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We study integral properties of two classes of functions with negative coefficients defined
using differential operators. The obtained results are sharp and they improve known re-
sults.

1. Introduction

Let N denote the set of nonnegative integers {0,1, . . . ,n, . . .}, N∗ = N \ {0}, and let � j ,
j ∈N∗, be the class of functions of the form

f (z)= z−
∞∑

k= j+1

akz
k, ak ≥ 0, k ∈N, k ≥ j + 1, (1.1)

that are analytic in the open unit disc U = {z : |z| < 1}.
Definition 1.1 [11]. The operator Dn : � j →� j , n∈N, is defined by (a) D0 f (z)= f (z);
(b) D1 f (z)=D f (z)= z f ′(z); (c) Dn f (z)=D(Dn−1 f (z)), z ∈U.

Definition 1.2 [4]. Let α,λ∈ [0,1), n∈N, j,m∈N∗; a function f belonging to � j is said
to be in the class Tj(n,m,λ,α) if and only if

Re
Dn+m f (z)/Dn f (z)

λ
(
Dn+m f (z)/Dn f (z)

)
+ 1− λ

> α, z ∈U. (1.2)

Remark 1.3. The classes Tj(n,m,λ,α) are generalizations of the classes

(i) T1(0,1,0,α) and T1(1,1,0,α) defined and studied by Silverman [12] (these classes
are the class of starlike functions with negative coefficients and the class of convex
functions with negative coefficients, resp.),

(ii) Tj(0,1,0,α) and Tj(1,1,0,α) studied by Chatterjea [7] and Srivastava et al. [13],
(iii) T1(n,1,0,α) studied by Hur and Oh [10],
(iv) T1(0,1,λ,α) and T1(1,1,λ,α) studied by Altintas and Owa [2],
(v) T1(n,1,λ,α) studied by Aouf and Cho [3, 8],

(vi) T1(n,m,0,α) studied by Hossen et al. [9].
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In [4], the next characterization theorem of the class Tj(n,m,λ,α) is given.

Theorem 1.4. Let n∈N, j,m∈N∗, α,λ∈ [0,1) , and let f ∈� j ; then f ∈ Tj(n,m,λ,α)
if and only if

∞∑
k= j+1

kn
[
km(1−αλ)−α(1− λ)

]
ak ≤ 1−α. (1.3)

The result is sharp and the extremal functions are

f (z)= z− 1−α

kn
[
km(1−αλ)−α(1− λ)

]zk, k ∈N, k ≥ j + 1. (1.4)

Definition 1.5 [5]. Let m,n∈N, j ∈N∗, α∈ [0,1), λ∈ [0,1]; a function f belonging to
� j is said to be in the class Lj(n,m,λ,α) if and only if

Re
(1− λ)Dn+1 f (z) + λDn+m+1 f (z)

(1− λ)Dn f (z) + λDn+m f (z)
> α, z ∈U. (1.5)

Remark 1.6. The classes Lj(n,m,λ,α) are generalizations of the classes

(1) L1(0,0,0,α)= T1(0,1,0,α) and L1(1,0,1,α)= T1(1,1,0,α) (the classes defined and
studied by Silverman [12]),

(2) Lj(0,0,0,α) = Tj(0,1,0,α) and Lj(0,1,1,α) = Lj(1,0,1,α) = Tj(1,1,0,α) (the
classes studied by Chatterjea [7] and Srivastava et al. [13]),

(3) Lj(0,1,λ,α) studied by Altintas [1],
(4) Lj(n,1,λ,α), Lj(n,m,0,α), and Lj(n,1,1,α) studied by Aouf and Srivastava [6].

In [5], the next characterization theorem of the class Lj(n,m,λ,α) is given.

Theorem 1.7. Let n,m ∈ N, j ∈ N∗, α ∈ [0,1), λ ∈ [0,1], and let f ∈ � j ; then f ∈
Lj(n,m,λ,α) if and only if

∞∑
k= j+1

kn(k−α)
[
1 +
(
km− 1

)
λ
]
ak ≤ 1−α. (1.6)

The result is sharp and the extremal functions are

f (z)= z− 1−α

kn(k−α)
[
1 +
(
km− 1

)
λ
]zk, k ∈N, k ≥ j + 1. (1.7)

Let Ic : � j →� j be the integral operator defined by g = Ic( f ), where c ∈ (−1,∞), f ∈
� j , and

g(z)= c+ 1
zc

∫ z

0
tc−1 f (t)dt. (1.8)

We note that if f ∈� j is a function of the form (1.1), then

g(z)= Ic( f )(z)= z−
∞∑

k= j+1

c+ 1
c+ k

akz
k. (1.9)
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By using Theorem 1.4, in [4] it is proved that Ic(Tj(n,m,λ,α))⊂ Tj(n,m,λ,α) and by
using Theorem 1.7, in [5] it is proved that Ic(Lj(n,m,λ,α)) ⊂ Lj(n,m,λ,α). In this note,
these results are improved.

2. Integral properties of the class Tj(n,m,λ,α)

Theorem 2.1. Let n ∈ N, j,m ∈ N∗, α,λ ∈ [0,1), and let c ∈ (−1,∞); if f ∈ Tj(n,m,
λ,α) and g = Ic( f ), then g ∈ Tj(n,m,λ,β), where

β = β(m,λ,α,c; j + 1)

= 1−
[
( j + 1)m− 1

]
(1−α)(1− λ)(c+ 1)[

( j + 1)m− 1
][

(1−αλ)(c+ j + 1)− λ(c+ 1)(1−α)
]

+ (1−α) j

(2.1)

and α < β(m,λ,α,c; j + 1) < 1. The result is sharp.

Proof. From Theorem 1.4 and from (1.9) we have g ∈ Tj(n,m,λ,β) if and only if

∞∑
k= j+1

kn
[
km(1−βλ)−β(1− λ)

]
(c+ 1)

(1−β)(c+ k)
ak ≤ 1. (2.2)

We find the largest β such that (2.2) holds. We note that the inequalities

km(1−βλ)−β(1− λ)
1−β

c+ 1
c+ k

≤ km(1−αλ)−α(1− λ)
1−α

, k ≥ j + 1, (2.3)

imply (2.2), because f ∈ Tj(n,m,λ,α) and it satisfies (1.3). But the inequalities (2.3) are
equivalent to

A(m,λ,α,c;k)β ≤ B(m,λ,α,c;k), (2.4)

where

A(m,λ,α,c;k)= (km− 1
)[

(1−αλ)(c+ k)− λ(c+ 1)(1−α)
]

+ (1−α)(k− 1),

B(m,λ,α,c;k)=A(m,λ,α,c;k)− (km− 1
)
(c+ 1)(1−α)(1− λ).

(2.5)

Since 1−αλ > 1−α and c+ k > c+ 1, we have A(m,λ,α,c;k) > 0 and from (2.4) we obtain

β ≤ B(m,λ,α,c;k)
A(m,λ,α,c;k)

∀k ≥ j + 1. (2.6)
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We define β(m,λ,α,c;k) := B(m,λ,α,c;k)/A(m,λ,α,c;k). We show now that β(m,λ,α,
c;k) is an increasing function of k, k ≥ j + 1. Indeed

β(m,λ,α,c;k)= 1− (1−α)(1− λ)(c+ 1)
km− 1

A(m,λ,α,c;k)

= 1− (1−α)(1− λ)(c+ 1)
1

E(m,λ,α,c;k)
,

(2.7)

where E(m,λ,α,c;k) = A(m,λ,α,c;k)/(km − 1) and β(m,λ,α,c;k) increases when k in-
creases if and only if E(m,λ,α,c;k) is also an increasing function of k.

Let h(x)= E(m,λ,α,c;x), x ∈ [ j + 1,∞)⊂ [2,∞); we have

h′(x)= 1−αλ+ (1−α)
xm− 1−mxm + xm−1

(
xm− 1

)2

= 1−αλ+ (1−α)
[

1−m

xm− 1
+
m
(
xm−1− 1

)
(
xm− 1

)2

]

> 1−αλ− (1−α)= α(1− λ)≥ 0, x ∈ [ j + 1,∞),

(2.8)

where we used the fact that

1−m

xm− 1
+
m
(
xm−1− 1

)
(
xm− 1

)2 ≥ 1−m

xm− 1
>−1. (2.9)

We obtained h( j + 1)≤ h(k), k ≥ j + 1, and this implies

β = β(m,λ,α,c; j + 1)≤ β(m,λ,α,c;k), k ≥ j + 1. (2.10)

The result is sharp because

Ic
(
fα
)= fβ, (2.11)

where

fα(z)= z− 1−α

( j + 1)n
[
( j + 1)m(1−αλ)−α(1− λ)

]z j+1,

fβ(z)= z− 1−β

( j + 1)n
[
( j + 1)m(1−βλ)−β(1− λ)

]z j+1
(2.12)

are the extremal functions of Tj(n,m,λ,α) and Tj(n,m,λ,β), respectively, and β = β(m,λ,
α,c; j + 1).

Indeed, we have

Ic
(
fα
)
(z)= z− (1−α)(c+ 1)

( j + 1)n(c+ j + 1)
[
( j + 1)m(1−αλ)−α(1− λ)

]z j+1. (2.13)
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But if we use the notations A=A(m,λ,α,c; j + 1) and B = B(m,λ,α,c; j + 1), we deduce

1−β

( j + 1)m(1−βλ)−β(1− λ)

= A−B

( j + 1)m(A−Bλ)−B(1− λ)

=
[
( j + 1)m− 1

]
(1−α)(1− λ)(c+ 1)

(1− λ)
{
A( j + 1)m +

[
( j + 1)m− 1

]
λ( j + 1)m(1−α)(c+ 1)−B

}

=
[
( j + 1)m− 1

]
(1−α)(c+ 1)[

( j + 1)m− 1
][

( j + 1)mλ(1−α)(1 + c) +A+ (1−α)(c+ 1)(1− λ)
]

= (1−α)(c+ 1)
(c+ j + 1)

[
( j + 1)m(1−αλ)−α(1− λ)

]

(2.14)

and this implies (2.11).
From β = 1− [( j + 1)m− 1](1−α)(1− λ)(c+ 1)/A and because A > 0, we obtain β < 1.

We also have β > α; indeed

β−α= (1−α)
{

1−
[
( j + 1)m− 1

]
(c+ 1)(1− λ)[

( j + 1)m− 1
][

(1−αλ)(c+ j + 1)− λ(c+ 1)(1−α)
]

+ (1−α) j

}

> (1−α)
{

1− (c+ 1)(1− λ)
(1−αλ)(c+ j + 1)− λ(c+ 1)(1−α)

}

= (1−α)(1−αλ) j
j(1−αλ) + (c+ 1)(1− λ)

> 0.

(2.15)
�

3. Integral properties of the class Lj(n,m,λ,α)

Theorem 3.1. Let n,m ∈ N, j ∈ N∗, α ∈ [0,1), λ ∈ [0,1], and let c ∈ (−1,∞); if f ∈
Lj(n,m,λ,α) and g = Ic( f ), then g ∈ Lj(n,m,λ,γ), where

γ = γ(α,c; j + 1)= 1− (1−α)(c+ 1)
2−α+ c+ j

(3.1)

and α < γ(α,c; j + 1) < 1. The result is sharp.

Proof. From Theorem 1.7 and from (1.9) we have g ∈ Lj(n,m,λ,β) if and only if

∞∑
k= j+1

kn(k− γ)
[
1 +
(
km− 1

)
λ
]
(c+ 1)

(1− γ)(c+ k)
ak ≤ 1. (3.2)

We find the largest γ such that (3.2) holds. We note that the inequalities

(k− γ)(c+ 1)
(1− γ)(c+ k)

≤ k−α

1−α
, k ≥ j + 1, (3.3)
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imply (3.2), because f ∈ Lj(n,m,λ,α). But the inequalities (3.3) are equivalent to

(k− 1)(k+ c+ 1−α)γ ≤ (k− 1)(k+αc), k ≥ j + 1. (3.4)

Since (k+ c+ 1−α) > 0 and k− 1≥ j ≥ 1, we deduce

γ ≤ k+αc

k+ c+ 1−α
∀k ≥ j + 1. (3.5)

We define γ(α,c;k) := 1− (1− α)(c + 1)/(k + c + 1− α). Obviously, γ(α,c; j + 1) ≤ γ(α,
c;k) for k ≥ j + 1, hence we obtain that γ = γ(α,c; j + 1).

We have γ < 1 because (1−α)(c+ 1)/(k+ c+ 1−α) > 0 and γ > α because

γ−α= (1−α)
1−α+ j

2−α+ c+ j
> 0. (3.6)

The result is sharp. Indeed, we consider the function

ϕα(z)= z− 1−α

( j + 1)n( j + 1−α)
[
1− λ+ λ( j + 1)m

]z j+1 (3.7)

that belongs to Lj(n,m,λ,α). Then

Ic(ϕα)(z)= z− (1−α)(c+ 1)
( j + 1)n( j + 1−α)

[
1− λ+ λ( j + 1)m

]
(c+ j + 1)

z j+1, (3.8)

and because

(1−α)(c+ 1)
( j + 1−α)(c+ j + 1)

= 1− γ

j + 1− γ
, (3.9)

we deduce that Ic(ϕα)= ϕγ belongs to Lj(n,m,λ,γ). �
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