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We study the LP mapping properties of a class of Marcinkiewicz integral operators on prod-
uct domains with rough kernels supported by subvarieties.
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1. Introduction. Let R? (d = nord = m), d > 2 be the d-dimensional Euclidean
space and S$%~! be the unit sphere in R4 equipped with the induced Lebesgue measure
do. Suppose that Q is a homogeneous function of degree zero on R" which is integrable
on $" ! and [gu-1 Q()do () = 0. Then the Marcinkiewicz integral operator pg which
was introduced by Stein in [18] is defined by

)

2 1/2
L ‘ th(x—y)Q(y)lyllfndy‘ Z’tht) : (1.1)
yl<

ua (00 = ( |

— 0

Stein proved thatif Q € Lip,(S" 1), (0 < & < 1), then ug isbounded on L? forall1 < p <
2 [18]. Since then, the study of the L” boundedness of po under various conditions on
the function Q has attracted the attention of many authors ([1, 4, 5, 7, 10, 13], among
others). In particular, Chen et al. in [8] studied the L¥ boundedness of g under the
following condition on the function Q which was introduced by Grafakos and Stefanov
in their study of singular integral operators [17]:

1+
sup [Q(v")| <log ) do(y') < «, (1.2)

1
cosit Jsn €]
for some « > 0. Chen et al. [8] showed that if Q satisfies (1.2) for some « > 0, then pq
is bounded on L? for p € ((2+2x)/(1+2«x),2+2x). It should be pointed out here that
Grafakos and Stefanov showed that for any « > 0, the following relations hold:

F(o,S" 1Y) ¢ L(log"L)(S™ '), L(log™L)(S" ') ¢ F(x,8"'), (1.3)

where F(x,S$"!) is the space of all integrable functions Q on S$"~! which satisfy
Jsn-1 Q(y)do(y) = 0 and (1.2). For conditions similar to (1.2), we refer the readers
to consult [1, 6].
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Recently, a number of authors started to study the analog of the operator ug on
product domains. More precisely, let Q € L1 (S"~1 x§™~1) be such that

Q(tx,sy) =Q(x,y) foranyt,s >0,

(1.4)
J Q(u,-)da(u)=J Q(-,v)do(v) =0.
gn—1 sgm—1
Then, the Marcinkiewicz integral operator on product domains .ilg  is given by
® o ) 1/2
Macfen) = ([ | IFsthey P22 anas) (1.5)
where
Q(u,v)dudv
F, X, :J J X—UY—-V)— 1.6
15 () (x,) ul<2t ‘U‘stf( y ) lu|n-1|p|m-1 (1.6)

It has been known for quite some time that the operator .ilq is bounded on L? for all
1 < p < oo under the condition that Q € L(log* L)2(S""! xS§™~1) [9, 12]. Recently, the L?
boundedness of g . was established under the weaker condition Q € L(log* L)(S™~! x
S™-1); see Choi [11] for p = 2 and Al-Qassem et al. [2] forall 1 < p < .

Motivated by [1, 6], the main purpose of this note is to investigate the L¥ bounded-
ness of Marcinkiewicz integral operators on product domains with kernels satisfying
conditions similar to (5) in [6] (see also [1]) and supported by subvarieties determined
by polynomial mappings. To be more specific, let V" (d, ) be the set of real-valued poly-
nomials in R4 which have degrees at most L. For # = (Py,...,Py) € (V(d,1))N and 9 =
(Q1,...,Qun) € (V(d,r))M, consider the Marcinkiewicz integral operator

o oo o 1/2
Maoaf ey = (| | 2Py P2 acds) (1.7)

where

Q(u,v)dudv

IS (1.8)

EPHE =] | e,y -2 w)
lu|<2t Jjv|<2s
Itis clear thatif N =n, M =m, P(u) = u,and 2(v) = v, then Mgy = Mq. In order to
formulate our main results regarding the operators (1.7), we let %(d, 1) be the collection
of all homogeneous polynomials of degree [ in ¥ (d,l). We will associate with V' (d,1)
the norm || - || given by [|P|| = (3 g)<a lap|?)'/?, where P(y) = 3 g <aapy?. Let

%(d,l) = {Peydl) :||P||=1]}. (1.9)

DEFINITION 1.1. Forn,m =2, L,v €N, and « > 0, let F5(S"1,S™~1 1,¥) be the space
of all integrable functions Q on S~ xS™~! that satisfy

sup J J Q' v) | {Gro', v} do (' )do(v') < e, (1.10)
pesel (n,l),Qevl (mr) IS Jsm-l
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where x > 0 and

Gro',v') =log" (|P(u)| ™) +log* (|Q") | ™)

N L . L (1.11)
+log™ (|P(u)| ")log" (|Q(W") | )
It is clear that L1(S"* ! xS™~1) & Fy(S*~1,8™~1 [ v) for all g > 1. Moreover, by (1.3)
it can be easily shown that

Fo(S" 1,8 1 1L,r) ¢ L(log" L) (S" 1 xS™ 1),

(1.12)
L(log*L)(S" 1 xS™1) ¢ F, (S*1,8™ 1 1,7)
for any « > 0. Therefore, by (1.12) and the results of Choi [11] and Al-Qassem et al.
[2] when Q € L(log™ L) (8"~ x§™~1), it is natural to investigate the L? boundedness of
Ma,», under the conditions (1.10).
Our main result is the following.

THEOREM 1.2. Let n,m > 2, NM,N,M € N, ® = (Py,...,Py) € (V(n,N))N, and 9 =
(Q1,...,Qum) € (V(m,M))M. IfQ satisfies (1.4) and

N M
Qe () Fa(s" 1, 8™ L) (1.13)
I=1r=1
for some x> 0, then
||-/‘/LQ,9>,§1f||L19(RNxRM) < CpllfllLp (mN xrM) (1.14)

forallp € (2+2x)/(1+2x),2+2x) and f € LP (RN x RM). The constant C,, is indepen-
dent of the coefficients of the polynomials {P;,Qx:1<j<N, 1<k <M}.

In Section 4, we will show that
ﬂﬂ (8',8%,1,7) = F (S, S, 1,1). (1.15)
1=17r=1

Therefore, we obtain the following.

COROLLARY 1.3. LetN,M,N,M eN,®=(P,...,Py) € (V(2,N)N, and2 = (Q1,...,Qn)
e (V@,M)HM. If Q satisfies (1.4) and Q € Fy(S',S',1,1) for some « > 0, then
IMazofllr@sryy < Coll fllr @Nxryy for all p € ((2+2x)/(1+2x),2+2x) and f €
LP (RN x RM). The constant C, is independent of the coefficients of the polynomials
{P;,Qr:1<j<N,1<k<M}.

2. General tools. For a nonnegative C® radial function ® on R and a linear transfor-
mation L : R4 — R!, we let ®L be such that ($L) () = d(|lwL(¥)|?). Let N,M = 2 and
let 0 = {0y :t,s € R} be a family of measure defined on RN x RM, For linear trans-
formations L : RN — RN , G:RM RM , nonnegative C*® radial function & on R with
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supp(®) c [271,2] and 0 < ®(t) < 1, and positive real numbers a and b, define the
family of operators {Ze bl g, y € R} by

1/2
20 0 F ) = (| 1@ 88y 005 30 Pdtds) . @)

Also, define the operators u((,“qf’fc‘“), e q;wa(;L ), uf,“ffo(,"), uéaqf]Lwc ), ug%bf?f o,
ngaqf] LOZ‘O )vﬂz(ruqfi LOOGO >lu((rad>bLmGO ) , and U((ra,dfj,Lo,(t); by
ulare fx,y) = j j s wrcf(x,y)dody, (2.2)
pe e = | j 7D o o f(x,)d0dy, 2.3)
(a,b,00,——) _ (a,b)
Hoarc Jf(x) *I_ J_ Zyoyonct (x,)d0dy, (24)
(@b,00,—+ T @
Wis Fe = || 280 st dody, 2.5)
2 00
Wle e = || 2 et edody, (2.6
0% F(x, y) = j f 7 o o fx,)dody, 2.7)
P f(x,y) = j J z) o ef (x,y)d0dy, (2.8)
(ahoo0+ (a,b)
Wbt poe = [ 28 o e 1a0dy, (2.9
pi00 f (e, ) = J J ZE) o1l (x,¥)d0dy. (2.10)

We also, let M, denote the maximal function corresponding to o, that is,

My f(x,y) = tsu%| |ows | % f(x,)]. (2.11)

LEMMA 2.1. LetN,M,ﬁ,]Wz 1l,a,b>1,and x > 0. Let 0 = {0y : t,s € R} be a family
of measure defined on RN x RM and let ® be as above. Suppose that there exist linear
transformations L : RN — RN and G : RM — RM such that

@ llowsl <C,

(b) [(0r,s) (&) = CI2¢L(E) 255G (n)l,

() |(Ut,52(§vn)| <C[29'L(E)|(og" [2bG(n)|) 17,

d [oes) (&l < C(log® [29tL(E))~1*(log™ [2P*G(n) )17,

(@ (0rs)(E,m| =< Cog" [29L(E)) "1~ |2PG(n)],

(®) IMo () r wVxrM) < Cllflp wNxrMy forall 1 < p < co.
Then the operators (2.2)-(2.10) are bounded on LP (RN x RM) for allp € (2 +20)/(1 +
2x),2 +2x). Moreover the L? bounds are independent of the linear transformations L
and G.

PROOF. By the argument in [3, 15], we may assume that N < N, M < M, L(E) =
(&1,..,&x), and G(n) = (n1,...,n5) where & = (&1,...,&v) and n = (N1,...,nu). Let
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Jéf‘}',{’;,‘L’G be the operator given by

1/2
éuyb;)LG (f)(x,y) = (J J 2a(t+0)®q)2b(5+y)) *f(x,7)] dtds) . (2.12)
Then by a well-known argument (see [16, 19]), we obtain

13557 1.6 (O], < Coll £l 2.13)

forall 1 <p < oco.
Now for p > 2, by an argument similar to that used in the proof of a lemma in [14,
page 544], choose a nonnegative function w € LP/2)" (RN x RM) such that

||Z((J"?'92,7))/,¢,L,Gf||p JIRN .[[RMJ J 2a(t+9) ®q>2b(s+y )k ok f(x, J’)| w(x,y)dtds.
(2.14)

Thus by condition (a), condition (f), and (2.13), we get

b b
”Zoa,e,;/,nb,L,G Hp = C||J£fy,<;>,L,G(f)||p\/ |M(7H(p/2)’ 1fllp < Cllfllp, (2.15)

where C is a constant independent of the essential variables. On the other hand, by
duality we get (2.15) for 1 < p < 2. Hence, for all 1 < p < o, we have

1289 o 1.6Fl, < ClLElp. (2.16)

Next, we claim

—1-
128 16 F 2 @nam < CUONYD) ™ I Fll 2 @nxrm)- (2.17)

To see (2.17), we only need to apply Plancherel’s theorem along with condition (d).
Namely, for t,s,0,y € R, let A(t,0) = {E € RN : 2-at+0)-1 < |1 (¥)| < 2-at+0+1} and Jet
B(s,y) = {n € RM : 2-bG+¥)-1 < |G(n)| < 27L&+ +1} Then

Hz(aequcfHLZ (R XR™M)

= Cj—oo J—oo JA(t,@) JB(s,w [FEml*

x{(log™ [2*'L(¥)|) (log™ [2"G(n)])}
2w [T A 2
sco) == | J, o h,, [F@mIFaganacas

2-2
(|9H)’|) O(Hf”LZ([RnX[Rm)

P gEdndtds (2.18)

By interpolation between (2.17) and (2.16) for any p € ((2+2x)/(1+2x),2 +2x), there
exists d, > 1 such that

125407 o 1.6F e @nsrm) = C1OI727 1y 177 || flio. (2.19)
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Therefore, the boundedness of the operators (2.2)-(2.9) follows by (2.19) and Minko-
wski’s inequality. The boundedness of the operator (2.10) follows by Minkowski’s in-
equality and (2.16). This completes the proof. ]

Lemma 2.1 immediately implies the following.

LEMMA 2.2. Suppose that N,M,N,M,a,b,x,0 = {0y : t,s €R}, L, and G are as in
Lemma 2.1. If o0 = {015 : t,s € R} satisfies the conditions (a)-(f) of Lemma 2.1, then

) 00 1/2
b f(x,y) = (J J |ovs % f(x,7) ] 2dtds> (2.20)
is bounded on L? (RN x RM) for all p € ((2+2x)/(1 +2x),2 + 2x). Moreover the LP
bounds are independent of the linear transformations L and G.
PROOF. Choose a nonnegative C* radial function ® on R with supp(®) c [271,2]
and 0 <®(t) <1, and

J:t’ltb(t)dt =1. (2.21)

Then, it is easy to see that

f(x,y)=CL J, (D5 @ DS,0) * f (x,y)dtds, (2.22)

where C is a constant independent of L and G. Therefore, by (2.22), it follows that
(a,b) (a,b,00,++) (a,b,0,+—) (a,b,00,——)
g f(x, ) < C{NachG SO rugore fOGY) tugere  fY)
tugare o) vugare T f ) vugare T f ) (2.23)

+uSsre fO) +uSsre T F G +ugse £ ()]
Hence the proof is complete by Lemma 2.1. |

Now, we have the following lemma which can be proved by a proper modification of
the arguments in [3, 15].

LEMMA 2.3. Let M,N,N,M > 1, and {A{} :t,s e R, 0<1 <N, 0<r <M} bea

family of Borel measures on RN x RM with AE?S’” 0 and a(lo) 0 for every t,s € R. Let
(NLVMy:1<1<N,1<r<M}cNandletl;: - RM and Gy : RM — RMr pe linear
transformations, 1 <1 < N,1<r=<M. Suppose that

M 1A = ¢;

i) ALY (E,m)| < Clog” 120 Ly(§) )1~ (log™ 125Gy (m) )1

i) AL (& m) - ALY ()| < CI2ELI(E) [Qog™ 127G () ) 1%

@) ALY (& ALV (E,n)| < Cogh 12 Ly (E)) -2 G, (n) II;

W) 1A (&, AL (8, m) AL (& m+AL T (8, )| < CIR2YLiE) 125Gy () ;
wi) AL V(g n )—A“ bre 1><§,r;>| < Cl2MLyi(®)I;

(vii) | A” &) — ALY (& ) < Cl2rsG, ()l
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(viii) [[Maan fllp < Cpllfllp forall 1 < p < oo, where My, is given by (2.11) with oy
replaced by Ail‘”
Then there exists a family of Borel measures {0y
on RN x RM such that

(Lr) . F

tseR, 1<l< 1<r <M}

AN ot viseR, (2.24)

H [\/]Ez

>

and that for each1 <1 < N,1<r <M, the family {oy, S” t,s € R} satisfies the assump-
tions (a)-(f) of Lemma 2.1.
3. Proof of Theorem 1.2.

PROOF. letn,m=>2, N,M,N,M>1.LetQ € ﬂ]ﬁ:l ﬂrﬁ:IFa(S”*l,Smfl,l,r) for some
«>0.Let® = (Py,...,Py) € (V(n,N))YN and 2 = (Qy,...,Qu) € (V' (m,M))M. Then the
polynomials Py,...,Py, Q1,...,Qp can be written as

Pi(y)= > ag;¥*, j=1,...,N,

1BI=N
3 3.1)
Q)= X by, k=1,..,M,
1Bl<M
where B € (NU{0})N and B € (NU {0})M.
Foreachlslsﬁandlsrs]\N/[,let
A ={Be (Nu{oh)™: 1Bl =1}, 52
B(r) = {Be (Nufon)™:|B| =7}. '
Let N; = |A(l)| and M, = |B(7)|. For each B € A(l) and Ee B(r), let
g = (api,....apn), by, = (bg,.....az,). (3.3)

Define the linear transformations L; = (Lg)geaw : RN — RM and Gy = (Gp,)pcp ) ©
RM — RMr by

La(8) =&-agy,

Gy (M =n-b

(3.4)

Without loss of generality, we will assume that L; and G, are nonzero forall 1 <1 < N
and 1 <7 <M.
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Forl<l<Nand1 <7 <M,let®(u)= (P (u),...,Py,(u)) and 2, (v) = (Q1, (V),...,
Qum,r(v)), where

Piyw)= > agub, j=1,...,N,

|Bl<l
5 (3.5)
Qryr(v) = Z bg’kvﬁ, k=1,...,M.
|Bl<r
Also, let
%@l(u,) :N;l/z((u’)B)BGA(l); (3.6)
920 (v') = M7 2 (0)F) gy '
Then clearly
g2, € (% (n, )N, %9, € (% (m,r)"". (3.7)
Let o = {)\Ef’f) :t,s € R} be the family measures where oy s is given by
Q(u,v)ydudv
d?\”-Z”J J Pr(u), 9 (V) TR 3.8
Hf lu| <2t |v\g25f( 1w, 2, () [u|n-1jp|m-1 (3.8)
Then it is clear that
1/2
Mogof(x,y) = (J J A‘NM x| dtds) . (3.9)

Therefore, by Lemmas 2.1, 2.2, and 2.3, it suffices to verify that the measures {Ag;” :
t,seR, 0<l< Fl, 0<r=< 1\7} satisfy the assumptions of Lemma 2.3.

Fort,seR,0<l< F], O<r=< M, let I;(t,&,x) and J,(s,n,y) be the complex-valued
functions defined on R x RN xS" ! and R x RM x$™!, respectively, by

1 1 o
L(t,&u) =J e ENRW W gy (s,n,v) =J e i EV W gy, (3.10)
0 0

First, notice that (d!/dw!)(EP;(2'u'w)) = U2UN}*Ly(§) - %P (u') and (d" /dw")(n -
9, (25v'w)) = V!Z”M}/ZGT(n) #9,(v'). Thus, by the van der Corput lemma [19], we

obtain
Lt Ew) | = CI2UNLIE) - e () |7,
(3.11)

| Jr(s,mv)) | < C|27MY2Gy () - %2, (v)) | 717,

which when interpolated with the trivial estimates |I;(¢t,&,u")| < Cand |J,(s,n,v")| < C,
respectively, imply that

Lt Eu) | < C2EN}PLyE) -9ey ) |7,

) (3.12)
[Ty (s,n,v") | < Cl27SMM2G, (n) - 96, (v') | 1%,
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On the other hand, it is straightforward to see that the following hold:

|L(t,E,x) — L1 (8, E,u)) | < [21N)PLE) |, (3.13)

| Jr(s,n,v") = Jroa (s,n,07) | < [27°M}2Gr(n) |, (3.14)
|L(t,&u')| <1, (3.15)

[Jr(s,nv)| <1 (3.16)

forlslsﬁ, 1<7 <M.
Now, clearly condition (i) holds trivially. Next, by combining (3.12), (3.15), and (3.16),
we obtain

! ‘)Ha, (3.17)

7 + It -1-«x +
[I(t,&,u' )| <C(log" |2 Li(E)]) <l+(x+log L@ %)

[Jr(s,m,0) | = Cllog" 276G )+ e+ log?

1 1+
(Gr(m)" - 92, (V") D '
(3.18)

Therefore, since (L;(§))" - #P () € #L(n,1), (G,(n)) - %2, (v') € ¥ (m,r), and Q €
Fa(S"1,8m-1 1) foralll1 <l <N, 1<v <M, we immediately obtain the estimates
(i), (iii), @v), (v), (vi), and (vii) by a proper use of the estimates (3.13)-(3.18). We omit the
details.

Finally, we turn to the proof of (viii). It can be easily verified that

Myan (f)(x,y) < Ln_] Lm_l [Q(u,v) | (MO},W, oM; ) (f)(x,y)do(w)do(v),
(3.19)

where

M, o f(x,y) =suph™! | fx=2i(tu'),y) |dt,
) h>0 [tI<h (3.20)

M . f(x,y)=suph! | f(x,y-9,(sv"))|ds,
h>0 Isl<h
and o denotes the composition of operators. Thus, the estimate (viii) follows by (3.19),
Holder’s inequality, and [19, Proposition 1, page 477]. This completes the verification
of the assumptions of Lemma 2.3 and hence the proof. O

4. Proof of Corollary 1.3. Corollary 1.3 is a simple consequence of Theorem 1.2 and
the following lemma.

LEMMA 4.1. (", N5, Fa(SL,SL,1,7) = Fo(S1,S1,1,1).

A proof of Lemma 4.1 can be obtained by adapting the one parameter argument in
[6]. For readers convenience, details are presented below.
We will need the following lemma (see [6, Lemma 3.1]).
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LEMMA 4.2 [6]. Let m € N, ag,a1,...,am €L and g(z) = ap+a,z+---+anuz™ for
ze.If z1,...,z; are the roots of g(z) which lie in {z € C:|z| <2}, then

1
lg(2)] 26—M(|sl‘1g|g(z){>n|z—zs| 4.1)

s=1
holds for |z| < 1.

PROOF OF LEMMA 4.1. Since N2,y F«(S',S',1,7) C Fx(S',S8%,1,1), it suffices to
show that F,(S!,S',1,1) c N2 Ny F«(S', S, 1,7) for all & > 0. Let Q € Fy(S',S%,1,1).
First, as in the one parameter case in [17], we observe that the condition Q € F4(S?',
S1,1,1) is equivalent to the following condition:

sup H Q) [{G(t,s,0,$)} " Ydtds < o, (4.2)
0,¢p[0,2m] JJ[0,21]2
where
. 1 L1 N 1
G(t,s,0,¢p) =log <7‘t_9”5_¢|)+10g (It_0|>log <|S—<;b\)' (4.3)

Let [, € N. Then there exist A; > 0 and ;- > 0 such that

sup |P(u)| = AP,

ues!

(4.4)
sup [Q(v) | = - lIQll
ves!
hold for all P € ¥ (2,1) and Q € V' (2,7).
For P € ¥(2,1) and Q € V'(2,r) with ||P|| = [|Q[l = 1, we write
P(w) =Pun,ux) = > apujus,
Jj+k=1
i 4.5)
Q) =Q(vi,v2) = > bjvivs.
J+k=r

Then, by (4.4), and similar argument as in [6], there exist ki, k> € N, {z1,...,2zx,} C st,
{wy,...,wg,} C $!, and constants C; = C(1) and C, = C(¥) such that

k1

[Pw)| =G ] |lu-2zs],
s=1
k>

Q)| =G ] |v-ws|.

s=1

(4.6)

Hence, by (4.2), (4.6), we get Q € Fx(S',S%,1,7). This completes the proof. O
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