VT corresponding to +ve and

−ve signs.

Setting εT = 0 leads to VE = c1, which is the elastic dilatational wave speed and

VT =
√
k∗/ρCν = finite thermal wave speed of G-N model. Thus, VE corresponds to mod-

ified elastic dilatational wave speed and VT the modified thermal wave speed, modified

by the nondimensional thermal wave speed cT of G-N theory and the thermoelastic

coupling εT . Clearly, VE < VT , implying that modified elastic wave follows the modified

thermal wave.

Equation (3.35) represents a more general dispersion relation in the sense that it in-

corporates the effects of rotation, the finite thermal wave speed cT , thermal coupling

εT , and RH . Also, it shows that if the primary magnetic field has a transverse compo-

nent, the longitudinal and transverse components of the displacement vector are linked

together.

As (3.35) is very complicated, we consider the following limiting cases in order to ex-

amine the effects of the rotation, the finite thermal wave speed cT , thermal coupling εT ,

external magnetic field RH on the phase velocity, and attenuation coefficient of waves

and on specific energy loss.

4. Low-frequency region (χ�1). In this case, the wave frequencyω is much smaller

than the characteristic frequency ω∗. We consider this case with finite electrical con-

ductivity (σ ≠ 0, νH ≠ 0). Thus, when χ = 0, ξ2 = 0 so that we can write ξ2 = iφχ+0(χ2),
where φ is to be determined. We substitute ξ2 into (3.35), retain the terms containing

χ4 and then equate the coefficient of χ4 to zero in order to obtain an equation for φ as

φ= 1+RH
εH

. (4.1)
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This corresponds to one kind of slow wave, because

∣∣∣∣ωk
∣∣∣∣=

∣∣∣∣c1χ
ξ

∣∣∣∣∼ c10
(
χ1/2)� c1. (4.2)

Thus, for the low frequency, the rotation and the thermal field have no influence

on the phase velocity in the case of finite conductivity. This corresponds to only one

slow wave coupled to the electromagnetic field only in contrast to (4.1) derived by

Roychoudhuri and Debnath [20]. Then, the phase velocity can be found from the result

ξ =±(1+i)
(
χ

2εH

)1/2
Rm, (4.3)

where R2
m = 1+RH = 1+ν2

A/c
2
1 and νA is the Alfvén wave velocity.

It follows from (4.3) that there exists a magnetoelastic wave.

It follows from the real and imaginary part of ξ that the phase velocity is

cp = c1

(
χεH

2

)1/2
R−1
m . (4.4)

The attenuation factor is

af = ω
∗

c1

(
χ

2εH

)1/2
Rm. (4.5)

The phase speed and attenuation factor are independent of cT , the thermal wave speed,

and thermoelastic coupling εT but influenced by RH to the order of (χ) for χ� 1.

However, considering terms of 0(χ2) for χ� 1, we obtain from the general dispersion

equation (3.35)

ξ2 = iM2+N2, M2 =
(
1+RH

)
χ

εH
,

N2 =
{
c2
T ·s2

(
1+Ω2

0

)+s2
(
1+εT

)+(1+Ω2
0

)
c2
T
}
χ2

s2c2
T

.
(4.6)

It follows from the real and imaginary parts of ξ that the phase velocity is

cp = Re
(
χc1

ξ

)
= χc1√

R1
cos

φ
2

(4.7)

and the attenuation factor is

af = ω
∗

c1

√
R1 sin

φ
2
, (4.8)

where R1 = (M2
2 +N2

2)1/2 and tanφ=M2/N2.



3926 S. K. ROYCHOUDHURI AND M. BANERJEE (CHATTOPADHYAY)

This confirms that the phase speed and the attenuation factors are both affected

by rotation, finite thermal wave speed cT , the thermoelastic coupling εT , the external

magnetic field, and the electromagnetic parameter.

5. High-frequency region (χ� 1). This case corresponds to the case of wave fre-

quency ω much larger than ω∗. Dividing the dispersion equation (3.35) by χ7 and

neglecting all terms involving the second and higher powers of (1/χ), we obtain

ξ =±(1+i)
(
χ

2εH

)1/2
. (5.1)

Thus, no effect of rotation and cT , εT on the phase velocity is observed to the first-order

of (1/χ) for (χ� 1). Also, the phase speed does not depend on the primary magnetic

field, but it depends on the magnetic and the electrical property of the medium.

To the first order of (1/χ) for (χ� 1), the phase velocity cp and the attenuation factor

af are given by

cp = c1

(
εH ·χ

2

)1/2
, (5.2)

af = ω
∗

c1

(
χ

2εH

)1/2
. (5.3)

Now, dividing (3.35) by χ7 and retaining the terms of the order of (1/χ)2 for (χ� 1)

and neglecting the higher powers of (1/χ), we obtain

ξ2 = (L+iM)
L2+M2

, (5.4)

where

M = εH
χ
,

L= 1

χ2
(
Ω2

0−1
)2

[(
1+εT +s2)(Ω2

0+1
)−RH(Ω2

0−1
)+(Ω2

0−1
)2c2

T

]
= L0

χ2
,

(5.5)

where

L0 = 1(
Ω2

0−1
)2

[(
1+εT +s2)(Ω2

0+1
)2+(Ω2

0−1
)
c2
T −RH

(
Ω2

0−1
)]
. (5.6)

It follows from the real and the imaginary parts of ξ that the phase velocity is

cp = χc1√
R

cos
θ
2

(5.7)

and the attenuation factor is

af = ω
∗

c1

√
Rsin

θ
2
, (5.8)
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where

R = 1√
L2+M2

, tanθ = M
L
. (5.9)

The results (5.7) and (5.8) are similar to (5.3) and (5.4) reported by Roychoudhuri and

Debnath [20].

It is important to observe that rotation, thermal parameter k∗ (and hence cT ), charac-

teristic of G-N theory and the thermoelastic coupling constant εT , do exert influence on

both the phase velocity and the attenuation factor for high frequencies to the second

order of (1/χ). Also, both the phase speed and the attenuation factor are modified by

the applied magnetic field through the term L for high frequency. This fact was not

noticed for the case of low frequency.

6. Specific energy loss. Making reference to Kolsky [10], the specific energy loss

(∆W/W ) is defined as the ratio of the energy dissipated per stress cycle to the total

vibrational energy and is given by

∆W
W

= 4π
ω
cpaf . (6.1)

To the second order of χ for χ � 1, the specific energy loss from (4.7) and (4.8) is

given by

∆W
W

= 2π
M2(

M2
2 +N2

2

)1/2 . (6.2)

Therefore, the specific energy loss is affected by rotation, finite thermal wave speed

cT , the thermoelastic coupling εT , the external magnetic field, and the electromagnetic

parameter.

For χ� 1, the specific energy loss to the first order of 1/χ is obtained from (5.2) and

(5.3) in the form

∆W
W

= 2π. (6.3)

Equation (6.3) shows that the specific energy loss is independent of any field param-

eters in the case of high frequency up to the first order of (1/χ).

However, to the second order of (1/χ), the expression for the specific energy loss is

obtained from (5.7) and (5.8) in the form

∆W
W

= 2π
M√

L2
0/χ4+M2

= 2π
εH√

ε2
H+L2

0/χ2
. (6.4)

This result confirms that the specific energy loss is affected by the rotation to the second

order of (1/χ) for the case of high frequency and depends on thermal parameters εT ,
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finite thermal wave speed cT of G-N theory of thermoelasticity of type II, electromag-

netic parameter εH , and the transverse magnetic field RH .
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