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A study is made of the propagation of time-harmonic magneto-thermoviscoelastic plane
waves in a homogeneous electrically conducting viscoelastic medium of Kelvin-Voigt type
permeated by a primary uniform external magnetic field when the entire medium rotates
with a uniform angular velocity. The generalized thermoelasticity theory of type II (Green
and Naghdi model) is used to study the propagation of waves. A more general dispersion
equation for coupled waves is derived to ascertain the effects of rotation, finite thermal
wave speed of GN theory, viscoelastic parameters and the external magnetic field on the
phase velocity, the attenuation coefficient, and the specific energy loss of the waves. Lim-
iting cases for low and high frequencies are also studied. In absence of rotation, external
magnetic field, and viscoelasticity, the general dispersion equation reduces to the disper-
sion equation for coupled thermal dilatational waves in generalized thermoelasticity II
(GN model), not considered before. It reveals that the coupled thermal dilatational waves
in generalized thermoelasticity II are unattenuated and nondispersive in contrast to the
thermoelastic waves in classical coupled thermoelasticity (Chadwick (1960)) which suffer
both attenuation and dispersion.

1. Introduction

The study of propagation of thermoelastic and magneto-thermoelastic waves in nonro-
tating media was made by several authors. Based on Fourier’s law, Biot [2] derived the
equations of thermoelasticity which are concerned with the interaction of the thermal
field and elastic deformation such that the two fields are coupled. Biot’s equations have
been used for the investigation of the plane thermoelastic waves. The main drawbacks of
Biot’s equations are that they were based on Fourier’s law which predicts an infinite speed
of propagation of heat. Lord and Shulman [16] employed a modified version of Fourier’s
law to eliminate this paradox and thereby established the generalized coupled heat con-
duction equation which is hyperbolic in nature. They have derived the equations of dy-
namic thermoelasticity based on the modified Fourier’s law and these equations are usu-
ally regarded as the basis of generalized thermoelasticity. Lord and Shulman’s equations
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have been used by several authors including Puri [21], Nayfeh and Nemat-Nasser [17]
to study the plane thermoelastic waves in an unbounded isotropic homogeneous elastic
medium. Agarwal [1] has made an investigation of surface waves in generalized thermoe-
lasticity.

Paria [19] and Wilson [24] investigated the propagation of magneto-thermoelastic
waves in a nonrotating medium. These studies, based on the theory of classical coupled
thermoelasticity, were essentially concerned with the interaction of the electromagnetic
field, the thermal field, and the elastic field, as well as the dispersion relation. In a paper
by Schoenberg and Censor [22], the propagation of plane harmonic waves in a rotating
elastic medium has been investigated in some details. It has been shown that the rotation
causes the elastic medium to be dispersive and anisotropic. This study included some
discussion on the free-surface phenomenon in a rotating half-space. Results concerning
slowness surfaces, energy flux, reflected waves, and generalized Rayleigh waves have been
obtained.

It seems relevant from the above discussion that little attention has been given to the
study of propagation of thermoelastic plane waves in a rotating medium in presence of
an external magnetic field based on the generalized thermoelasticity. In view of the fact
that most large bodies like the earth, the moon, and other planets have an angular veloc-
ity, it is important to consider the propagation of magneto-thermoelastic plane waves in
an electrically conducting, rotating viscoelastic medium under the action of an external
magnetic field. In this connection, Choudhuri and Debnath [9, 10, 11, 12, 13] have stud-
ied propagation of magneto-thermoelastic plane waves in rotating thermoelastic media
permeated by a primary uniform magnetic field using the generalized heat conduction
equation of Lord and Shulman. In the present problem, we have studied the propagation
of time-harmonic coupled electromagneto-viscoelastic dilatational thermal shear waves
using the thermoelasticity theory of type II [14, Green-Naghdi model]. This thermoe-
lastic model possesses several significant characteristics that differ from the traditional
classical development in thermoelastic material behaviors: (i) it does not involve thermal
energy dissipation, (ii) the entropy flux vector (or equivalently, the heat-flow vector) in
the theory is determined in terms of the same potential that also determines the stresses,
(iii) it permits transmission of heat flow as thermal waves at finite speed. Several problems
in thermoelasticity of type II (without thermal energy dissipation) have been studied by
several authors [4, 5, 6, 7, 8, 23]. In this paper, GN model of thermoelasticity of type II
is used to obtain a more general dispersion equation to ascertain the effects of rotation,
finite thermal waves speed cT of GN theory, thermoelastic coupling constant and the
external magnetic field and the viscoelastic parameters on the phase velocity, and atten-
uation factor of the coupled electromagneto-thermoviscoelastic dilatational shear waves.
Special attention is paid to investigate the effects on the specific energy loss for both low
and high frequencies. Though several problems of coupled wave propagation have been
studied in generalized magneto-thermo-viscoelasticity with/without thermal relaxation
by previous researchers, it is believed that this particular problem of coupled wave prop-
agation in a rotating viscoelastic medium in presence of thermal and external magnetic
fields using the theory of thermoelasticity of type II (GN model) [14] has not been dealt
with before.
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2. Formulation of the problem and the basic equations

We consider an infinite, homogenous, isotropic, thermally and electrically conducting

viscoelastic solid permeated by a primary magnetic field �B0 = (B1,B2,B3). The viscoelas-
tic medium is characterized by the density ρ, Lame’s constants λ, µ, and viscoelastic pa-

rameters λ′, µ′, and is uniformly rotating with an angular velocity �Ω =Ω�w, where �w is
the unit vector representing the direction of the axis of rotation. The displacement equa-
tion of motion in the rotating frame of reference has two additional terms: centripetal

acceleration �Ω× (�Ω×�u) due to the time-varying motion only and the Coriolis acceler-

ation 2 · �Ω×
•
�u, where �u is the dynamic displacement vector. These terms do not appear

in a nonrotating medium. The dynamic displacement vector is actually measured from
a steady-state deformed position and the deformation is assumed to be small. The dis-
placement equations of motion in a viscoelastic solid of Kelvin-Voigt type with increase
of temperature θ above the reference temperature θ0 are

µ∇2�u+µ′
∂

∂t
∇2�u+ (λ+µ)�∇(�∇·�u) + (λ′ +µ′)

∂

∂t
�∇(�∇·�u) + �J × �B− v�∇θ

= ρ
[••
�u + �Ω× (�Ω×�u)+ 2�Ω×

•
�u
]
,

(2.1)

where �J × �B is the electromagnetic body force, �J is the current density, �B = �B0 +�b is the

total magnetic field, �b = (bx,by ,bz) is the perturbed magnetic field which is assumed to

be small so that the products with �b and �u and their derivatives can be neglected for
linearization of the field equations, v = (3λ+ 2µ)α0, α0 is the coefficient of linear thermal
expansion of the solid, and the dots represent the derivatives with respect to time t.

The coupled heat conduction equation of the theory of thermoelasticity (type II) with-
out energy dissipation proposed by Green and Naghdi [14] is

ρcv
••
θ + vT0

••
∆ = ρQ+ k∗∇2θ, (2.2)

where cv is the specific heat of the solid at constant volume, ρ is the density of the medium,
T0 is the initial reference temperature, k∗ (> 0) is a material constant characteristic of the
theory, Q is the external rate of heat supply per unit mass, and ∆ is the dilatation so that
∆= div�u. The finite thermal wave speed is (k∗/ρcv)1/2.

In the present problem Q = 0, so that the heat conduction equation becomes

ρcv
••
θ + vT0

••
∆ = k∗∇2θ. (2.3)

Equation (2.3) permits thermal wave propagation without damping. Equations (2.1)
and (2.3) are to be supplemented by generalized Ohm’s law in a continuous medium with
Maxwell’s electromagnetic field equations.
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The electromagnetic field is governed by Maxwell’s equations with the displacement
current and charge density neglected [5]

�∇× �H = �J , (2.4a)

�∇× �E =−∂B

∂t
, (2.4b)

�∇· �B = 0, (2.4c)

where �B = µe �H and µe is the magnetic permeability.
The generalized Ohm’s law is

�J = σ
[
�E+

(
∂�u
∂t

+ �Ω×�u
)
× �B

]
, (2.5)

where the time-independent part of �Ω×�u is neglected, σ is the electrical conductivity,
∂�u/∂t is the particle velocity of the medium, and the small effect of temperature gradient

on �J is also ignored.

3. Plane wave solutions and dispersion relation

We consider the propagation of plane waves in the rotating medium in the x-direction
so that all quantities are proportional to exp[i(kx−ωt)], where (ω/2π) is the wave fre-
quency and (2π/k) is the wave length. We will assume that ω is real, but k may be com-
plex. The analysis will be carried out without any discussion of the time-independent
stresses and displacements that are caused by the centrifugal force and other possible body
forces. We look for time-varying dynamic solutions, and as such, the time-independent
part of the centripetal acceleration as well as all body forces will be neglected. How-
ever, the time-dependent part of the electromagnetic body force will be taken into con-
sideration. In view of the above assumptions, we write all the field quantities in the
form

�u= (p,q,r)= (p0,q0,r0
)
ei(kx−ωt), (3.1)

T = T0e
i(kx−ωt), (3.2)

�J = ( j1, j2, j3
)
ei(kx−ωt), (3.3)

�b = (bx,by ,bz
)= (b1,b2,b3

)
ei(kx−ωt), (3.4)

�E = (Ex,Ey ,Ez
)
, �Ω= (Ω1,Ω2,Ω3

)
, (3.5)

where p0, q0, r0; j1, j2, j3; b1, b2, b3; Ω1, Ω2, Ω3, and T0 are all constants.
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It follows from (2.4c) that div�b = 0 which implies that bx = 0, since initially �b =�0.

Also, it follows from (2.4a) that µe�J = �∇×�b so that

�J =
[

0,− ik

µe
bz,

ik

µe
by

]
, (3.6)

�J × �B0 =
[
− ik

µe

(
bzB3 + byB2

)
,
ik

µe
byB1,

ik

µe
bzB1

]
. (3.7)

Thus the term �J × �B in (2.1) can be replaced by �J × �B0 given by (3.7).
Substituting (3.1) and (3.2) into (2.3), we find

θ0 = αp0, (3.8a)

α= ivT0kω2

k∗k2− ρcvω2
. (3.8b)

The equation �∇× �E =−(∂�b/∂t) gives

�E = (Ex,Ey ,Ez
)= (Ex,

ω

k
bz,−ω

k
by

)
. (3.9)

Replacing �B by primary magnetic field �B0, (2.5) takes the form

�J = σ
[
�E+

(
∂u

∂t
+ �Ω×�u

)
× �B0

]
. (3.10)

Making use of (3.1) and (3.9) and neglecting the product terms, (3.10) with �J = (Jx, Jy , Jz)
yields

Jx = σ
[
Ex − iω

(
qB3− rB2

)
+B3

(
pΩ3− rΩ1

)−B2
(
qΩ1− pΩ2

)]
,

Jy = σ
[
ω

k
bz − iω

(
rB1− pB3

)
+B1

(
qΩ1− pΩ2

)−B3
(
rΩ2− qΩ3

)]
,

Jz = σ
[
− ω

k
by − iω

(
pB2−B1q

)
+B2

(
rΩ2− qΩ3

)−B1
(
pΩ3− rΩ1

)]
.

(3.11)

Eliminating �J from (3.6) and (3.11), we get

σ
[
Ex − iω

(
qB3− rB2

)
+B3

(
pΩ3− rΩ1

)−B2
(
qΩ1− pΩ2

)]= 0, (3.12)

σ
[
ω

k
bz − iω

(
rB1− pB3

)
+B1

(
qΩ1− pΩ2

)−B3
(
rΩ2− qΩ3

)]=− ik

µe
bz, (3.13)

σ
[
− ω

k
by − iω

(
pB2− qB1

)
+B2

(
rΩ2− qΩ3

)−B1
(
pΩ3− rΩ1

)]= ik

µe
by. (3.14)
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We next put (3.1), (3.2), (3.3), (3.4), and (3.5) into (2.1) and suppress the factor exp[i(kx
−ωt)] throughout the subsequent discussion to obtain the following equations:

p0
[
ρ
(
Ω2

1−Ω2−ω2)+
(
λ+ 2µ

)
k2− (λ+ 2µ

)
iωk2 + ivαk

]
+ q0

[
ρ
(
2iωΩ2

3 +Ω2
1Ω

2
2

)]
+ r0

[
ρ
(
Ω2

1Ω
2
3− 2iωΩ2

2

)]
+
ik

µe

(
b3B3 + b2B2

)= 0,
(3.15)

p0
[
ρ
(
Ω2

1Ω
2
2− 2iωΩ2

3

)]
+ q0

[
ρ
(
Ω2

2−Ω2−ω2)+µk2−µ1iωk2]

+ r0
[
ρ
(
Ω2

2Ω
2
3 + 2iωΩ2

1

)]− ik

µe
b2B1 = 0,

(3.16)

p0
[
ρ
(
Ω2

1Ω
2
3 + 2iωΩ2

2

)]
+ q0

[
ρ
(
Ω2

2Ω
2
3− 2iωΩ2

1

)]
+ r0

[
ρ
(
Ω2

3−Ω2−ω2)+µk2−µ1iωk2]− ik

µe
b3B1 = 0.

(3.17)

We next rewrite (3.13) and (3.14) in order to obtain their final forms

p0
[
σ
(
iωB3−B1Ω2

)]
+ q0

[
σ
(
B1Ω1 +B3Ω3

)]
+ r0

[− σ
(
iωB1 +B3Ω2

)]

+ b3

[
ik

µe
+
σω

k

]
= 0,

(3.18)

p0
[− σ

(
iωB2 +B1Ω3

)]
+ q0

[
σ
(
iωB1−B2Ω3

)]
+ r0

[
σ
(
B2Ω2 +B1Ω1

)]

− b2

[
ik

µe
+
σω

k

]
= 0.

(3.19)

Equations (3.15), (3.16), (3.17), (3.18), and (3.19) constitute a system of five equations
with five unknowns p0, q0, r0 and the perturbed quantities b2, b3.

Since �b = (0,by ,bz) and �b-field is normal to x-axis, we then choose the y-axis and the

z-axis such that�b-field is along the y-axis. Invoking the additional assumption Ω1 =Ω2 =
0 and Ω3 =Ω �= 0 and considering that r0 ≡ 0 provided that µk2− ρω2 �= 0 (evident from
(3.17)) so that B3 ≡ 0, we set the applied and perturbed magnetic fields as (B1,B2,0) and
(0,b2,0), respectively.

This leads to the following three homogenous equations with three unknowns p0, q0,
and b2 as

p0
[− ρ

(
Ω2 +ω2)+ (λ+ 2µ)k2− (λ′ + 2µ′)iωk2 + ivαk

]
+ q0

[
ρ2iωρΩ

]
+
ik

µe
B2b2 = 0,

(3.20)

p0[−2iωρΩ] + q0
[− ρ

(
Ω2 +ω2)+µk2− iωµ1k2]− ikB1

µe
b2 = 0, (3.21)

p0
[− σ

(
iωB2 +B1Ω

)]
+ q0σ

(
iωB1−ΩB2

)− b2

[
ik

µe
+
σω

k

]
= 0. (3.22)
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Elimination of p0, q0, b2 gives the dispersion equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ρ(Ω2 +ω2
)

+ (λ+ 2µ)k2− (λ1 + 2µ1
)
iwk2 + ivαk, 2iωρΩ,

ikB2

µe

−2iωρΩ −ρ(Ω2 +ω2
)

+µk2− iωµ′k2, − ikB1

µe

σ
(
iωB2 +B1Ω

)
, σ

(
ΩB2− iωB1

)
,

(
ik

µe
+
σω

k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

(3.23)

It follows from the dispersion equation that the significant effects of the rotation, vis-
coelasticity, and the thermal field on the phase velocity Re(ω/k) are reflected through the
terms involving Ω, λ′, and µ′ and the term containing α through k∗, characteristic of GN
theory.

In order to make further simplication of the dispersion equation, we assume �B0 =
(0,B2,0) so that (3.23) becomes

∣∣∣∣∣∣∣∣∣∣∣∣

−ρ(ω2 +Ω2
)

+ (λ+ 2µ)k2− (λ′ + 2µ′)iωk2 + ivαk, 2iωρΩ,
ik

µe
B2

−2iωρΩ −ρ(Ω2 +ω2
)

+µk2− iωµ′k2 0

σiωB2 σΩB2,

(
ik

µe
+
σω

k

)

∣∣∣∣∣∣∣∣∣∣∣∣
=0.

(3.24)

Expanding this determinant and substituting (Ω/ω) = Ω0 and the value of α from
(3.8b), we obtain

[{
− ω2

(
1 +Ω2

0

)
c2

1
+ k2− c

′2
1

c2
1
iωk2

}(
k∗k2− ρcvω

2)− v2k2T0ω2

ρc2
1

]

×
{
− ρω2(1 +Ω2

0

)
+µk2− iωµ′k2

}( ik

µe
+
σω

k

)
+
(
k∗k2− ρcvω

2)

×
[
− 4ω2ρ2Ω2

c2
1

(
ik

µe
+
σω

k

)
+
kσωB2

2

ρc2
1µe

{
2ρΩ2− ρω2(1 +Ω2

0

)
+µk2− iωµ′k2

}]
= 0,

(3.25)

where c1 =
√

(λ+ 2µ)/ρ and c′1 =
√

(λ′ + 2µ′)/ρ, c2 =
√
µ/ρ and c′2 =

√
µ′/ρ, where c1 is the

longitudinal elastic wave velocity and c2 is the transverse elastic wave velocity.
It is convenient to introduce the dimensionless quantities

χ = ω

ω∗
, ξ = kc1

ω∗
, εT = T0v2

ρ2cvc
2
1

, εH = ω∗vH
c2

1
, γH =

(
µe · σ

)−1
,

k∗

ρcvc
2
1
= k∗/ρcv

c2
1

= c2
T ,

(3.26)
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where εT is the thermoelastic coupling constant, cT is the nondimensional thermal wave
speed of GN theory, depending on k∗, ω∗ is some standard frequency, and vH is the
magnetic viscosity.

For further simplication of (3.25), we observe the results

−ω2

c2
1

(
Ω2

0 + 1
)

+ k2− c′21

c2
1
iωk2 = ω∗2

c2
1

{
ξ2(1− is2

1χ
)− χ2(1 +Ω2

0

)}
,

k∗k2− ρcvω
2 = k∗

ω∗2

c2
1

(
ξ2− χ2

c2
T

)
,

v2k2T0ω2

ρc2
1

= k∗ω∗4

c4
1c

2
T

εTξ2χ2,

−ρω2(Ω2
0 + 1

)
+µk2− iωµ′k2 = ρω∗

2{
ξ2(s2− iχs2

2

)− χ2(Ω2
0 + 1

)}
,(

ik

µe
+
σω

k

)
= σc1

ξ

(
χ + iξ2εH

)
,

4ω2ρΩ2

c2
1

= 4ρ

c2
1
Ω2

0χ
4ω∗

4
,

kσωB2
2

ρc2
1µe

= RHσξχ
ω∗2

c1
,

2ρΩ2 = 2ρΩ2
0χ

2ω∗
2
,

(3.27)

where s2
1 = (c′21 /c

2
1)ω∗, s2

2 = (c′22 /c
2
2)ω∗, s= c2/c1, and RH = B2

2/ρc
2
1µe is the magnetic pres-

sure number as defined by Pai [18].
Introducing the above result and notations, (3.25) takes the form

[{
ξ2(1− is2

1χ
)− χ2(Ω2

0 + 1
)}(

ξ2c2
T − χ2)− εTξ2χ2]{ξ2(s2− iχs2

2

)− χ2(Ω2
0 + 1

)}
× (χ + iξ2εH

)
+
(
ξ2c2

T − χ2)[− 4Ω2
0χ

4 +RHξ
2χ
{
χ2(Ω2

0− 1
)

+ ξ2(s2− iχ2s2
2

)}]= 0.
(3.28)

This equation indicates the influence of the rotation and the thermal field through cT ,
εT , and viscoelastic parameters s1 and s2 on the phase velocity. In the absence of rota-
tion (Ω0 = 0) and viscoelasticity (s1 = 0, s2 = 0) with RL = B2

1/ρc
2
1µe = 0, the dispersion

relation (3.28) reduces to

(
s2ξ2− χ2)[(ξ2c2

T − χ2)(ξ2− χ2)(χ + iξ2εH
)− χ2ξ2εT

(
χ + iξ2εH

)
+RHχξ

2(ξ2c2
T − χ2)]= 0.

(3.29)

In this case, the phase velocity is broken up into two factors. The first factor corresponds
to s2ξ2 − χ2 = 0, which leads to a transverse elastic wave (unaffected by thermal field in
absence of rotation as expected).
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The other factor leads to

(
ξ2c2

T − χ2)[{ξ2− χ2}(χ + iξ2εH
)

+RHχξ
2]− εTχ2ξ2(χ + iξ2εH

)= 0. (3.30)

Equation (3.30) corresponds to the dispersion equation of coupled thermal dilatational
electrical waves influenced by k∗ (and hence by cT), a characteristic of the material of GN
model and is not so far dealt with before.

The second factor of (3.29) corresponds to the dispersion equation for coupled ther-
mal dilatational wave influenced by transverse electromagnetic field RH .

Setting RH = 0 in (3.30), the dispersion equation (3.30) reduces to

(
χ + iξ2εH

)[(
ξ2− χ2)(ξ2c2

T − χ2)− εTχ2ξ2]= 0. (3.31)

The first factor corresponds to quasistatic oscillations of the electromagnetic field, not
coupled with the displacement field, Parkus [20]. The second factor of (3.31) corresponds
to dispersion equation (not considered earlier so far) for purely thermoelastic waves (GN
model) leading to

(
ξ2− χ2)(ξ2c2

T − χ2)− εTχ2ξ2 = 0 (3.32)

in contrast to the equation derived by Chadwick [3] in classical coupled thermoelasticity
theory. The roots of this equation are real, indicating that purely thermoelastic waves in
thermoelasticity of type II (GN model) are unattenuated (without energy dissipation),
not yet considered but are subject to dispersion.

The roots of (3.32) are

ξ2 = (M1±N1
)
χ2, where M1 = 1

2c2
T

(
c2
T + 1 + εT

)
,

N1 = 1
2c2

T

[(
c2
T − 1

)2
+ εT 2 + 2εT

(
c2
T + 1

)]1/2
.

(3.33)

The phase speed of the thermoelastic waves in GN model of thermoelasticity is CE,T
p =

χc1/ξ = c1/
√(

M1±N1
)=VE,VT corresponding to +ve and −ve signs.

Setting εT = 0 leads to VE = c1, (for those materials for which cT > 1) which is the

elastic dilatational wave speed and VT = c1 cT =
√
k∗/ρcv = finite thermal wave speed

of GN model. Thus VE corresponds to modified elastic dilatational wave speed and vT
corresponds to the modified thermal wave speed modified by cT which is the nondi-
mensional thermal wave speed of GN model, a characteristic of the theory and the ther-
moelastic coupling constant εT . Clearly vE < vT , implying that the modified elastic wave
follows the modified thermal wave for those materials for which k∗ > ρcvc1

2.
Equation (3.28) represents a more general dispersion relation in the sense that it

incorporates the effects of rotation, viscoelasticity and the finite thermal wave speed cT ,
thermoelastic coupling εT , and external magnetic field RH . Also, it shows that if the pri-
mary magnetic field has a transverse component, the longitudinal and transverse com-
ponents of the displacement vector are linked together.
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As (3.28) is very complicated, we consider the following limiting cases in order to ex-
amine the effects of the rotation, viscoelasticity and the thermal wave speed cT , thermoe-
lastic coupling εT , and external magnetic field RH on the phase velocity, on attenuation
coefficient of waves, and also on specific energy loss.

4. Low-frequency region (χ� 1)

In this case, the wave frequency ω is much smaller than ω∗. We consider this case with
finite electrical conductivity (σ �= 0, vH �= 0). Thus when χ = 0, ξ2 = 0 so that we can
write ξ2 = iφχ + 0(χ2), where φ is to be determined. We substitute ξ2 into (3.28), retain
the terms containing χ4, and then equate the coefficient of χ4 to zero in order to obtain
an equation for φ as

φ = 1 +RH

εH
. (4.1)

The root of (4.1) corresponds to one kind of slow wave because∣∣∣∣ωk
∣∣∣∣=

∣∣∣∣ ω

ω∗
ω∗

kc1
c1

∣∣∣∣=
∣∣∣∣ c1χ

ξ

∣∣∣∣∼ c10
(
χ1/2)� c1. (4.2)

Thus for the low frequency, the rotation, the thermal field k∗, εT , and the viscoelastic-
ity have no influence on the phase velocity in the case of finite conductivity. The equation
for φ is linear so that its only root φ = (1 +RH)/εH . This corresponds to only one slow
wave influenced by the electromagnetic field. This fact was not noticed in the works by
Choudhuri and Debnath [12], which reveals two kinds of slow waves. Then the phase
velocity can be found from the result

ξ =±(1 + i)
(

1 +
χ

2εH

)1/2

Rm, (4.3)

where R2
m = 1 +RH = 1 + v2

A/c
2
1 and vA is the Alfvèn wave velocity.

It follows from (4.3) that there exists a magneto-elastic wave.
It follows from the real and imaginary parts of ξ that the phase velocity is

cp = c1

(
χεH

2

)1/2

R−1
m . (4.4)

The attenuation factor is

a f = ω∗

c1

(
χ

2εH

)1/2

Rm. (4.5)

The phase speed and attenuation factor are independent of cT , viscoelastic parameters,
the thermal wave speed, and thermoelastic coupling εT to the order of (χ) for χ� 1.

However considering terms of 0(χ2) for χ� 1, we obtain from the general dispersion
equation (3.28) that

ξ2 = (AC−BD) + i(AD+BC)
A2 +B2

, (4.6)
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where

A= εHc2
T

(
s2− s2

1s
2
χ2),

B = εHc2
T

(
s2

1s
2 + s2

2

)
χ,

C = χ2[εH{s2(1 + εT
)

+ c2
T

(
Ω2

0 + 1
)(
s2 + 1

)}
+ c2

T

(
s2

1s
2 + s2

2 +RHs
2
2

)]
,

D = c2
Tχs

2(1 +RH
)
.

(4.7)

It follows from the real and imaginary parts of ξ that the phase velocity is

cp = χc1√
R1

cos
φ

2
(4.8)

and the attenuation factor is

a f = ω∗

c1

√
R1 sin

φ

2
, (4.9)

where

R1 =
[
(AC−BD)2 + (AD+BC)2

]1/2(
A2 +B2

) ,

tanφ= AD+BC

AC−BD
.

(4.10)

This confirms that the phase speed and the attenuation factors both are affected by ro-
tation, viscoelastic parameters, finite thermal wave speed cT , the thermoelastic coupling
εT , the external magnetic field, and the electromagnetic parameter εH .

5. High-frequency region (χ� 1)

This case corresponds to the case of wave frequency ω, much larger than ω∗. Dividing the
dispersion equation (3.28) by χ7 and neglecting all terms involving the second and higher
powers of (1/χ), (3.28) becomes

ξ =±(1 + i)

[
χ

2
{(
Ω2

0 + 1
)(
s2

1 + s2
2

)
+
(
Ω2

0− 1
)2εH

}
]1/2(

Ω2
0− 1

)
. (5.1)

Thus the effect of rotation, viscoelastic parameters s1, s2, and the electromagnetic pa-
rameter εH on the phase velocity is observed to the first order of (1/χ) whereas without
viscoelastic effect,

s1 = s2 = 0, ξ =±(1 + i)
(

χ

2εH

)1/2

. (5.2)

Thus no effect of rotation and thermal parameters k∗, εT on the phase velocity is ob-
served, but however electromagnetic parameter εH affects it.
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To the first order of (1/χ) for (χ� 1), the phase velocity cp and the attenuation coeffi-
cient factor a f are as follows:

cp = c1(
Ω2

0− 1
)
[
χ
{(
Ω2

0 + 1
)(
s2

1 + s2
2

)
+
(
Ω2

0− 1
)2εH

}
2

]1/2

, (5.3)

a f = ω∗

c1

[
χ

2
{(
Ω2

0 + 1
)(
s2

1 + s2
2
)

+
(
Ω2

0− 1
)
εH
}
]1/2(

Ω2
0− 1

)
. (5.4)

Now dividing (3.28) by χ7, retaining the terms of the order of (1/χ)2 for (χ� 1) and
neglecting the higher powers of (1/χ), we obtain

ξ4

[
s2

1s
2
2

χ2
+
(
Ω2

0 + 1
) s2

2εH
χ2

+
(
Ω2

0 + 1
) s2

2εH
χ2

]

+ ξ2

[(
Ω2

0 + 1
) s2

χ2
− i
(
Ω2

0 + 1
) s2

2

χ
+

(
Ω2

0 + 1
)2
c2
T

χ2
+

(
Ω2

0 + 1
)

χ2

− (Ω2
0 + 1

) is2
1

χ
+

(
Ω2

0 + 1
)2εT

χ2
− (Ω2

0 + 1
) iεH

χ

− 4Ω2
0c

2
T

χ2
+

4Ω2
0iεH
χ

− RH
(
Ω2

0− 1
)

χ2

]
− (Ω2

0− 1
)2 = 0.

(5.5)

Clearly, the roots of this dispersion equation with complex coefficients are complex, in-
dicating that the coupled magneto-thermo-viscoelastic waves undergo attenuation and
dispersion. Both the phase speed and the attenuation coefficients of the coupled waves
are influenced by rotation, viscoelastic parameters s1, s2, external magnetic field and the
finite wave speed cT , characteristic of GN theory, and the thermoelastic coupling constant
εT to the second order of (1/χ) for large frequency.

In absence of viscoelastic effects, the above equation gives

ξ2 = (L+ iM)
L2 +M2

, (5.6)

where

M = εH
χ

, (5.7)

L= 1

χ2
(
Ω2

0− 1
)2

[(
1 + εT + s2)(Ω2

0 + 1
)−RH

(
Ω2

0− 1
)

+
(
Ω2

0− 1
)2
c2
T

]
= L0

χ2
, (5.8)
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where

L0 = 1(
Ω2

0− 1
)2

[(
1 + εT + s2)(Ω2

0 + 1
)−RH

(
Ω2

0− 1
)

+
(
Ω2

0− 12)c2
T

]
. (5.9)

It follows from the real and the imaginary parts of ξ that the phase velocity is

cp = χc1√
R

cos
θ

2
(5.10)

and the attenuation factor is

a f = ω∗

c1

√
Rsin

θ

2
, (5.11)

where

R= 1√
L2 +M2

, tanθ = M

L
. (5.12)

The results (5.10) and (5.11) are similar to (5.4) and (5.6) reported by Choudhuri and
Debnath [12]. The results (5.10) and (5.11) correspond to the phase speed and attenu-
ation factor of the coupled magneto-thermoelastic wave in a rotating medium in ther-
moelasticity of type II (GN model), not considered so far. These are clearly influenced by
cT , rotation, εT , and the external magnetic field.

It is important to observe that rotation does exert influence on both the phase velocity
and the attenuation factor for high frequencies to the second order of (1/χ). Also both the
phase speed and the attenuation factor are modified by the applied magnetic field, ther-
mal parameters k∗, εT through the term L for high frequency. This fact was not noticed
for the case of low frequency up to the order of (χ2).

6. Specific energy loss

Making reference to Kolsky [15], the specific energy loss (∆W/W) is defined as the ratio
of the energy dissipated per stress cycle to the total vibrational energy and is given by

∆W

W
= 4π

ω
cpa f . (6.1)

To the second order of χ for χ� 1, the specific energy loss from (4.8) and (4.9) is given
by

∆W

W
= 2π

(AD+BC)[
(AC−BD)2 + (AD+BC)2

]1/2 . (6.2)

Therefore, the specific energy loss is affected by rotation, finite thermal wave speed cT ,
the thermoelastic coupling εT , the external magnetic field, and the electromagnetic pa-
rameter.
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To the first order of 1/χ for χ� 1, the specific energy loss is obtained from (5.3) and
(5.4) in the form

∆W

W
= 2π. (6.3)

Equation (6.3) shows that the specific energy loss is independent of any field parame-
ters in the case of high frequency up to the first order of (1/χ).

However, to the second order of (1/χ), the expression for the specific energy loss in
absence of viscoelastic effect is obtained from (5.10) and (5.11) in the form

∆W

W
= 2π

M√
L2

0/χ4 +M2
. (6.4)

This result confirms that the specific energy loss is affected by the rotation to the second
order of (1/χ) for the case of high frequency and depends on thermal parameters εT ,
finite thermal wave speed cT of GN theory of thermoelasticity of type II, electromagnetic
parameter εH , and the transverse magnetic field.

7. Discussion

(1) Magneto-thermo-viscoelastic-dilatational shear waves in generalized thermoelasticity
II undergo both attenuation and dispersion in contrast to the purely coupled thermoelas-
tic waves in generalized thermoelasticity II (without thermal energy dissipation) which
suffer no attenuation and dispersion.

(2) The coupled waves are influenced by the finite thermal wave speed of GN theory,
rotation, viscoelastic parameters, and the external magnetic field, and by the fact that due
to the presence of the transverse magnetic field RH and rotation, the longitudinal and
transverse motions are linked together.

(3) For low frequency (χ� 1, χ being the ratio of the frequency to some standard
frequency ω∗), the rotation, viscoelastic parameters s1 and s2, and the thermal field have
no effect on the phase velocity to the first order of χ corresponding to only one slow
wave influenced by the electromagnetic field RH only. But to the second order of χ, the
phase velocity, attenuation coefficient, and the specific energy loss are affected by rotation,
viscoelastic parameters and depend on the finite thermal wave speed cT , the thermoelastic
coupling εT , electromagnetic parameter, and the transverse magnetic field RH .

(4) For large frequency, rotation, viscoelastic parameters, and the electromagnetic pa-
rameter εH influence the phase velocity and attenuation coefficient to the order of (1/χ).
However, to the order of (1/χ)2, the phase speed and attenuation coefficients of the waves
are affected by rotation, viscoelastic parameters s1, s2, the finite thermal wave speed cT of
GN theory, the transverse magnetic field RH , and the thermoelastic coupling εT .

(5) It reveals also that to the order of (1/χ), the specific energy loss is independent of
any field parameters and is a constant. Without viscoelastic effect, the specific loss is how-
ever affected by rotation, finite thermal wave speed cT , external magnetic field RH , and
the electromagnetic parameter εH to the second order of (1/χ) in the case of magneto-
thermoelastic waves in rotating media in generalized thermoelasticity II, not studied be-
fore.
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