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By using fixed point index approach for multivalued mappings, the existence of nonzero
solutions for a class of generalized variational inequalities is studied in reflexive Banach
space. One of the mappings concerned here is coercive or monotone and the other is
set-contractive or upper semicontinuous.

1. Introduction

Since the fundamental theory of variational inequality was founded in the 1960s, the vari-
ational inequality theory with applications has made powerful progress and has become
an important part of nonlinear analysis. It has been applied intensively to mechanics, dif-
ferential equation, cybernetics, quantitative economics, optimization theory, nonlinear
programming, and so forth (see [2]).

In virtue of minimax theorem of Ky Fan and KKM technique, variational inequal-
ities, generalized variational inequalities, and generalized quasivariational inequalities
were studied intensively in the last 20 years with topological method, variational method,
semiordering method, and fixed point method [2]. However, the existence of nonzero
solutions for variational inequalities, as another important topic of variational inequality
theory, has been rarely discussed.

It is of theoretical and practical significance to study the existence of nonzero solutions
for variational inequalities. In this paper, we will discuss the existence of nonzero solu-
tions for a class of generalized variational inequalities for multivalued mappings by fixed
point index approach in reflexive Banach space.

Let Y , Z be two topological spaces. A multivalued mapping F : Y → 2Z is called upper
semicontinuous at y0 ∈ Y if for each neighbourhood V ⊂ Z of F(y0), there exists a neigh-
bourhood U of y0 such that the set F(U) ⊂ V . Suppose that E1, E2 are two real Banach
spaces, D ⊆ E1. A multivalued mapping A : D→ 2E2 is said to be k-set-contractive on D
if there exists a constant k such that α(A(S)) ≤ kα(S) whenever α(S) �= 0, S ⊆ D, where
α is the Kuratowski measure of noncompactness. A mapping A is called condensing on
D if α(A(S)) < α(S) whenever α(S) �= 0, S ⊆ D. It is easily seen that a mapping A is con-
densing when k < 1. Let X be a Banach space, X∗ its dual, and (·,·) the pair between X∗
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and X . Suppose that K is a closed convex subset of X and U is an open subset of X with
UK =U ∩K �= ∅. The closure and boundary of UK relative to K are denoted by UK and
∂(UK ), respectively. Assume that T : UK → 2K is an upper semicontinuous mapping with
nonempty compact convex values and T is also condensing. If x �∈ T(x) for x ∈ ∂(UK ),
then the fixed point index, iK (T ,U), is well defined (see [3]).

Proposition 1.1 [3]. Let K be a nonempty closed convex subset of a real Banach space
X and let U be an open subset of X . Suppose that T : UK → 2K is an upper semicontinuous
mapping with nonempty compact convex values and x �∈ T(x) for x ∈ ∂(UK ), then the index,
iK (T ,U), has the following properties:

(i) if iK (T ,U) �= 0, then T has a fixed point;
(ii) for mapping X̂0 with constant value {x0}, if x0 ∈UK , then iK (X̂0,U)= 1;

(iii) let U1, U2 be two open subsets of X with U1 ∩U2 = ∅. If x �∈ T(x) when x ∈
∂((U1)K )∪ ∂((U2)K ), then iK (T ,U1∪U2)= iK (T ,U1) + iK (T ,U2);

(iv) let H : [0,1]×UK→2K be an upper semicontinuous mapping with nonempty com-
pact convex values and α(H([0,1]×Q)) < α(Q) whenever α(Q) �= 0, Q ⊆ UK . If
x �∈H(t,x) for every t ∈ [0,1], x ∈ ∂(UK ), then iK (H(1,·),U)= iK (H(0,·),U).

In this paper, for mappingsA : X → X∗ and g : K → 2X
∗
, we will deal with the following

problem by fixed point index approach: find u∈ K , u �= 0, and w ∈ g(u) such that

(Au,v−u)≥ (w,v−u), ∀v ∈ K. (1.1)

2. Nonzero solutions when the mapping A is coercive

Suppose that K is a subspace of X and A : X → X∗ is a coercive and linear continuous
mapping, that is, there exist constants M, γ > 0 such that

(Av,v)≥ γ‖v‖2, ‖Av‖X∗ ≤M‖v‖, ∀v ∈ X. (2.1)

It is well known that for any given w ∈ X∗, the variational inequality

(Au,v−u)≥ (w,v−u), ∀v ∈ K , (2.2)

has an only solution u in K (see [1]). Define a mapping as follows:

KA : X∗ −→ K , KA(w)= u, ∀w ∈ X∗, (2.3)

then KA is a coercive and linear continuous mapping and (see [1])

∥∥KA
(
w1
)−KA

(
w2
)∥∥≤ 1

γ

∥∥w1−w2
∥∥
X∗ . (2.4)
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Theorem 2.1. Let K be a subspace of a reflexive real Banach space X . Suppose that A :
X → X∗ is a coercive and linear continuous mapping which satisfies inequalities (2.1) and
g : K → 2X

∗
is β-set-contractive and upper semicontinuous mapping with nonempty compact

convex values, where β/γ < 1. Assume
(a) liminf‖un‖→0 supwn∈g(un)(wn,un)/‖un‖2 < γ (un ∈ K);
(b) there exist x0 ∈ K and a constant q > 0 such that infw∈g(u)(w,x0)/‖u‖ >M‖x0‖when

‖u‖ > q, u∈ K .
Then (1.1) has a nonzero solution.

Proof. Define a mapping as follows:

KAg : K −→ 2K ,
(
KAg

)
(u)= KA

(
g(u)

)
, ∀u∈ K. (2.5)

It is easily seen that KAg is (β/γ)-set-contractive and upper semicontinuous mapping
with nonempty compact convex values by (2.4). Let Kr = {x ∈ K ,‖x‖ < r}. Assuming
that there does not exist r �= 0 and u ∈ ∂(Kr) such that u ∈ KA(g(u)) (or else u is a
nonzero solution of (1.1)). We will verify that iK (KAg,Kr) = 1 for small enough r and
iK (KAg,KR)= 0 for large enough R.

Firstly, define a mapping byH : [0,1]×Kr→2K ,H(t,u)= tKA(g(u)). Obviously,H(t,u)
is an upper semicontinuous mapping with nonempty compact convex values. We claim
that α(H([0,1]×Q)) < α(Q) whenever α(Q) �= 0, Q ⊆ Kr . In fact, let e ∈ KAg(Q), then
0∈ {KAg(Q)− e}. Hence, we have

H
(
[0,1]×Q

)= ⋃
t∈[0,1]

{
t
[
KAg(Q)− e

]
+ te

}
⊆

⋃
t∈[0,1]

{
t
[
KAg(Q)− e

]}
+
⋃

t∈[0,1]

{te}

⊆ {KAg(Q)− e
}

+
⋃

t∈[0,1]

{te}.

(2.6)

Thus

α
(
H
(
[0,1]×Q

))≤ α
({
KAg(Q)

})
+α

( ⋃
t∈(0,1)

{te}
)
= α

({
KAg(Q)

})
< α(Q). (2.7)

We claim that there exists small enough r such that u �∈H(t,u) for all t ∈ [0,1], u∈ ∂(Kr).
Otherwise, there exist two sequences {tn}, {un}, tn ∈ (0,1], un ∈ ∂(Kr), ‖un‖ → 0, such
that un ∈H(tn,un) = tnKAg(un) or un/tn ∈ KAg(un), hence there exists wn ∈ g(un) such
that un/tn = KA(wn), that is, we have(

A
(
un
tn

)
,v− un

tn

)
≥
(
wn,v− un

tn

)
, ∀v ∈ K. (2.8)

Letting v = 0, we can obtain from (2.1) and (2.8) that

γ ≤
(
Aun,un

)∥∥un∥∥2 ≤ tn

(
wn,un

)∥∥un∥∥2 ≤
(
wn,un

)∥∥un∥∥2 . (2.9)
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Thus liminf‖un‖→0 supwn∈g(un)(wn,un)/‖un‖2 ≥ γ, which contradicts condition (a). There-
fore,

iK
(
KAg,Kr

)= iK
(
H(1,·),Kr

)= iK
(
H(·,0),Kr

)= iK
(
0̂,Kr

)= 1 (2.10)

by Proposition 1.1(ii) and (iv).
Secondly, we will verify that iK (KAg,KR) = 0 for large enough R. In fact, we can get

from (2.1) and condition (b) that(
w,x0

)
>
(
Au,x0

)
, ∀w ∈ g(u), as ‖u‖ > q. (2.11)

On the other hand, because g is β-set-contractive and upper semicontinuous mapping
with nonempty compact convex values, there exists a constant L > 0 such that ‖w‖X∗ ≤ L
for all w ∈ g(u) whenever ‖u‖ ≤ q, u∈ K . Take N for large enough and f ∈ X∗ so that

Mq
∥∥x0

∥∥+L
∥∥x0

∥∥ <−N( f ,x0
)
. (2.12)

Define a mapping by H : [0,1]×KR → 2K , H(t,u)= KA(g(u)− tN f ). Then H(t,u) is an
upper semicontinuous mapping with nonempty compact convex values. We claim that
α(H([0,1]×Q)) < α(Q) whenever α(Q) �= 0, Q ⊆ Kr . In fact,

H
(
[0,1]×Q

)= KA

( ⋃
t∈[0,1]

{
g(Q)− tN f

})⊆ KA

({
g(Q)

}
+
⋃

t∈[0,1]

{−tN f }
)

,

α

({
g(Q)

}
+
⋃

t∈[0,1]

{−tN f }
)
≤α

(
g(Q)

)
+α

( ⋃
t∈[0,1]

{−Nt f }
)
= α

(
g(Q)

)≤βα(Q).

(2.13)

Thus α(H([0,1]×Q))≤ (β/γ)α(Q) < α(Q) by (2.4) and β/γ < 1. We claim that there ex-
ists large enough R such that u �∈ H(t,u) for all t ∈ [0,1], u ∈ ∂(KR). Otherwise, there
exist two sequences {tn}, {un}, tn∈ [0,1], un∈∂(KR), ‖un‖ → +∞, such that un ∈H(tn,
un) = KA(g(un)− tnN f ), hence there exists wn ∈ g(un) such that un = KA(wn − tnN f ),
that is, we have (

Aun,v−un
)≥ (wn− tnN f ,v−un

)
, ∀v ∈ K. (2.14)

Taking v = un + x0 in (2.14), we obtain from (2.1) that

M
∥∥x0

∥∥≥ (
Aun,x0

)∥∥un∥∥ ≥
(
wn,x0

)∥∥un∥∥ ≥ inf
wn∈g(un)

(
wn,x0

)∥∥un∥∥ , (2.15)

which contradicts condition (b). Therefore,

iK
(
KAg,KR

)= iK
(
H(·,0),KR

)= iK
(
H(1,·),KR

)
(2.16)

by Proposition 1.1(iv). If iK (H(1,·),KR) �= 0, then the mapping H(1,·) : K → 2K has a
fixed point u in KR by Proposition 1.1(i), that is, u ∈ H(1,u) = KA(g(u)−N f ). Thus
there exists w ∈ g(u) such that u= KA(w−N f ), that is,

(Au,v−u)≥ (w−N f ,v−u), ∀v ∈ K. (2.17)
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Taking v = u+ x0 in (2.17), we get that

(
Au,x0

)− (w,x0
)≥−N( f ,x0

)
. (2.18)

That contradicts (2.11) if ‖u‖ > q, hence ‖u‖ ≤ q, then we can get from (2.1) and (2.18)
that

−N( f ,x0
)≤ ∣∣(Au,x0

)∣∣+
∣∣(w,x0

)∣∣≤Mq
∥∥x0

∥∥+L
∥∥x0

∥∥, (2.19)

but it contradicts (2.12). Therefore, iK (H(1,·),KR)= 0.
It follows from (2.10), (2.16), and Proposition 1.1(iii) that iK (KAg,KR \ Kr) = −1.

Therefore, there exists a fixed point u ∈ KR \Kr which is a nonzero solution of (1.1).
�

Theorem 2.2. Let K be a subspace of a reflexive real Banach space X . Suppose that A :
X → X∗ is a coercive and linear continuous mapping which satisfies inequalities (2.1) and
g : K → 2X

∗
is β-set-contractive and upper semicontinuous mapping with nonempty compact

convex values, where β/γ < 1. Assume
(a) liminf‖un‖→+∞ supwn∈g(un)(wn,un)/‖un‖2 < γ (un ∈ K);
(b) there exist x0 ∈ K and an open neighbourhood V(0) of zero point such that for any

given u∈ K ∩V(0) \ {0}, infw∈g(u)(w,x0)/‖u‖ >M‖x0‖.
Then (1.1) has a nonzero solution.

The proof of Theorem 2.2 is similar to that of Theorem 2.1. We omit it here.

3. Nonzero solutions when the mapping A is monotone

Let A : X → X∗ be a monotone linear mapping with (Au,u)/‖u‖ → +∞ (as ‖u‖ → +∞,
u ∈ K). It is well known that for any given w ∈ X∗, the variational inequality (2.2) has
solutions in K (see [2]), thus we may define two mappings as follows:

KA : X∗ −→ 2K , KA(w)= {u∈ K : u is a solution of the variational inequality (2.2)
}

,
(3.1)

KAg : K −→ 2K ,
(
KAg

)
(u)= KA

(
g(u)

)
, ∀u∈ K. (3.2)

Proposition 3.1. Let X = Rn and let K ⊂ X be a nonempty closed convex set. Suppose that
A : X → X∗ is a monotone hemicontinuous mapping. If for every w ∈ X∗, the variational
inequality (2.2) has solutions in K , then the mapping KA in (3.1) is a monotone and upper
semicontinuous mapping with nonempty compact convex values.

Proof. Let u1 ∈ KA(w1), u2 ∈ KA(w2). Then

(
Aui,v−ui

)≥ (wi,v−ui
)
, ∀v ∈ K , i= 1,2. (3.3)

It is easily obtained from above inequalities that (Au1−Au2,u1−u2)≤ (w1−w2,u1−u2).
Thus KA is monotone due to the monotony of A. Furthermore, KA is locally bounded by
[3]. We claim that KA is upper semicontinuous. Otherwise, there exists a point w ∈ X∗
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and an open set V0 containing KA(w) such that for sequence {wn} converging to w, there
exist un ∈ KA(wn) such that un �∈V0. Since {un} is bounded by the locally boundedness of
KA, there exists a subsequence {unk} such that unk → u0. Obviously, u0 ∈ K , u0 �∈ V0. We
know that monotone hemicontinuous mapping A is continuous by [3]. Letting k→ +∞
in the inequality (

Aunk ,v−unk
)≥ (wnk ,v−unk

)
, ∀v ∈ K , (3.4)

yields that (
Au0,v−u0

)≥ (w,v−u0
)
, ∀v ∈ K , (3.5)

which implies that u0 ∈ KA(w) ⊂ V0. That is a contradiction. In addition, the compact
convexity of KA(w) is obvious. �

Proposition 3.2. Let K be a subspace of a reflexive real Banach space X . Suppose that
A : X → X∗ is a monotone linear mapping with (Au,u)/‖u‖ → +∞ (as ‖u‖→ +∞, u∈ K)
and g : K→2X

∗
is a mapping with nonempty convex values, then KAg : K → 2K (3.2) is also

a mapping with nonempty convex values.

Proof. Let q∈K and u1,u2∈KAg(q). Then there existw1,w2 ∈ g(q) such that ui ∈ KA(wi),
i= 1,2. That is, we have (

Au1,v−u1
)≥ (w1,v−u1

)
, ∀v ∈ K , (3.6)(

Au2,v−u2
)≥ (w2,v−u2

)
, ∀v ∈ K. (3.7)

Substituting v + u1 − (λ1u1 + λ2u2) (resp., v + u2 − (λ1u1 + λ2u2)) for v in (3.6) (resp., in
(3.7)), where λ1,λ2 ≥ 0, λ1 + λ2 = 1, we get that

(
λ1Au1 + λ2Au2,v−

2∑
i=1

λiui

)
≥
(
λ1w1 + λ2w2,v−

2∑
i=1

λiui

)
, ∀v ∈ K. (3.8)

In addition,
∑2

i=1 λiwi ∈ g(q). Therefore,
∑2

i=1 λiui ∈ KAg(q) which implies that KAg is a
mapping with nonempty convex values. �

We first consider the nonzero solutions of (1.1) in Rn.

Theorem 3.3. Let K be a subspace of X = Rn. Suppose that A : X → X∗ is a monotone
linear mapping with (Au,u)/‖u‖→ +∞ (as ‖u‖→ +∞, u∈ K) and g : K → 2X

∗
is an upper

semicontinuous mapping with nonempty compact convex values. The following conditions
either (a), (b) or (a′), (b′) are assumed to be satisfied:

(a) there exist y0 ∈ K and an open neighbourhood V(0) of zero point such that for any
given u∈ K ∩V(0) \ {0}, infw∈g(u)(Au−w, y0) > 0;

(b) there exist x0 ∈ K and a constant q > 0 such that supw∈g(u)(Au−w,x0) < 0 when
‖u‖ > q, u∈ K ;

(a′) there exist y0 ∈ K and an open neighbourhood V(0) of zero point such that for any
given u∈ K ∩V(0) \ {0}, supw∈g(u)(Au−w, y0) < 0;
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(b′) there exist x0 ∈ K and a constant q > 0 such that infw∈g(u)(Au−w,x0) > 0 when
‖u‖ > q, u∈ K .

Then (1.1) has a nonzero solution.

Proof. It is well known that monotone linear mapping must be semicontinuous (see
[2]), hence KA : X∗ → 2K (3.1) is an upper semicontinuous mapping with nonempty
compact convex values by Proposition 3.1. It is easy to see from [2] that KAg : K → 2K ,
(KAg)(u)= KA(g(u)), u∈ K , is an upper semicontinuous mapping with nonempty com-
pact values, therefore KAg is an upper semicontinuous mapping with nonempty compact
convex values by Proposition 3.2.

Let Kr = {x ∈ K ,‖x‖ < r}. Similar to the proof of Theorem 2.1, we may get that
iK (KAg,KR \Kr)=−1. Therefore, there exists a fixed point u∈ KR \Kr which is a non-
zero solution of (1.1). �

Now, we discuss the nonzero solution of (1.1) in reflexive real Banach space.

Theorem 3.4. Let K be a subspace of a reflexive real Banach space X . Suppose that A :
X → X∗ is a monotone linear mapping with (Au,u)/‖u‖→ +∞ (as ‖u‖→ +∞, u∈ K) and
g : K→2X

∗
is an upper semicontinuous from the weak topology on X to the strong topology

on X∗, with nonempty compact convex values. The following conditions either (a), (b), (c)
or (a′), (b′), (c) are assumed to be satisfied:

(a) there exist y0 ∈ K and an open neighbourhood V(0) of zero point such that for any
given u∈ K ∩V(0) \ {0}, infw∈g(u)(Au−w, y0) > 0;

(b) there exist x0 ∈ K and a constant q > 0 such that supw∈g(u)(Au−w,x0) < 0 when
‖u‖ > q, u∈ K ;

(c) there exists z0 ∈ K such that liminf
uα

w−→0
supw∈g(uα)(Auα−w,z0) < 0, where uα ∈ K ;

(a′) there exist y0 ∈ K and an open neighbourhood V(0) of zero point such that for any
given u∈ K ∩V(0) \ {0}, supw∈g(u)(Au−w, y0) < 0;

(b′) there exist x0 ∈ K and a constant q > 0 such that infw∈g(u)(Au−w,x0) > 0 when
‖u‖ > q, u∈ K .

Then (1.1) has a nonzero solution.

Proof. Let F ⊂ X be a finite-dimensional subspace containing x0, y0, and z0. We will
show that all conditions in Theorem 3.3 are satisfied on space F. Denote KF = K ∩ F.
Let jF : F → X be an injective mapping and j∗F : X∗ → F∗ its dual mapping. Denote AF =
j∗F (A | KF) : KF → F∗, gF = j∗F (g | KF) : KF → F∗. We know that AF = j∗F A jF , gF = j∗F g jF .
Then AF , gF are linear and upper semicontinuous with nonempty compact convex values,
respectively. For x1, x2, u∈ KF , we have

(
AF
(
x1
)−AF

(
x2
)
,x1− x2

)= ( j∗F A(x1
)− j∗F A

(
x2
)
,x1− x2

)
= (A(x1

)−A
(
x2
)
, j∗F

(
x1− x2

))
= (A(x1

)−A
(
x2
)
,x1− x2

)≥ 0,(
AF(u),u

)
‖u‖ =

(
j∗F A(u),u

)
‖u‖ = (Au,u)

‖u‖ .

(3.9)
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These mean that AF is monotone with (AF(u),u)/‖u‖→ +∞ (as ‖u‖→ +∞, u∈ KF). On
the other hand,

inf
w∈gF (u)

(
AF(u)−w, y0

)= inf
w∈ j∗g(u)

(
j∗F A(u)−w, y0

)
= inf

w′∈g(u)

(
j∗F A(u)− j∗F

(
w′
)
, y0
)

= inf
w′∈g(u)

(
A(u)−w′, y0

)
,

sup
w∈gF (u)

(
AF(u)−w,x0

)= sup
w′∈g(u)

(
A(u)−w′,x0

)
.

(3.10)

Therefore, there exists uF ,uF �= 0, and w′F ∈ gF(uF) from conditions (a) and (b) or (a′)
and (b′) and Theorem 3.3 such that

(
AF
(
uF
)
,v−uF

)≥ (w′F ,v−uF
)
, ∀v ∈ KF. (3.11)

Since w′F ∈ gF(uF)= j∗(g(uF)), there exists wF ∈ g(uF) such that w′F = j∗F (wF). Hence,

(
A
(
uF
)
,v−uF

)≥ (wF ,v−uF
)
, ∀v ∈ KF , (3.12)

by (3.11). Suppose that conditions (a) and (b) are satisfied, taking v = uF + x0 (or else
v = uF − x0), we get that (A(uF)−wF ,x0) ≥ 0. Thus supw∈g(uF )(A(uF)−w,x0) ≥ 0, this
conduces to a contradiction by condition (b) if ‖uF‖ → +∞. Hence, there exists a con-
stant M > 0 such that ‖uF‖ ≤M for all finite-dimensional subspace F containing x0, y0,
and z0. Since X is reflexive and K is weakly closed, there exists u′ ∈ K such that for ev-
ery finite-dimensional subspace F containing x0, y0, and z0, u′ is in the weak closure of
the set VF =

⋃
F⊂F1

{uF1}, where F1 is a finite-dimensional subspace in X . In fact, because
VF is bounded, we know that (VF)w (the weak closure of the set VF) is weakly com-
pact. On the other hand, let F1,F2, . . . ,Fm be finite-dimensional subspace containing x0,
y0, and z0. Set F(m) := span{F1,F2, . . . ,Fm}. Then F(m), which contains x0, y0, and z0, is
a finite-dimensional subspace. Hence,

⋂m
i=1VFi =⋂m

i=1(
⋃

Fi⊂F1
{uF1})=

⋃
F(m)⊂F1

{uF1} �=∅
and then

⋂
F (VF)w �= ∅. Now let v ∈ K and let F′ be a finite-dimensional subspace which

contains x0, y0, z0 and v. Since u′ belongs to the weak closure of the setVF′ =
⋃

F′⊂F1
{uF1},

we may find a sequence {uFα} in VF′ such that uFα
w−→ u′. There exists a sequence {wFα},

wFα ∈ g(uFα), from (3.12) such that (A(uFα),v−uFα)≥ (wFα ,v−uFα). Because g : K→2X
∗

is an upper semicontinuous from the weak topology on X to the strong topology on X∗,
there exist w′ ∈ g(u′) and a subsequence {wFβ} ⊂ {wFα} by [2, 5] such that the sequence

{wFβ} s−→ w′ (strongly converges to w′). However, uFβ and wFβ satisfy the following in-
equality:

(
A
(
uFβ
)
,v−uFβ

)≥ (wFβ ,v−uFβ
)
. (3.13)

The monotony of A implies that

(
A(v),v−uFβ

)≥ (wFβ ,v−uFβ
)
. (3.14)
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Letting uFβ
w−→ u′ and {wFβ} s−→w′ yields that(

Av,v−u′
)≥ (w′,v−u′

)
, ∀v ∈ K. (3.15)

Thus (
A
(
u′
)
,v−u′

)≥ (w′,v−u′
)
, ∀v ∈ K , (3.16)

by the Minity theorem [2, 4]. We claim that u′ �= 0. Otherwise uFβ
w−→ 0. Taking v = z0 +uFβ

in (3.13) yields that (A(uFβ),z0)≥ (wFβ ,z0). Thus

sup
wFβ

∈g(uFβ )

(
A
(
uFβ
)−wFβ ,z0

)≥ 0, (3.17)

which contradicts condition (c). Therefore, u′ is a nonzero solution of (1.1). �
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