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We prove two theorems on the uniqueness of nonlinear differential polynomials, one of
which improves a result of Fang and Hong.

1. Introduction, definitions, and results

Let f and g be two nonconstant meromorphic functions defined in the open complex
plane C. Let k be a positive integer or infinity and a ∈ C∪{∞}. We denote by Ek)(a; f )
the set of all a-points of f with multiplicities not exceeding k, where an a-point is counted
according to its multiplicity. If for some a ∈ C∪{∞}, E∞)(a; f ) = E∞)(a;g), we say that
f , g share the value a CM (counting multiplicities).

During the last few years, a considerable amount of work is being done on the unique-
ness problem concerning differential polynomials (cf. [1, 3, 5, 8]). Recently, Fang and
Hong [1] proved the following result.

Theorem 1.1 [1]. Let f and g be two transcendental entire functions and let n(≥ 11) be an
integer. If f n( f − 1) f ′ and gn(g − 1)g′ share 1 CM, then f ≡ g.

In the paper, we prove the following two theorems, the first of which improves
Theorem 1.1.

Theorem 1.2. Let f and g be two transcendental entire functions and let n(≥ 10) be an
integer. If E2)(1; f n( f − 1) f ′)= E2)(1;gn(g − 1)g′), then f ≡ g.

Theorem 1.3. Let f and g be two transcendental meromorphic functions such that Θ(∞; f)
+Θ(∞;g) > 4/(n+ 1) and let n(≥ 17) be an integer. If E2)(1; f n( f − 1) f ′)= E2)(1;gn(g −
1)g′), then f ≡ g.

The following example shows that the conditionΘ(∞; f ) +Θ(∞;g) > 4/(n+ 1) is sharp
for Theorem 1.3.

Example 1.4. Let

f = (n+ 2)
(
1−hn+1

)
(n+ 1)

(
1−hn+2

) , g = (n+ 2)h
(
1−hn+1

)
(n+ 1)

(
1−hn+2

) , h= α2
(
ez − 1

)
ez −α

, (1.1)

where α= exp(2πi/(n+ 2)) and n is a positive integer.
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Then, T(r, f )= (n+ 1)T(r,h) +O(1) and T(r,g)= (n+ 1)T(r,h) +O(1). Further, we
see that h �= α,α2 and a root of h= 1 is not a pole of f and g. Hence, Θ(∞; f )=Θ(∞;g)=
2/(n+ 1). Also f n+1( f /(n+ 2)− 1/(n+ 1))≡ gn+1(g/(n+ 2)− 1/(n+ 1)) and f n(f −1) f ′ ≡
gn(g − 1)g′ but f �≡ g.

Though we do not explain the standard notations of the value distribution theory (see
[2]), we give the following definitions.

Definition 1.5 [4]. For a∈ C∪{∞}, denote by N(r,a; f |= 1) the counting functions of
simple a-points of f .

For a positive integerm, denote byN(r,a; f |≤m) (N(r,a; f |≥m)) the counting func-
tion of those a-points of f whose multiplicities are not greater (less) than m, where each
a-point is counted according to its multiplicity.

N(r,a; f |≤ m) and N(r,a; f |≥ m) are defined similarly, where in counting the a-
points of f , the multiplicities are ignored.

Also N(r,a; f |< m), N(r,a; f |> m), N(r,a; f |< m) and N(r,a; f |> m) are defined
analogously.

Definition 1.6 [12]. For a∈ C∪{∞}, put

Nk(r,a; f )=N(r,a; f ) +N(r,a; f |≥ 2) +N(r,a; f |≥ 3) + ···+N(r,a; f |≥ k), (1.2)

where k is a positive integer.

For a meromorphic function f , we denote by S(r, f ) any function satisfying S(r, f )/
T(r, f )→ 0 as r →∞ possibly outside a set of finite linear measure.

2. Lemmas

In this section, we present some lemmas which are needed in the sequel. We denote by h
the function

h=
(
f ′′

f ′
− 2 f ′

f − 1

)
−
(
g′′

g′
− 2g′

g − 1

)
. (2.1)

Lemma 2.1. If E1)(1; f )= E1)(1;g) and h �≡ 0, then

N(r,1; f |≤ 1)=N(r,1;g |≤ 1)≤N(r,0;h)≤N(r,∞;h) + S(r, f ) + S(r,g). (2.2)

Proof. Since the functions f and g have the same simple one-points, there exists a mero-
morphic function α such that α �= 0 when f − 1 has a simple zero and α has no simple
zero where f �= 1 and g = α( f − 1) + 1. It is now easy to verify by direct computation that
the function h is zero whenever f − 1 has a simple zero. This proves the lemma. �

Lemma 2.2. If E2)(1; f )= E2)(1;g) and h �≡ 0, then

N(r,∞;h)≤N(r,∞; f |≥ 2) +N(r,0; f |≥ 2) +N(r,∞;g |≥ 2)

+N(r,0;g |≥ 2) +N(r,1; f |≥ 3) +N(r,1;g |≥ 3)

+N0(r,0; f ′) +N0(r,0;g′),

(2.3)
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where N0(r,0; f ′) and N0(r,0;g′) are the reduced counting functions of the zeros of f ′ and
g′ which are not the zeros of f ( f − 1) and g(g − 1), respectively.

Proof. We can easily verify that possible poles of h occur at (i) multiple zeros of f , g; (ii)
multiple poles of f , g; (iii) zeros of f − 1, g − 1 with multiplicities greater than or equal
to 3; (iv) zeros of f ′ which are not the zeros of f ( f − 1); (v) zeros of g′ which are not the
zeros of g(g − 1).

Since all the poles of h are simple, the lemma follows from above. This proves the
lemma. �

Lemma 2.3 [6]. If N(r,0; f (k) | f �= 0) denotes the counting function of those zeros of f (k)

which are not the zeros of f , where a zero of f (k) is counted according to its multiplicity, then

N
(
r,0; f (k) | f �= 0

)≤ kN(r,∞; f ) +N(r,0; f |< k) + kN(r,0; f |≥ k) + S(r, f ). (2.4)

Lemma 2.4. If E2)(1; f )= E2)(1;g) and h �≡ 0, then

T(r, f ) +T(r,g)≤ {3N(r,0; f ) + 2N(r,0; f |≥ 2)
}

+
{

3N(r,∞; f ) + 2N(r,∞; f |≥ 2)
}

+
{

3N(r,0;g) + 2N(r,0;g |≥ 2)
}

+
{

3N(r,∞;g) + 2N(r,∞;g |≥ 2)
}

+ S(r, f ) + S(r,g).
(2.5)

Proof. By Nevanlinna’s second fundamental theorem and Lemmas 2.1 and 2.2, we get

T(r, f )≤N(r,0; f ) +N(r,∞; f ) +N(r,1; f )−N0(r,0; f ′) + S(r, f )

≤N(r,0; f ) +N(r,∞; f ) +N(r,1; f |≥ 2) +N(r,0; f |≥ 0)

+N(r,∞; f |≥ 2) +N(r,0;g |≥ 2) +N(r,1; f |≥ 3)

+N(r,1;g |≥ 3) +N0(r,0;g′) + S(r, f ) + S(r,g).

(2.6)

Also we get

N(r,1; f |≥ 2) +N(r,1; f |≥ 3)≤N(r,0; f ′ | f �= 0),

N(r,1;g |≥ 3) +N0(r,0;g′)≤N(r,0;g′ | g �= 0).
(2.7)

So from (2.6), we get

T(r, f )≤N(r,0; f ) +N(r,0; f |≥ 2) +N(r,∞; f ) +N(r,∞; f |≥ 2)

+N(r,0;g |≥ 2) +N(r,∞;g |≥ 2) +N(r,0; f ′ | f �= 0)

+N(r,0;g′ | g �= 0) + S(r, f ) + S(r,g).

(2.8)
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Similarly,

T(r,g)≤N(r,0;g) +N(r,0;g |≥ 2) +N(r,∞;g) +N(r,∞;g |≥ 2)

+N(r,0; f |≥ 2) +N(r,∞; f |≥ 2) +N(r,0; f ′ | f �= 0)

+N(r,0;g′ | g �= 0) + S(r, f ) + S(r,g).

(2.9)

Adding (2.8) and (2.9) and using Lemma 2.3, we obtain the following lemma. �

Lemma 2.5 [10]. Let f be a nonconstant meromorphic function and P( f ) = a0 + a1 f +
a2 f 2 + ···+ an f n, where a0,a1, . . . ,an are constants and an �= 0. Then

T
(
r,P( f )

)= nT(r, f ) +O(1). (2.10)

Lemma 2.6. Let f and g be two nonconstant meromorphic functions such that

Θ(∞; f ) +Θ(∞;g) >
4

n+ 1
, (2.11)

where n(≥ 2) is an integer. Then

f n+1(a f + b)≡ gn+1(ag + b) (2.12)

implies that f ≡ g, where a, b are finite nonzero constants.

Proof. Let

f n+1(a f + b)≡ gn+1(ag + b) (2.13)

and f �≡ g. We consider the following two cases.

Case 1. Let y = g/ f be a constant. Then y �= 1 and from (2.13), we get

a f
(
1− yn+2)≡−b(1− yn+1), (2.14)

from which it follows that yn+1 �= 1, yn+2 �= 1, and

f ≡−b
(
1− yn+1

)
a
(
1− yn+2

) . (2.15)

This is a contradiction because f is nonconstant.

Case 2. Let y = g/ f be not a constant. Then from (2.13), we get

f ≡ b

a

(
yn+1

1 + y + y2 + ···+ yn+1
− 1

)
. (2.16)



I. Lahiri and N. Mandal 1937

From (2.16), we obtain by Nevanlinna’s first fundamental theorem and Lemma 2.5

T(r, f )= T

(
r,

n+1∑
j=0

1
y j

)
+ S(r, y)

= (n+ 1)T

(
r,

1
y

)
+ S(r, y)

= (n+ 1)T(r, y) + S(r, y).

(2.17)

Now we note that a pole of y is not a pole of (b/a)(yn+1/(1 + y + y2 + ···+ yn+1)− 1).
So from (2.16), we get

n+1∑
k=1

N
(
r,uk; y

)≤N(r,∞; f ), (2.18)

where uk = exp(2kπi/(n+ 2)) for k = 1,2, . . . ,n+ 1.
So by Nevanlinna’s second fundamental theorem, we obtain

(n− 1)T(r, y)≤
n+1∑
k=1

N
(
r,uk; y

)
+ S(r, y)

≤N(r,∞; f ) + S(r, y)

<
(
1−Θ(∞; f ) + ε

)
T(r, f ) + S(r, y)

= (n+ 1)
(
1−Θ(∞; f ) + ε

)
T(r, y) + S(r, y),

(2.19)

where ε(> 0).
Again putting y1 = 1/y, noting that T(r, y)= T(r, y1) +O(1), and proceeding as above

we get

(n− 1)T(r, y)≤ (n+ 1)
(
1−Θ(∞;g) + ε

)
T(r, y) + S(r, y). (2.20)

Since Θ(∞; f ) +Θ(∞;g) > 4/(n+ 1), there exists a δ(> 0) such that Θ(∞; f) +Θ(∞;g) >
δ + 4/(n+ 1). Now adding (2.19) and (2.20), we obtain

2(n− 1)T(r, y)≤ (n+ 1)
(
2−Θ(∞; f )−Θ(∞;g) + 2ε

)
T(r, y) + S(r, y)

≤ (n+ 1)
(

2− 4
n+ 1

− δ + 2ε
)
T(r, y) + S(r, y),

(2.21)

and so (δ− 2ε)T(r, y)≤ S(r, y), which is a contradiction for any ε(0 < 2ε < δ). Therefore,
f ≡ g and the proof of the lemma is complete. �

Lemma 2.7. Let f and g be nonconstant meromorphic functions. Then

f n( f − 1) f ′gn(g − 1)g′ �≡ 1, (2.22)

where n(≥ 5) is an integer.
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Proof. Let

f n( f − 1) f ′gn(g − 1)g′ ≡ 1. (2.23)

Let z0 be a 1-point of f with multiplicity p(≥ 1). Then z0 is a pole of g with multiplicity
q(≥ 1) such that

2p− 1= (n+ 2)q+ 1, (2.24)

that is,

2p = (n+ 2)q+ 2≥ n+ 4, (2.25)

that is,

p ≥ n+ 4
2

. (2.26)

Let z0 be a zero of f with multiplicity p(≥ 1) and let it be a pole of g with multiplicity
q(≥ 1). Then

(n+ 1)p− 1= (n+ 2)q+ 1. (2.27)

From (2.27), we get

q+ 2= (n+ 1)(p− q)≥ n+ 1, (2.28)

that is,

q ≥ n− 1. (2.29)

Again from (2.27), we get

(n+ 1)p = (n+ 2)q+ 2≥ (n+ 2)(n− 1) + 2, (2.30)

that is,

p ≥ (n+ 2)(n− 1) + 2
n+ 1

= n. (2.31)

Since a pole of f is either a zero of g(g − 1) or a zero of g′, we see that

N(r,∞; f )≤N(r,0;g) +N(r,1;g) +N0(r,0;g′)

≤ 1
n
N(r,0;g) +

2
n+ 4

N(r,1;g) +N0(r,0;g′)

≤
(

1
n

+
2

n+ 4

)
T(r,g) +N0(r,0;g′).

(2.32)

Now by Nevanlinna’s second fundamental theorem, we obtain

T(r, f )≤N(r,0; f ) +N(r,1; f ) +N(r,∞; f )−N0(r,0; f ′) + S(r, f )

≤ 1
n
N(r,0; f ) +

2
n+ 4

N(r,1; f ) +N(r,∞; f )−N0(r,0; f ′) + S(r, f ),
(2.33)
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that is,

(
1− 1

n
− 2
n+ 4

)
T(r, f )≤

(
1
n

+
2

n+ 4

)
T(r,g) +N0(r,0;g′)−N0(r,0; f ′) + S(r, f ).

(2.34)
Similarly, we get

(
1− 1

n
− 2
n+ 4

)
T(r,g)≤

(
1
n

+
2

n+ 4

)
T(r, f ) +N0(r,0; f ′)−N0(r,0;g′) + S(r,g).

(2.35)
Adding (2.34) and (2.35), we get

(
1− 2

n
− 4
n+ 4

){
T(r, f ) +T(r,g)

}≤ S(r, f ) + S(r,g), (2.36)

which is a contradiction because 1− (2/n)− 4/(n+ 4) > 0. This proves the lemma. �

Lemma 2.8. Let f and g be two nonconstant meromorphic functions and

F = f n+1
(

f

n+ 2
− 1
n+ 1

)
, G= gn+1

(
g

n+ 2
− 1
n+ 1

)
, (2.37)

where n(≥ 4) is an integer. Then F′ ≡G′ implies that F ≡G.

Proof. If F′ ≡ G′, then F ≡ G+ c, where c is a constant. Let c �= 0. Then by Nevanlinna’s
second fundamental theorem and Lemma 2.5, we get

(n+ 2)T(r, f )≤N(r,∞;F) +N(r,0;F) +N(r,c;F) + S(r,F)

=N(r,∞; f ) +N(r,0; f ) +N
(
r,
n+ 2
n+ 1

; f
)

+N(r,0;g)

+N
(
r,
n+ 2
n+ 1

;g
)

+ S(r, f )≤ 3T(r, f ) + 2T(r,g) + S(r, f ),

(2.38)

that is,

(n− 1)T(r, f )≤ 2T(r,g) + S(r, f ). (2.39)

Similarly, we get

(n− 1)T(r,g)≤ 2T(r, f ) + S(r,g). (2.40)

This shows that

(n− 3)T(r, f ) + (n− 3)T(r,g)≤ S(r, f ) + S(r,g), (2.41)

which is a contradiction. Therefore c = 0 and so F ≡G. This proves the lemma. �
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Lemma 2.9. If F and G are defined as in Lemma 2.8, then
(i) T(r,F) ≤ T(r,F′) + N(r,0; f ) + N(r, (n+ 2)/(n+ 1); f ) − N(r,1; f ) − N(r,0; f ′)

+ S(r, f ),
(ii) T(r,G) ≤ T(r,G′) + N(r,0;g) + N(r, (n+ 2)/(n+ 1);g) − N(r,1;g) − N(r,0;g′)

+ S(r,g).

Proof. We prove (i) because (ii) is similar. Now in view of Nevanlinna’s first fundamental
theorem and Lemma 2.5, we get

T(r,F)= T
(
r,

1
F

)
+O(1)

=N(r,0;F) +m
(
r,

1
F

)
+O(1)≤N(r,0;F) +m

(
r,
F′

F

)
+m

(
r,

1
F′

)

= T(r,F′) +N(r,0;F)−N(r,0;F′) + S(r,F)

= T(r,F′) + (n+ 1)N(r,0; f ) +N
(
r,
n+ 2
n+ 1

; f
)
−nN(r,0; f )

−N(r,1; f )−N(r,0; f ′) + S(r, f )

= T(r,F′) +N(r,0; f ) +N
(
r,
n+ 2
n+ 1

; f
)
−N(r,1; f )−N(r,0; f ′) + S(r, f ).

(2.42)

This proves the lemma. �

Lemma 2.10 [7]. Let f be a nonconstant meromorphic function and let k be a positive
integer. Then

N2
(
r,0; f (k))≤ kN(r,∞; f ) +N2+k(r,0; f ) + S(r, f ). (2.43)

Lemma 2.11 [13]. If h≡ 0 then f , g share 1 CM.

Proof. Since h ≡ 0, integrating, we get f ′/( f − 1)2 ≡ Ag′/(g − 1)2, where A is a nonzero
constant. From this, the lemma follows. �

Lemma 2.12 [9, 11]. If f and g share 1 CM, then one of the following cases holds:
(i) T(r, f )+ T(r,g)≤2{N2(r,0; f )+N2(r,0;g)+N2(r,∞; f )+N2(r,∞;g)}+ S(r, f ) +

S(r,g);
(ii) f ≡ g;

(iii) f g ≡ 1.

3. Proof of theorems

We prove Theorem 1.3 only because Theorem 1.2 can be proved similarly noting that in
this case, N(r,∞; f )≡N(r,∞;g)≡ 0.

Proof of Theorem 1.3. Let F andG be defined as in Lemma 2.8 and F1 = F′ = f n( f − 1) f ′,
G1 =G′ = gn(g − 1)g′. Also we put

H =
(
F′′1
F′1
− 2F′1
F1− 1

)
−
(
G′′1
G′1
− 2G′1
G1− 1

)
. (3.1)
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If possible, let H �≡ 0. Then by Lemmas 2.4 and 2.9, we get

T(r,F) +T(r,G)≤ T(r,F′) +T(r,G′) +N(r,0; f ) +N
(
r,
n+ 2
n+ 1

; f
)

−N(r,1; f )−N(r,0; f ′) +N(r,0;g) +N
(
r,
n+ 2
n+ 1

;g
)

−N(r,1;g)−N(r,0;g′) + S(r, f ) + S(r,g)

≤ {3N
(
r,0; f n( f − 1) f ′

)
+ 2N

(
r,0; f n( f − 1) f ′ |≥ 2

)}
+
{

3N
(
r,0;gn(g − 1)g′

)
+ 2N

(
r,0;gn(g − 1)g′ |≥ 2

)}
+ 5N(r,∞; f ) + 5N(r,∞;g) +N(r,0; f ) +N

(
r,
n+ 2
n+ 1

; f
)

−N(r,1; f )−N(r,0; f ′) +N(r,0;g) +N
(
r,
n+ 2
n+ 1

;g
)

−N(r,1;g)−N(r,0;g′) + S(r, f ) + S(r,g)

≤ 6N(r,0; f ) + 2N2(r,1; f ) + 2N2(r,0; f ′) + 5N(r,∞; f )

+N
(
r,
n+ 2
n+ 1

; f
)

+ 6N(r,0;g) + 2N2(r,1;g) + 2N2(r,0;g′)

+ 5N(r,∞;g) +N
(
r,
n+ 2
n+ 1

;g
)

+ S(r, f ) + S(r,g).

(3.2)

So by Lemmas 2.5 and 2.10, we get

(n+ 2)T(r, f ) + (n+ 2)T(r,g)≤ 9T(r, f ) + 7N(r,∞; f ) + 2N3(r,0; f ) + 9T(r,g)

+ 7N(r,∞;g) + 2N3(r,0;g) + S(r, f ) + S(r,g)

≤ 18T(r, f ) + 18T(r,g) + S(r, f ) + S(r,g),

(3.3)

that is,

(n− 16)T(r, f ) + (n− 16)T(r,g)≤ S(r, f ) + S(r,g), (3.4)

which is a contradiction.
Therefore H ≡ 0 and so by Lemma 2.11, F1 and G1 share 1 CM. In a similar manner as

above, we can verify that the following inequality does not hold:

T
(
r,F1

)
+T

(
r,G1

)≤ 2
{
N2
(
r,0;F1

)
+N2

(
r,∞;F1

)
+N2

(
r,0;G1

)
+N2

(
r,∞;G1

)}
+ S
(
r,F1

)
+ S
(
r,G1

)
.

(3.5)

So by Lemmas 2.12, 2.7, 2.8, and 2.6, we get f ≡ g. This proves the theorem. �
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