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This note presents the characterization of the stability set of the first kind for multi-
objective nonlinear programming (MONLP) problems with fuzzy parameters either
in the constraints or in the objective functions without any differentiability assump-
tions. These fuzzy parameters are characterized by triangular fuzzy numbers (TFNs).
The existing results concerning the parametric space in convex programs are reformu-
lated to study for multiobjective nonlinear programs under the concept of α-Pareto
optimality.

1. Introduction

In an earlier work, Mangasarian [6] introduced the Kuhn-Tucker saddle point (KTSP)
necessary and sufficiency optimality theorems for nonlinear programming problems.
Tanaka and Asai [10] formulated multiobjective linear programming problems with fuzzy
parameters. Sakawa and Yano [9] introduced the concept of α-Pareto optimality of fuzzy
parametric programs. Orlovski [7] formulated general multiobjective nonlinear
programming problems with fuzzy parameters. Kaufmann and Gupta [5] introduced
the concept of triangular fuzzy numbers (TFNs). Osman and El-Banna [8] introduced
the stability of multiobjective nonlinear programming problems with fuzzy parameters.
Kassem [2, 3] introduced an algorithm for multiobjective nonlinear programming prob-
lems with fuzzy parameters in the constraints and determined the stability set of the first
kind for these problems, also introduced a method for decomposing the fuzzy parametric
space in multiobjective nonlinear programming problems using the generalized Tcheby-
cheff norm (GTN).

This note gives the characterization of the stability set of the first kind for convex
multiobjective nonlinear programming (MONLP) problems with fuzzy parameters in
the constraints and for convex MONLP problems with fuzzy parameters in the objective
functions. These fuzzy parameters are characterized by TFNs and treatment under the
concept of α-Pareto optimality. In this note, no differentiability assumptions are needed
and the KTSP is used in the derivation of the proposed results.
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2. Problem formulation

We consider the following convex MONLP problem with fuzzy parameters in the right-
hand side of constraints:

min
(
f1(x), . . . , fm(x)

)
(2.1)

subject to

x ∈ X(υ̃)= {x ∈Rn : gj(x)≤ υ̃ j , j = 1,2, . . . ,k
}

, (2.2)

where the functions fi(x), i= 1,2, . . . ,m, and gj(x), j = 1,2, . . . ,k are assumed to be convex
on Rn and υ̃ j , j = 1,2, . . . ,k, are any real fuzzy parameters which are characterized by real
fuzzy numbers that form a convex continuous fuzzy subset of the real line whose mem-
bership functions are µυ̃j (υj), j = 1,2, . . . ,k. There is an infinite set of fuzzy numbers, but
here we will define a special class of fuzzy numbers called TFNs which can be defined by a
triplet (υ1,υ2,υ3), that is, the membership functions µυ̃j (υj), j = 1,2, . . . ,k, are functions
of υt, t = 1,2,3. These membership functions µυ̃j (υj), j = 1,2, . . . ,k, are defined by [5]

µυ̃j
(
υj
)=




0, υj ≤ υ1
j ,

υj − υ1
j

υ2
j − υ1

j

, υ1
j ≤ υj ≤ υ2

j ,

υ3
j − υj

υ3
j − υ2

j

, υ2
j ≤ υj ≤ υ3

j ,

0, υj ≥ υ3
j ,

(2.3)

which are nondifferentiable on [υ1
j ,υ

3
j ], j = 1,2, . . . ,k.

Definition 2.1. The α-level set of the fuzzy numbers υ̃ j , j = 1,2, . . . ,k, is defined as the
ordinary set Lα(υ̃) for which the degree of their membership functions exceeds the level
α [1]:

Lα(υ̃)=
{
υ : µυ̃j

(
υj
)≥ α, j = 1,2, . . . ,k

}
. (2.4)

For a certain degree of α, the MONLP problem (2.1)-(2.2) can be written in the fol-
lowing nonfuzzy form [9]:

min
(
f1(x), . . . , fm(x)

)
(2.5)

subject to

N(υ)= {(x,υ)∈Rn+k : gj(x)≤ υj , j = 1,2, . . . ,k; µυ̃j
(
υj
)≥ α, j = 1,2, . . . ,k

}
. (2.6)

The scalarization form for the problem (2.5)–(2.6) is

minΣm
i=1wi fi(x) (2.7)
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subject to

(x,υ)∈N(υ), (2.8)

where wi ≥ 0, i= 1,2, . . . ,m, for at least one i satisfying wi > 0 and Σm
i=1wi = 1.

Definition 2.2. For a certain degree of α, suppose that the problem (2.7)–(2.8) is solvable
for (w,υ)= (w,υ) with an α-optimal point (x,υ), then the α-stability set of the first kind
of problem (2.7)–(2.8) corresponding to (x,υ) denoted by S(x,υ) is defined by

S(x,υ)=
{(

w,υt
)∈Rm+3k : Σm

i=1wi fi(x)= min
(x,υ)εN(υ)

Σm
i=1wi fi(x)

}
, (2.9)

where Rm is the m-dimensional vector space of weights and R3k is the 3k-dimensional
vector space of fuzzy parameters which are characterized by TFNs.

Lemma 2.3. For a certain degree of α, if the problem (2.7)–(2.8) is stable for all (w,υt) such
that N(υ) �= φ, then g(x)= υ, µυ̃(υt)= α, (w,υt)∈ S(x,υ).

Proof. If S(x,υ)= {(w,υt)}, then the result is clear. Assume that (ŵ, υ̂t)∈ S(x, υ), (w,υt) �=
(ŵ, υ̂t), then by the assumption and from the KTSP necessary optimality theorem [6],
it follows that (x,υ) and some û ≥ 0, η̂ ≥ 0 solve KTSP and û j(gj(x)− υj) = 0, η̂r(α−
µυ̂r (υ̂

t
r))= 0, that is, for α= α, we have

τ
(
x,w,υ,u,η, υ̂t

)≤ τ
(
x,w,υ, û, η̂, υ̂t

)≤ τ
(
x,w,υ, û, η̂, υ̂t

)
(2.10)

for all (x,υ)∈N(υ) and for all u≥ 0, η ≥ 0 and û[g(x)− υ]= 0, η̂[α−µυ̃(υ̂t)]= 0, where

τ
(
x,w,υ,u,η,υt

)= Σm
i=1wi fi(x) +Σk

j=1uj[gj(x)− υj]−Σk
r=1ηr

[
µυ̃r
(
υtr
)−α

]
(2.11)

since û jg j(x)= û jυ j , j = 1,2, . . . ,k, and η̂rµυ̃r (υ̂
t
r)= η̂rα. Then

τ
(
x,w,υ,u,η, υ̂t

)≤ Σm
i=1wi fi(x)≤ τ

(
x,w,υ, û, η̂, υ̂t

)
, (2.12)

from which it follows that

τ
(
x,w,υ,u,η,υt

)≤ τ
(
x,w,υ, û, η̂,υt

)≤ τ(x,w,υ, û, η̂,υt
)
. (2.13)

Therefore, from the KTSP sufficient optimality theorem, it follows that g(x) = υ,
µυ̃(υt)= α, that is, (w,υt)∈ S(x,υ). �

Theorem 2.4. For a certain degree of α, if the problem (2.7)–(2.8) is stable for all (w,υt) such
that N(υ) �= φ, then the set S(x,υ) is star shaped with point of common visibility υ = g(x),
α= µυ̃(υ̃t) and closed.
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Proof. From the previous lemma, it follows that (w,υt)∈ S(x,υ). Let other point (w̃, υ̃t)∈
S(x,υ), then by the assumption and from the KTSP necessary optimality theorem, it fol-
lows that (x,υ) and some ũ≥ 0, η̃ ≥ 0 solve KTSP [6] and ũ[g(x)− υ]= 0, η̃[α−µυ̃(υt)]=
0, then for all (x,υ)∈Rn+k, u≥ 0, η ≥ 0, we have

τ
(
x,w̃,υ,u,η, υ̃t

)≤ τ(x,w̃,υ, ũ, η̃, υ̃t
)≤ τ(x,w,υ, ũ, η̃, υ̃t

)
, (2.14)

and ũ j[gj(x)− υj]= 0, η̃r[α−µυ̃(υ̃t)]= 0.
Putting uj=γUj , ζr = γηr ,wi = γWi, γ ≥ 0, and (1−γ)ũ j[gj(x)−υj]= 0, (1− γ)η̃r[α−

µυ̃(υ̃t)]= 0.
For a certain degree of α= α, we deduce from the relation (2.14) that

Σm
i=1w̃i fi(x) +Σk

j=1uj
[
gj(x)− υj

]−Σk
r=1ηr

[
µυ̃r
(
υ̃t
)−α

]
≤ Σm

i=1w̃i fi(x) +Σk
j=1ũ j

[
gj(x)− υj

]−Σk
r=1η̃r

[
µυ̃r
(
υ̃tr
)−α

]
≤ Σm

i=1wi fi(x) +Σk
j=1ũ j

[
gj(x)− υj

]−Σk
r=1η̃r

[
µυ̃r
(
υ̃tr
)−α

]
.

(2.15)

That is, for all U ≥ 0, ζ ≥ 0, and γ ≥ 0, we have

Σm
i=1w̃i

[
fi(x)− (1− γ) fi(x)

]
+Σk

j=1Uj
[
gj(x)− (1− γ)gj(x)− γυj

]
−Σk

r=1ζr
[
µυ̃r
(
υ̃t
)−α− (1− γ)

(
µυ̃
(
υ̃t
)−α)

]
≤ Σm

i=1w̃i fi(x) +Σk
j=1ũ j

[
gj(x)− υj

]−Σk
r=1η̃r

[
µυ̃r
(
υ̃t
)−α

]
≤ Σm

i=1Wi
[
fi(x)− (1− γ) fi(x)

]
+Σk

j=1Ũ j
[
gj(x)− (1− γ)gj(x)− γυj

]
−Σk

r=1ζ̃r
[(
µυ̃r
(
υ̃tr
)−α

)− (1− γ)
(
µυ̃r
(
υ̃t
)−α

)]
.

(2.16)

Therefore, it follows from the KTSP sufficient optimality theorem and from the relation
(2.16) that (1− γ)wi fi(x), (1− γ)gj(x) + γυ, and γα− (1− γ)µυ̃(υ̃t) belong to S(x,υ) for
all γ ≥ 0. Hence the set S(x,υ) is star shaped with point of common visibility (w,υt).

If the set S(x,υ) is a one-point set or the whole space, then it is clearly closed. Choose a
sequence of points (w(n),υtn)∈ S(x,υ) which is convergent to (w,υt), that is, limn→∞(w(n),

υtn) = (w,υt). Then Σm
i=1w

(n)
i fi(x) ≤ Σm

i=1w
(n)
i fi(x) for all g(x) ≤ υtn , µυ̃(υtn) ≥ α, n = 1,

2, . . . . Taking the limit as n→∞, we get for all g(x)≤ υt, µυ̃(υt)≥ α that

Σm
i=1wi fi(x)≤ Σm

i=1wi fi(x), (2.17)

that is, (w,υt)∈ S(x,υ), and therefore the set S(x,υ) is closed. �

Theorem 2.5. For a certain degree of α, if the problem (2.7)–(2.8) is stable for all (w,υt)
such that N(υ) �= φ, then the set S(x,υ) is either one-point set or unbounded.
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Proof. If the set S(x,υ) consists only of one point, then it is clear that this point is υj =
gj(x), µυ̃j (υ̃

t
j) ≥ α. If S(x,υ) contains another point (w′,υt′), then it is clear from (2.16)

and from the KTSP sufficient optimality theorem that{(
w,υt

)∈Rm+3k : (1−γ)w′ f (x),(1−γ)g(x) + γυ′, (1− γ)µυ
(
υt
)− γα

}⊆ S(x,υ), γ ≥ 0,
(2.18)

that is, implying that the set S(x,υ) is unbounded. �

3. Fuzzy parameters in the objective functions

We consider the following convex MONLP problem with fuzzy parameters in the objec-
tive functions:

min
(
f1
(
x, λ̃1

)
, . . . , fm

(
x, λ̃m

))
(3.1)

subject to

x ∈ X = {x ∈Rn : gj(x)≤ 0, j = 1,2, . . . ,k
}

, (3.2)

where the functions fi(x,λi), i= 1,2, . . . ,m, and gj(x), j= 1,2, . . . ,k, are assumed to be

convex on Rn and λ̃∈ Rm is the m-dimensional vector space of fuzzy parameters which
are characterized by TFNs.

The corresponding scalarization problem with fuzzy parameters is

minΣm
i=1wi fi

(
x, λ̃i

)
(3.3)

subject to

x ∈ X , (3.4)

where wi ≥ 0, i= 1,2, . . . ,m, for at least one i satisfying wi > 0 and Σm
i=1wi=1 = 1.

For a certain degree of α, the above problem can be written in the following nonfuzzy
form [9]:

minF(x,w,λ)= Σm
i=1wi fi

(
x,λi

)
(3.5)

subject to

M(λ)=
{

(x,λ)∈Rn+m : gj(x)≤ 0, j = 1,2, . . . ,k; µλ̃i
(
λi
)≥ α, i= 1,2, . . . ,m

}
, (3.6)

where µλ̃i(λi), i= 1,2, . . . ,m, are defined as the previous form of µυ̃j (υj), which are non-
differentiable on [λ1

i ,λ3
i ].

Definition 3.1. For a certain degree of α, suppose that the problem (3.5)–(3.6) is solvable
for (w,λ)= (w,λ) with an α-optimal point (x,λ), then the α-stability set of the first kind
of problem (3.5)–(3.6) corresponding to (x,λ) denoted by T(x,λ) is defined by

T(x,λ)=
{(

w,λt
)∈R4m : Σm

i=1wi fi
(
x,λi

)= min
(x,λ)∈M(λ)

Σm
i=1wi fi

(
x,λi

)}
, (3.7)
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where R4m = Rm+3m, Rm is the m-dimensional vector space of weights, and R3m is the
3m-dimensional vector space of fuzzy parameters which are characterized by the TFNs.

Theorem 3.2. For a certain degree of α, the set T(x,λ) is convex and closed.

Proof. For a certain degree of α, if the set T(x,λ) is a one-point set or the whole space,
it is clearly convex and closed. Suppose that (w1,λt1 ) and (w2,λt2 ) are any two points in
T(x,λ), then for all (x,λ)∈M(λ), we have

τ
(
x,w1,λ,u,η,λ

t1)≤ τ
(
x,w1,λ, û, η̂, λ̃t1

)≤ τ
(
x,w1,λ, û, η̂, λ̃t1

)
,

τ
(
x,w2,λ,u,η,λ

t2)≤ τ
(
x,w2,λ, û, η̂, λ̃t2

)≤ τ
(
x,w2,λ, û, η̂, λ̃t2

)
,

(3.8)

where

τ
(
x,w,λ,u,η,λt

)= Σm
i=1wi fi

(
x,λi

)
+Σk

j=1ujgj(x)−Σm
r=1ηr

(
µλ̃r
(
λr
)−α

)
. (3.9)

Therefore,

τ
(
x,ŵ,λ,u,η, λ̂t

)≤ τ
(
x,ŵ,λ, û, η̂, λ̂t

)≤ τ
(
x,ŵ,λ, û, η̂, λ̂t

)
, (3.10)

where ŵ = (1− γ)w1 + γw2, λ̂t = (1− γ)λ̃t1 + γλ̃t2 , 0 ≤ γ ≤ 1, that is, (ŵ, λ̂t) ∈ T(x,λ),
hence the set T(x,λ) is convex.

We choose a sequence of points (w(n),λtn)∈ T(x,λ) which is convergent to (w,λ
t
), then

τ
(
x,w(n),λ,u,η,λtn

)≤ τ
(
x,w(n),λ, û, η̂,λtn

) ∀(x,λ)∈M(λ), n= 1,2, . . . . (3.11)

Taking the limit as n→∞, we have

lim
n→∞τ

(
x,w(n),λ,u,η,λtn

)≤ lim
n→∞τ

(
x,w(n),λ, û, η̂,λtn

) ∀(x,λ)∈M(λ). (3.12)

From the finiteness of the sum, we get

τ
(
x, lim

n→∞w
(n),λ,u,η, lim

n→∞λ
tn
)
≤ τ
(
x, lim

n→∞w
(n),λ, û, η̂, lim

n→∞λ
tn
)

, ∀(x,λ)∈M(λ),

(3.13)

therefore,

τ
(
x,w,λ,u,η,λ

t)≤ τ
(
x,w,λ, û, η̂,λ

t) ∀(x,λ)∈M(λ), (3.14)

that is, (w,λ
t
)∈ T(x,λ), and hence the set T(x,λ) is closed. �
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Theorem 3.3. For a certain degree of α, the set T(x,λ) is a cone with vertex at the origin.

Proof. It is clear that (w,λt)= (0,0)∈ T(x,λ). Suppose that (w̃, λ̃t)∈ T(x,λ), then

τ
(
x,w̃,λ,u,η, λ̃t

)≤ τ
(
x,w̃,λ,u,η, λ̃t

) ∀(x,λ)∈M(λ), (3.15)

therefore,

τ
(
x,γw̃,λ,u,η,γλ̃t

)≤ τ
(
x,γw̃,λ,u,η,γλ̃t

) ∀(x,λ)∈M(λ), (3.16)

and γ ≥ 0, that is, (γw̃,γλ̃t)∈ T(x,λ) for all γ ≥ 0, hence the result follows. �

Lemma 3.4. For a certain degree of α, if problem (3.5)–(3.6) is stable for all (w,λt) such that
M(λ) �= φ, then α= µλ̃(λi), (w,λt)∈ T(x,λ).

Proof. If T(x,λ)= {(w,λ
t
)}, then the result is clear. Assume that (ŵ, λ̂t)∈ T(w,λ), (ŵ, λ̂t)

�= (w,λ
t
), then by the assumption and from the KTSP necessary optimality theorem [6],

it follows that (x,λ) and some ξ̂ ∈ Rm, ξ̂ ≥ 0 solve KTSP and ξ̂i[α− µλ̃i(λ̂
t)] = 0, that is,

for all (x,λ)∈M(λ), and for all u≥ 0, ξ ≥ 0, we have

τ
(
x,w,λ,u,ξ, λ̂t

)≤ τ
(
x,w,λ, û, ξ̂, λ̂t

)≤ τ
(
x,w,λ, û, ξ̂, λ̂t

)
(3.17)

and ûg(x) = 0, τ(x,w,λ,u,ξ,υt) = Σm
i=1wi fi(x,λ) +Σk

j=1ujgj(x)−Σk
i=1ξi(α− µλ̃i(λ

t
i)) since

ûg(x)= 0 and ξ̂µλ̃(λ̂t)= ξ̂α for certain degree of α= α. Then

τ
(
x,w,λ,u,ξ, λ̂t

)≤ Σm
i=1wi fi(x,λ)≤ τ

(
x,w,λ, û, ξ̂, λ̂t

)
, (3.18)

from which it follows that

τ
(
x,w̃,λ,u,ξ, λ̂t

)≤ τ
(
x,ŵ,λ, û, ξ̂, λ̂t

)≤ τ
(
x,w,λ, û, ξ̂, λ̂t

)
, (3.19)

therefore from the KTSP sufficient optimality theorem, it follows that µλ̃(λ̂t)= α, (ŵ, λ̂t)∈
T(x,λ). �

Theorem 3.5. For a certain degree of α, if the problem (3.5)–(3.6) is stable for all (w,λt) such

that M(λ) �= φ, then the set T(x,λ) is star shaped with point of common visibility µλ̃(λ
t
)= α

and closed.

Proof. From the previous lemma, it follows that (w,λ
t
) ∈ T(x,λ). Let another point (w̃,

λ̃t)∈ T(x,λ), then by the assumption and from the KTSP necessary optimality theorem,

it follows that (x,λ) and some ũ ≥ 0, ξ̃ ≥ 0 solve KTSP and ũg(x) = 0, ξ̃[α− µλ̃(λ
t
)] = 0

for certain degree of α= α, then for all (x,λ)∈M(λ) and for all u≥ 0, ξ ≥ 0, we have

τ
(
x,w,λ,u,ξ,λ

t)≤ τ
(
x,w,λ, ũ, ξ̃,λ

t)≤ τ
(
x,w,λ, ũ, ξ̃,λ

t)
, (3.20)

ũ jg j(x)= 0, ξ̃i[α−µλ̃i(λ
t
i)]= 0 for certain degree of α= α.
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Putting uj = γUj , ξr = γζr , wi = γWi, γ ≥ 0, and (1− γ)ũ jg j(x) = 0, (1− γ)ξ̃r[α−
µλ̃(λ

t
)]= 0, we deduce from the relation (3.20) and for a certain degree of α= α that

Σm
i=1wi fi(x,λ) +Σk

j=1ujgj(x)−Σm
i=1ξi

[
µλ̃i
(
λ
t
i

)−α
]

≤ Σm
i=1wi fi(x,λ) +Σk

j=1ũ jg j(x)−Σm
i=1ξ̃i

[
µλ̃i
(
λ
t
i

)−α
]

≤ Σm
i=1wi fi(x,λ) +Σk

j=1ũ jg j(x)−Σm
i=1ξ̃i

[
µλ̃i
(
λ
t
i

)−α
]
.

(3.21)

Then,

Σm
i=1Wi

[
fi(x,λ)− (1− γ) fi(x,λ)

]
+Σk

j=1Ũ j
[
gj(x)− (1− γ)gj(x)

]
−Σm

i=1ζi
[
µλ̃i
(
λ
t
i

)−α− (1− γ)
(
µλ̃i
(
λ
t
i

)−α
)]

≤ Σm
i=1wi fi

(
x,λi

)
+Σk

j=1ũ jg j(x)−Σm
i=1ξ̃i

[
µλ̃i
(
λ
t)−α

]
≤ Σm

i=1Wi
[
fi
(
x,λi

)− (1− γ) fi
(
x,λi

)]
+Σk

j=1Ũ j
[
gj(x)− (1− γ)gj(x)

]
−Σm

i=1ξ̃i
[(
µλ̃i
(
λ
t
i

)−α
)− (1− γ)

(
µλ̃i
(
λ
t
i

)−α
)] ∀U ≥ 0, ξ ≥ 0, γ ≥ 0.

(3.22)

Therefore, it follows from the KTSP sufficient optimality theorem and from the above
relation that (1− γ)wi fi(x,λ), (1− γ)gj(x), and γα− (1− γ)µλ̃(λ) belong to T(x,λ) for all

γ ≥ 0. Hence the setT(x,λ) is star shaped with point of common visibility (w,λ
t
). If the set

T(x,λ) is a one-point set or the whole space, then it is clearly closed. Choose a sequence
of points (w(n),λtn) ∈ T(x,λ) which is convergent to (w,λt), that is, limn→∞(w(n),λtn) =
(w,λt). Then

Σm
i=1w

(n)
i fi

(
x,λi

)≤ Σm
i=1w

(n)
i fi

(
x,λi

) ∀g(x)≤ 0, µλ̃
(
λtn
)≥ α, n= 1,2, . . . ,

(3.23)

and as n→∞, we get

Σm
i=1wi fi

(
x,λi

)≤ Σm
i=1wi fi

(
x,λi

) ∀g(x)≤ 0, µλ̃
(
λt
)≥ α, (3.24)

that is, (w,λt)∈ T(x,λ), and therefore the set T(x,λ) is closed. �

Theorem 3.6. For a certain degree of α, if the problem (3.5)–(3.6) is stable for all (w,λt)
such that M(λ) �= φ, then the set T(x,λ) is either one point set or unbounded.

Proof. For a certain degree of α, if the set T(x,λ) consists only of one point, then it is clear

that this point is (w,λ
t
). If T(x,λ) contains another point (w1,λt1 ), then it is clear from

relation (3.20) and from the KTSP sufficient optimality theorem that

{(
w,λt

)∈R4m : (1− γ)w′ f (x,λ),(1− γ)g(x),(1− γ)µλ̃
(
λt

′)− γα
}
⊆ T(x,λ), (3.25)

γ ≥ 0, that is, the set T(x,λ) is unbounded. �
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4. Conclusion

The stability set of the first kind for fuzzy parametric multiobjective nonlinear program-
ming, which represents the set of all fuzzy parameters for which an α-Pareto optimal
point for one fuzzy parameter rests α-Pareto optimal for all fuzzy parameters, has been
analyzed qualitatively in the author’s notes [2, 3, 4], where all the functions are assumed
to posses the first-order partial derivation onRn. In this note, no differentiability assump-
tions are needed and the KTSP necessary and sufficient optimality theorems are used in
the derivation of the proposed results.

Future extension to this work is the characterization of the stability set of the first kind
for MONLP with fuzzy parameters in both the objective functions and the constraints
without any differentiability assumptions. Another field of extension is the field of fuzzy
parametric nonconvex MONLP, where more difficulties may be found in the characteri-
zation of the stability set of the first kind of such problems.
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