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This is a sequel to our paper (Lett. Math. Phys. (2000)), triggered from a question posed by
Marcel, Ovsienko, and Roger in their paper (1997). In this paper, we show that the multi-
component (or vector) Ito equation, modified dispersive water wave equation, and modified
dispersionless long wave equation are the geodesic flows with respect to an L2 metric on the
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preserving SobolevHs diffeomorphisms of the circle. We also study the projective structure
associated with the matrix Sturm-Liouville operators on the circle.
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1. Introduction. It is known that the periodic Korteweg-de Vries (KdV) and the

Camassa-Holm equation [5] can be interpreted as geodesic flow of the right invari-

ant metric on the Bott-Virasoro group, which at the identity is given by the L2 and the

Sobolev metric H1-inner product, respectively, [25, 26, 28, 29].

With the advancement of the integrable systems, physicists and mathematicians dis-

covered many new multicomponent versions of the existing integrable nonlinear PDEs

[1, 2, 9, 22]. In the theory of integrable systems, these multicomponent generalizations

have been sporadically used. There are several two-component generalizations of KdV

equations, namely, Hirota-Satsuma equation [16], Wilson equation [30], and Ito equa-

tion [18] are notables among them. Almost all the integrable systems of these classes

share a common property. These are all bi-Hamiltonian systems which enjoy a com-

patible pair of Hamiltonian structure. These systems belong to an infinite-dimensional

hierarchy of bi-Hamiltonian systems. The resulting Hamiltonian flows can be mapped

into each other by the recursion operator, which is formally defined as the “quotient”

of the two Hamiltonian structures. Several of the well-known bi-Hamiltonian systems

fall into two-component case are actually tri-Hamiltonian. There are a few disparate

examples of tri-Hamiltonian systems. The classical dispersive water equation and the

long waves equation [22] belong to this class of integrable systems.

In our earlier papers [10, 11], we have shown that the Ito equation, modified disper-

sive water wave equation, and modified dispersionless long waves equation arise in a

unified geometric setting, all of them are integrable systems which describe geodesic

flows. Thus, we unify the Ito equation, the dispersive water wave equation, and the

long wave equation through a common construction, all are integrable systems which

describe geodesic flows with respect to L2 on the extension of the Bott-Virasoro group.
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http://dx.doi.org/10.1155/ijmms
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Recently, there has been a growing interest in the multicomponent integrable sys-

tems. These systems are far less known than ordinary integrable systems. It was pre-

sented in [1, 2] that an N-component system has a remarkable property of possessing

(N+1) local Hamiltonian structure. Antonowicz and Fordy showed that these systems

were isospectral to an energy-dependent Schrödinger operator and gave a systematic

derivation of the Hamiltonian from knowledge of the generalized Lax representation.

Using the extension of the Bott-Virasoro group with an L2 metric, we will show how

the multicomponent KdV-type equation arise from a geodesic flow.

Following Ebin and Marsden [8], we enlarge Diff(S1) to a Hilbert manifold Diffs(S1),
the diffeomorphism of Sobolev classHs . This is a topological space. If s > n/2, it makes

sense to talk about an Hs map from one manifold to another. Using local charts, one

can check whether the derivation of order ≤ s is square integrable.

The Lie algebra of Diffs(S1)�C∞(S1) has a three-dimensional extension (explained

in the next section), namely,

Vects
(
S1)�C∞(S1)⊕R3. (1.1)

Then, a typical element of this algebra would be

(
f(x)

d
dx
,u(x),α

)
, f (x)

d
dx

∈ Vect
(
S1), u(x)∈ C∞(S1), α∈R3. (1.2)

The ̂Diffs(S1)�C∞(S1) is the nontrivial extension of Diffs(S1)�C∞(S1).
In this paper, we will extend our previous results [10]. We will study the geodesic

flows on
̂

Diffs(S1)�C∞(S1)k. The Lie algebra of
̂

Diffs(S1)�C∞(S1)k also has a three-

dimensional extension

Vect
(
S1)�C∞(S1)k⊕Rk+2. (1.3)

Motivation of the paper. This paper is focused on a wide class of N-component

systems of nonlinear evolution equations with a hierarchy of compatible Hamiltonian

structures. The compatible Hamiltonian structures are related by an integrodifferential

recursion operator, but the firstN+1 Hamiltonian structures in the hierarchy are purely

differential. Examples included in this class are N-coupled KdV equations and, for N =
2, dispersive water waves, Ito’s equation, and the reduced shallow water wave equations

of Benney.

Our motivation is to reach how one can understand the multidimensional integrable

systems as some geodesic flows or Euler-Poincaré flows on some extended Bott-Virasoro

groups. This unifies several multicomponent integrable systems through a common

geometrical construction and symmetry.

Organization of the paper. In Section 2, we will study the Lie algebra Vect(S1)�

C∞(S1)k of the extended Bott-Virasoro group
̂

Diffs(S1)�C∞(S1)k. In Section 3, we de-

scribe the projective connections on the circle, in particular, we introduce the matrix
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projective connection related to Vect(S1)�C∞(S1)k. In Section 4, we study the geodesic

flows on the
̂

Diffs(S1)�C∞(S1)k related to L2 inner product, and this gives rise to sev-

eral multicomponent integrable systems corresponding to the different hyperplanes in

the dual space

C∞
(
S1)⊕C∞(S1)⊕···C∞(S1)︸ ︷︷ ︸

k

⊕R3. (1.4)

In Section 5, we study the geodesic flow of the right invariant inner metric on the
̂

Diffs(S1)�C∞(S1)k+1, which at the identity is given by the L2 inner product.

The result of the paper

Theorem 1.1. Let t� ĉ be a curve in the
̂

Diffs(S1)�C∞(S1)k. Let ĉ = (e,e,0) be the

initial point, directing to the vector ĉ(0) = (u(x)(d/dx), �v(x),Γ0), where Γ0 = (γ1
0 , �γ

2
0 ,

γ3
0)∈Rk+2 and �v(x)= (v1(x), . . . ,vk(x))t . Then, ĉ(t) is a geodesic of the L2 metric:

(A) to a hyperplane γ1
0 =−1, associated �γ2

0 = 0, γ3
0 = 0 if and only if (u(x,t)(d/dx),

�v(x,t),Γ) satisfies the multicomponent Ito-type system,

(B) associated to a hyperplane �γ2
0 = Id, γ1

0 = γ3
0 = 0 if and only if (u(x,t)(d/dx),

�v(x,t),Γ) satisfies modified multicomponent dispersive water wave equation,

(C) associated to a hyperplane γ1
0 =−1, �γ2

0 = Id, γ3
0 = 0 if and only if (u(x,t)(d/dx),

�v(x,t),Γ) satisfies some generalized multicomponent integrable system (stated in

Section 4),

(D) associated to a hyperplane γ1
0 = γ2

0 = γ3
0 = 0 if and only if (u(x,t)(d/dx), �v(x,t),

Γ) satisfies modified multicomponent dispersionless long wave equations.

Next, we derive the Euler-Poincaré flows on the dual space of Vect(S1)�C∞k+1. A

typical element of this algebra is
(f(x)(d/dx)

a(x)
�p

)
, where f(x)(d/dx) ∈ Vect(S1), a(x) ∈

C∞(S1) and �p ∈ C∞(S1)k.

Theorem 1.2. The geodesic flow of the right invariant inner product on the Diff(S1)�
C∞k+1, which at the identity is given by the L2 metric, yields the multicomponent Ito-type

systems.

2. Structure of Vect(S1)�C∞(S1)k. Let Diffs(S1) be the group of orientation pre-

serving Sobolev Hs diffeomorphisms of the circle. It is known that the group Diffs(S1)
as well as its Lie algebra of vector fields on S1, Tid Diffs(S1)= Vects(S1), have non-trivial

one-dimensional central extensions, the Bott-Virasoro group D̂iff
s
(S1) and the Virasoro

algebra Vir, respectively, [19, 20, 21, 27, 28].

The Lie algebra Vects(S1) is the algebra of smooth vector fields on S1. This satisfies

the commutation relations

[
f
d
dx
,g
d
dx

]
:= (
f(x)g′(x)−f ′(x)g(x)) d

dx
. (2.1)
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One parameter family of Vects(S1) that acts on the space of all tensor densities on

S1 of degree −µ, a= a(x)(dx)−µ , is given by

L(µ)f(x)(d/dx) �a(x)= f(x)�a′(x)−µf ′(x)�a(x), (2.2)

where

L(µ)f(x)(d/dx) = f(x)
d
dx

−µf ′(x) (2.3)

is the Lie derivative with respect to the vector field f(x)(d/dx) and

�a= (
a1, . . . ,ak

)t ∈ (
C∞

(
S1))k. (2.4)

The Lie algebra of Diffs(S1)�(C∞(S1))k is the semidirect product Lie algebra

� = Vects
(
S1)�C∞(S1)k. (2.5)

An element of � is a pair (f (x)(d/dx), �a(x)), where f(x)(d/dx)∈ Vects(S1).
It is known that this algebra has a three-dimensional central extension given by the

nontrivial cocycles

ω1

((
f
d
dx
, �a
)
,
(
g
d
dx
,�b
))
=
∫
S1
f ′(x)g′′(x)dx,

�ω2

((
f
d
dx
, �a
)
,
(
g
d
dx
,�b
))
=
∫
S1
f ′′(x)�b(x)−g′′(�a(x))dx,

ω3

((
f
d
dx
, �a
)
,
(
g
d
dx
,�b
))
= 2

∫
S1
�at(x)�b′(x)dx.

(2.6)

The first cocycleω1 is the well-known Gelfand-Fuchs cocycle, and the second cocycle

�ω2 takes its values inRk. The Virasoro algebra is the unique nontrivial central extension

of Vect(S1) via this ω1 cocycle. Hence, we define the Virasoro algebra

Vir= Vects
(
S1)⊕R. (2.7)

The space C∞(S1)⊕R is identified with a part of the dual space to the Virasoro algebra.

It is called the regular part, and the pairing between this space and the Virasoro algebra

is given by 〈(
u(x),a

)
,
(
f(x)

d
dx
,α
)�

=
∫
S1
u(x)f(x)dx+aα. (2.8)

Similarly, we consider an extension of �. This extended algebra is given by

�̂ = Vects
(
S1)�(C∞(S1))k⊕Rk+2. (2.9)

The Lie algebra �̂, for k= 1, has been considered in various places [3, 15, 24]. It was

shown in [24] that the cocycles

H2(Vect
(
S1)�(C∞(S1)))=R3 (2.10)

define the universal central extension the Lie algebra Vects(S1)�C∞(S1).
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Definition 2.1. The commutation relation in �̂ is given by

f(x)

d
dx
�a

α

 ,

g(x)

d
dx
�b

β


=


(fg′ −f ′g) d

dx
f �b′ −g�a′

ω

 , (2.11)

where α= (α1, �α2,α3), β= (β1, �β2,β3)∈R3, ω= (ω1, �ω2,ω3) are the two cocycles.

The dual space of smooth functions

C∞
(
S1)⊕C∞(S1)⊕···C∞(S1)︸ ︷︷ ︸

k

(2.12)

is the space of distributions (generalized functions) on S1. Of particular interest are

the orbits in the regular dual �̂∗reg. In the case of current group, Gelfand, Vershik, and

Graev have constructed some of the corresponding representations.

Definition 2.2. The regular part of the dual space �̂∗ to the Lie algebra �̂ is as

follows. Consider

�̂∗reg = C∞
(
S1)⊕C∞(S1)⊕···⊕C∞(S1)︸ ︷︷ ︸

k

⊕R3 (2.13)

and fix the pairing between this space and �̂, 〈·,·〉 : �̂∗reg⊗ �̂→R:

〈
û, f̂

〉= ∫
S1
f(x)u(x)dx+

∫
S1
�vt(x)�a(x)dx+α·γ, (2.14)

where û= (u(x), �vt,γ), f̂ = (f (d/dx), �a,α).
Extend (2.14) to a right invariant metric on the semidirect product space

̂
Diffs(S1)�C∞(S1)k by setting

〈
û, f̂

〉
ξ̂ =

〈
dξ̂Rξ̂−1û,dξ̂Rξ̂−1 f̂

〉
L2

(2.15)

for any ξ̂ ∈ �̂ and û, f̂ ∈ Tξ̂�̂, where

Rξ̂ : �̂ �→ �̂ (2.16)

is the right translation by ξ̂.

3. Projective connections on the circle. In this section, we describe the matrix pro-

jective connection associated to Vects(S1)�C∞(S1)k algebra. We start with some defi-

nitions of projective connections [12, 13, 14, 17].

We denote Ω±1/2 by the square root of the tangent and cotangent bundle of S1, re-

spectively.

Let ∆ be a second-order differential operator.
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Definition 3.1. A projective connection on the circle is a linear second-order dif-

ferential operator

∆ : Γ
(
Ω−1/2) �→ Γ(Ω3/2) (3.1)

such that

(1) the symbol of ∆ is the identity,

(2) ∫
S1

(
∆s1

)
s2 =

∫
S1
s1
(
∆s2

)
(3.2)

for all si ∈ Γ(Ω−1/2).

We take s =ψ(x)dx−1/2 ∈ Γ(Ω−1/2), then ∆s ∈ Γ(Ω3/2) is locally described by

∆s = (
aψ′′ +bψ′ +cψ)dx3/2. (3.3)

As discussed in [6], any differential equation of the form

d2y
dx2

= p3

(
dy
dx

)3

+p2

(
dy
dx

)2

+p1

(
dy
dx

)
+p0 (3.4)

defines a projective structure.

From the definition of the projective connection condition (1) implies a = 1 and

condition (2) implies b = 0, hence projective connection can be identified with the Hill

operator

∆(2) ≡∆= d2

dx2
+u(x). (3.5)

Let Lv be the Lie derivative with respect to the vector field v = f(x)(d/dx).
Definition 3.2. A vector field is called projective vector field which keeps fixed a

given projective connection ∆

�v∆s =∆
(
�vs

)
. (3.6)

Using the equation Lv∆(2) =∆(2)Lv , we obtain the following proposition.

Proposition 3.3. A projective vector field v = f(d/dx)∈ Γ(Ω−1) satisfies

f ′′′ +4f ′u+2fu′ = 0. (3.7)

If ui are periodic functions on the line, the operator

dn

dxn
+un−1

dn−1

dxn−1
+un−2

dn−2

dxn−2
+u1

d
dx

+u0, (3.8)
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acting on periodic functions, is called an Adler-Gelfand-Dikii (or AGD) operator. We

consider a projective connection as defined by this nth-order operator on the circle

[12, 13, 14].

Definition 3.4 (extended projective connection). An extended projective connec-

tion on the circle is a class of differential (conformal) operators

∆(n) : Γ
(
Ω−(n−1)/2) �→ Γ(Ω(n+1)/2) (3.9)

such that

(1) the symbol of ∆(n) is the identity,

(2)

∫
S1

(
∆(n)s1

)
s2 =

∫
S1
s1
(
∆(n)s2

)
(3.10)

for all si ∈ Γ(Ω−(n−1)/2).

It is known that the symbol of an nth-order operator from a vector bundle U to V is

a section of Hom(U,V ⊗SymnT), where

U =Ω−(n−1)/2V =Ω(n+1)/2. (3.11)

Since T =Ω−1, we get

V ⊗SymnT �U, (3.12)

giving an invariant meaning to the first condition.

If s2 ∈ Γ(Ω−(n−1)/2), then s1∆(n)s2 ∈ Γ(Ω) is a one form to integrate.

The consequence of the first condition is that all the differential operators are monic,

that is, the coefficient of the highest derivative is always one, and the second condition

says that the term un−1 = 0.

3.1. Matrix projective connection. We first consider the projective connections

yielded by the Vect(S1)�C∞(S1). Consider the following matrix linear differential op-

erators on C∞(S1)⊕C∞(S1):

∆=


d2

dx2
+u(x) d

dx
+v(x)

d
dx

+v(x) c

 , (3.13)

where c ∈R, u(x)=u(x+2π) and v(x)= v(x+2π).
It defines a matrix projective connection.
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Definition 3.5 (matrix projective connection). An extended projective connection

on the circle is a class of differential (conformal) operators

∆ : Γ
(
Ω−1/2)⊕Γ(Ω1/2) �→ Γ(Ω3/2)⊕Γ(Ω1/2) (3.14)

such that

(1) the symbol of ∆ is the identity,

(2)

∫
S1
�s t∆�s, (3.15)

where �s t = (s1 s2 ), for s1 ∈ Γ(Ω−1/2) and s2 ∈ Γ(Ω1/2), is a one form which can be

integrated over the circle.

The second condition says that no choice of measure is necessary to make it invariant.

Hence, the definition of a projective connection requires no structure on the circle other

than a differentiable one. Thus, the space of matrix differential operator on a circle is

considered as a module over the group of diffeomorphisms. In other words, the group

of diffeomorphisms acts naturally on the projective structures.

The above construction can be easily generalized to the higher-dimensional matrix

linear differential operators acting on

C∞
(
S1)⊕C∞(S1)⊕···⊕C∞(S1)︸ ︷︷ ︸

k

,

∆k+1 =


d2

dx2
+u(x) �c t

d
dx

+ �vt(x)

�c
d
dx

+ �v(x) c1

 ,
(3.16)

where c1 ∈R, �c ∈Rk, and u(x)=u(x+2π), �v(x)= (v1, . . . ,vk)t = �v(x+2π).

3.2. Vect(S1)�C∞(S1)k-module structure and projective vector field. A one-param-

eter family of Vect(S1)�C∞(S1)k modules on the space C∞(S1)⊕C∞(S1)⊕···⊕C∞(S1)︸ ︷︷ ︸
kis defined as follows:

Tλ(f(x)(d/dx),�a(x))

(
m
�n

)
=
(

Lλf(x)(d/dx)m
Lλ−1
f(x)(d/dx) �n−λ�a′(x)m(x)

)
, (3.17)

where m(x)∈ C∞(S1) and �n(x)∈ C∞(S1)k.

Definition 3.6. The Vect(S1)�C∞(S1)k action on the space of operators ∆k+1 is

given by

[
T(f(x)(d/dx),�a(x)),∆k+1

]= T−1/2
(f (x)(d/dx),�a(x)) ◦∆k+1−∆k+1◦T 1/2

(f (x)(d/dx),�a(x)). (3.18)
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Claim. [
Tλf(x)(d/dx),�a(x),T

λ
f(x)(d/dx),�b(x)

]
= Tλ

((fg′−f ′g)(d/dx),f �b′−g�a′). (3.19)

Sketch of the proof. It is easy to compute from (3.17) that

Tλ
g(x)(d/dx),�b(x)

Tλf(x)(d/dx),�a(x)

(
m
�n

)

=
(

Lλg(x)(d/dx)L
λ
f(x)(d/dx)m

Lλ−1
g(x)(d/dx)L

λ−1
f(x)(d/dx) �n−Lλ−1

g(x)(d/dx)
(
λ�a′(x)m(x)

)−λ�b′(x)Lλf(x)(d/dx)m(x)
)
,

T λf(x)(d/dx),�a(x)T
λ
g(x)(d/dx),�b(x)

(
m
�n

)

=
(

Lλf(x)(d/dx)L
λ
g(x)(d/dx)m

Lλ−1
f(x)(d/dx)L

λ−1
g(x)(d/dx) �n−Lλf(x)(d/dx)

(
λ�a′(x)m(x)

)−(λ−1)�b′(x)Lλg(x)(d/dx)m(x)

)
.

(3.20)

Our result follows from (3.20).

A projective vector field in this case is a vector field v = f(x)(d/dx) which leaves

the projective connection invariant, that is,

Tλ(f(x)(d/dx),�a(x))∆k+1�s =∆k+1Tλ(f(x)(d/dx),�a(x))�s (3.21)

for all �s = (s1,s2)t ∈ Γ(Ω−1/2)⊕Γ(Ω1/2).

Proposition 3.7.

[
Tf(x)(d/dx),�a(x),∆k+1

]=(fu′ +2f ′u+f ′′′ + �vt �a′ + �c t �a′′ f �v′ +f ′�v+�cf ′′+c1�a′

f �v′ +f ′�v− �cf ′′ +c1�a′ 0

)
=0.

(3.22)

Proof. By direct calculation.

4. Integrable geodesic flows on
̂

Diff(S1)�C∞(S1)k. Let G be a Lie group and g its

corresponding Lie algebra and its dual is denoted by g∗.

The dual space g∗ to any Lie algebra g carries a natural Lie-Poisson structure [4, 7]:

{f ,g}LP(µ) := 〈
[df ,dg],µ

〉
(4.1)

for any µ ∈ g∗ and f ,g ∈ C∞(S1).

Lemma 4.1. The Hamiltonian vector field on g∗ corresponding to a Hamiltonian func-

tion f , computed with respect to the Lie-Poisson structure, is given by

dµ
dt

= ad∗dfµ. (4.2)
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Proof. The proof follows from the following identities:

iXf dg
∣∣
µ = LXf g

∣∣
µ = {f ,g}LP(µ)=

〈
[dg,df],µ

〉= 〈
dg,ad∗df µ

〉
. (4.3)

This implies that Xf = ad∗dfµ. Thus, the Hamiltonian equation dµ/dt = Xf yields our

result.

Let I be an inertia operator

I : g �→ g∗ (4.4)

and then µ ∈ g∗ evolve by

dµ
dt

= (
I−1µ

)·µ, (4.5)

where right-hand side denotes the coadjoint action of g on g∗. This equation is called

the Euler-Poincaré equation corresponding to the Hamiltonian H(µ)= (1/2)〈I−1µ,µ〉.
The Euler-Poincaré equation is the Hamiltonian flow on the coadjoint orbits on the

dual of Bott-Virasoro algebra generated by the Hamiltonian

H
(
q∂x,a

)= 1
2

∫
S1
q2dx+a2, (4.6)

where a is just a constant.

Proposition 4.2. Let ΩG be an infinite-dimensional Lie group equipped with a right

invariant metric. A curve t→ c(t) in ΩG is a geodesic of this metric if and only if q(t)=
dctRc−1

t
ċ(t) satisfies

d
dt
q(t)=−ad∗q(t)q(t). (4.7)

Given any three elements f̂ , ĝ, and û,

f̂ =
(
f
d
dx
, �a,α

)
, ĝ =

(
g
d
dx
,�b,β

)
, û=

(
u
d
dx
, �v,c

)
(4.8)

in �̂, where α= (α1, �α2,α3), β= (β1, �β2,β3), c= (c1, �c2,c3).

Lemma 4.3.

ad∗
f̂
û=

2f ′(x)u(x)+f(x)u′(x)+ �a′v(x)−c1f ′′′ + �ct2�a′′
f ′�v(x)+f(x)�v′(x)− �c2f ′′(x)+2c3�a′(x)

0

 . (4.9)
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Proof. This proof follows from〈
ad∗

f̂
û, ĝ

〉
L2
= 〈
û,
[
f̂ , ĝ

]〉
L2

=
〈(
u(x)

d
dx
, �v(x),c

)
,
[
(fg′ −f ′g) d

dx
,f �b′ −g�a′,ω

]�
L2

=−
∫
S1
(fg′ −f ′g)u(x)dx−

∫
S1
(f �b′ −g�a′)v dx−c1

∫
S1
f ′(x)g′′(x)dx

−c2

∫
S1

(
f ′′(x)�b(x)−g′′(x)�a(x))dx−2c3

∫
S1
�at(x)�b′(x)dx.

(4.10)

Since f , g, u are periodic functions, integrating by parts we obtain our result.

Case 1 (the multicomponent Ito equation). The coadjoint action leaves the parame-

ter space invariant. We consider a hyperplane c1 =−1, �c2 = c3 = 0.

Lemma 4.4.

ad∗
f̂
û=

2f ′(x)u(x)+f(x)u′(x)+ �at′(x)�v(x)+f ′′′
f ′�v(x)+f(x)�v′(x)

0

 . (4.11)

The Euler-Poincaré equation is the Hamiltonian flow on the coadjoint orbit in �̂∗,

generated by the Hamiltonian

H(û)≡H(u,v)= 〈(
u(x), �v(x)

)
,
(
u(x), �v(x)

)〉
, (4.12)

given by

dû
dt

=−ad∗û(t)u(t). (4.13)

Let V be a vector space and assume that the Lie group G acts on the left by linear

maps on V , thus G acts on the left on its dual space V∗ [for details, see, e.g., [7]].

Proposition 4.5. Let G�V be a semidirect product space (possibly infinite dimen-

sional), equipped with a metric 〈·,·〉which is right translation. A curve t→ c(t) inG�V is

a geodesic of this metric if and only if u(t)= dc(t)Rc(t)−1 ċ(t) satisfies the Euler-Poincaré

equation.

Thus, we obtain the multicomponent Ito equation

ut+uxxx+6uux+2�vt �vx = 0,

�vt+2(u�v)x = 0.
(4.14)

The original Ito system admits a tri-Hamiltonian structure, hence, this multicompo-

nent Ito would exhibit the same property.

Case 2 (modified multicomponent dispersive water wave equation). When we re-

strict to a hyperplane c1 = 0, c3 = 0, we obtain the following lemma.
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Lemma 4.6.

ad∗
f̂
û=

2f ′(x)u(x)+f(x)u′(x)+ �a′(x)�v(x)+ �ct2�a′′
f ′�v(x)+f(x)�v′(x)− �c2f ′′

0

 . (4.15)

Thus, by applying the Euler-Poincaré equation we obtain

ut+6uux+2�vt �vx+ �ct2�vxx = 0,

�vt+2(�vu)x− �c2uxx = 0.
(4.16)

Case 3 (the multicomponent new integrable system). When we restrict to a hyper-

plane c1 = 1, c3 = 0, we obtain the following lemma.

Lemma 4.7.

ad∗
f̂
û=

2f ′(x)u(x)+f(x)u′(x)+a′v(x)+a′′ +f ′′′
f ′v(x)+f(x)v′(x)−f ′′

0

 . (4.17)

Thus, by applying the Euler-Poincaré equation, we obtain another pair of integrable

Hamiltonian system

ut+6uux+2�vt �vx+ �ct2�vxx+uxxx = 0,

�vt+2(�vu)x− �c2uxx = 0.
(4.18)

Case 4 (modified multicomponent dispersionless long wave equation). In this case,

we just set c1 = c2 = c3 = 0, that is, non-centrally extended part.

Lemma 4.8.

ad∗
f̂
û=

2f ′(x)u(x)+f(x)u′(x)+ �a′(x)�v(x)
f ′�v(x)+f(x)�v′(x)

0

 . (4.19)

Thus, we obtain

ut+6uux+2�vt �vx = 0,

�vt+2(�vu)x = 0.
(4.20)

5. Second category of multiple-component integrable systems. In this section, we

consider the Euler-Arnold equation on the dual space of Vect(S1)�C∞(S1)k+1
. We split

the space C∞(S1)k+1
into C∞(S1)×C∞(S1)k. A typical element of Vect(S1)�C∞(S1)k+1

is
(f(x)(d/dx)

a(x)
�p

)
. This type of construction has been discussed by Kupershmidt [23].
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We redefine the cocycles in the following form:

ω1

((
f
d
dx
,a, �p

)
,
(
g
d
dx
,b, �q

))
=
∫
S1
f ′(x)g′′(x)dx,

ω2

((
f
d
dx
,a, �p

)
,
(
g
d
dx
,b, �q

))
=
∫
S1

(
f ′′(x)b(x)−g′′a(x))dx,

ω3

((
f
d
dx
,a, �p

)
,
(
g
d
dx
,b, �q

))
= 2

∫
S1
a(x)b′(x)dx.

(5.1)

This means

H2
(

Vect
(
S1)�C∞(S1)k+1

)
=R3. (5.2)

Definition 5.1. The commutation relation in �̂ is given by




f(x)

d
dx

a(x)
�p
α

 ,

g(x)

d
dx

b(x)
�q
β



 :=


(fg′ −f ′g) d

dx
fb′ −ga′
f �q′ −g �p′

ω

 , (5.3)

where α= (α1, �α2,α3), β= (β1, �β2,β3)∈R3, ω= (ω1, �ω2,ω3) are the two cocycles.

Definition 5.2. The regular part of the dual space �̂∗ to the Lie algebra �̂ is as

follows. Consider (2.13) and fix the pairing between this space and �̂, 〈·,·〉 : �̂∗reg⊗�̂→R:

〈
û, f̂

〉= ∫
S1
f(x)u(x)dx+

∫
S1
�a(x)�v(x)dx+α·γ, (5.4)

where û= (u(x),v, �w,γ), f̂ = (f (d/dx),a, �p,α).
Again, from the coadjoint action, we obtain the following set of integrable Hamilton-

ian system:

ut+6uux+2vvx+vxx+uxxx = 0,

vt+2(vu)x−uxx = 0,

�wt+2( �wu)x = 0.
(5.5)

This is an avatar of the Ito equation. Similarly, we can derive the other sets of equa-

tions.

This equation admits a bi-Hamiltonian structure

D2δHn =D1δHn+1, (5.6)
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where

D2 =

D
3+4uD+2ux 2vD 0

2vx+2vD D2 0

2 �wx+2 �wD 0 0

 , D1 =

D 0 0

0 D 0

0 0 D

 (5.7)

with the Hamiltonian functionals

H1[u,v, �w]= 1
2

∫ (
u2+v2+w2)dx,

H2[u,v, �w]= 1
2

∫ (
u3+uvx− 1

2
u2
x �w+uv2+uw2

)
dx.

(5.8)

The recursion operator arising from a Hamiltonian pair

R=D2D−1
1 =

D
2+4u+2uxD−1 2v 0

2vxD−1+2v D 0

2 �wxD−1+2 �w 0 0

 (5.9)

is a hereditary operator which yields infinitely many conserved quantities.

6. Conclusion and outlook. In this paper, we have continued to study a question

posed by Marcel, Ovsienko, and Roger “what are the integrable systems associated to

the coadjoint orbit of the extended Bott-Virasoro group?” In particular, in our earlier

paper, we have identified a large class of two-component integrable systems associated

to ̂Diff(S1)�C∞(S1). These are mostly tri-Hamiltonian systems.

In this paper, we further extend the earlier group to
̂

Diff(S1)�C∞(S1)k. We have

shown that a large class of multicomponent integrable systems can be derived as a

geodesic flow on this space. Some of the integrable systems have been already dis-

cussed by Marek Antonowicz and Allan Fordy and Kupershmidt. Thus, we study the

multicomponent integrable systems from this geometric point of view.

In this paper, we have left out two more generalizations of this construction. The

first one is the supersymmetric generalization to obtain the super multicomponent

integrable systems, and the second one is the H1 counterpart of the multicomponent

integrable systems considered here.
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