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By using the mountain pass lemma, we study the existence of positive solutions for the
equation−∆u(x)= λ(u|u|+u)(x) for x ∈Ω together with Dirichlet boundary conditions
and show that for every λ < λ1, where λ1 is the first eigenvalue of −∆u= λu in Ω with the
Dirichlet boundary conditions, the equation has a positive solution while no positive
solution exists for λ≥ λ1.

1. Introduction

Consider the boundary value problem

−∆u(x)= λ
(
u|u|+u

)
(x), x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(1.1)

where Ω is a bounded region with smooth boundary in RN , λ > 0 is a real parameter, and
∆ is the Laplacian operator.

The study of (1.1) is motivated by the fact that the equation has wide applications to
physical models (see [4] and the references therein), our analysis is based on a method
used by Rabinowitz [6] and also by Alama and Del Pino [2].

It is well known that steady-state solutions of

−∆u(x)= λ f
(
x,u(x)

)
, x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(1.2)

correspond to critical points of the functional Jλ : W1,2
0 (Ω)→R,

Jλ(u)= 1
2

∫
Ω

∣∣∇u(x)
∣∣2
dx−

∫
Ω
F
(
x,u(x)

)
dx, (1.3)

where F(x,u)= ∫ u0 f (x,s)ds. For convenience, we will denote W1,2
0 by X and will use the
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standard norm

‖u‖2
X =

∫
Ω

∣∣∇u(x)
∣∣2
dx, (1.4)

(see, e.g., [1] or [5]). Henceforth, we will assume that, unless otherwise stated, integrals
are over Ω. When J is bounded below on X , J has a minimizer on X which is a critical
point of J . In many problems such as (1.1), J is not bounded below on X , however, in
such cases, we may be able to use mountain pass lemma. The mountain pass lemma was
introduced by Ambrosetti and Rabinowitz in 1973.

Lemma 1.1 (mountain pass lemma [3]). Let E be a Banach space over R. Let Br = {u∈ E :
‖u‖ < r} and Sr = ∂Br ; B1 and S1 will be denoted by B and S, respectively. Let I ∈ C1(E,R).
If I satisfies I(0)= 0 and

(I1) there exist ρ > 0 and α > 0, such that I > 0 in Bρ−{0} and

I ≥ α > 0 (1.5)

on Sρ;
(I2) there exists e ∈ E, e �= 0 with I(e)= 0;
(I3) if {um} ⊂ E with the properties that I(um) is bounded above, and I′(um)→ 0 as

m→∞, then {um} possesses a convergent subsequence; and if

Γ= {g ∈ C
(
[0,1],E

)
: g(0)= 0, g(1)= e

}
, (1.6)

then

b :≡ inf
g∈Γ

max
y∈[0,1]

I
(
g(y)

)
(1.7)

is a critical value of I with 0 < α≤ b < +∞.

2. Main results

The corresponding Euler functional for (1.1) is given by

Jλ(u)= 1
2

∫ ∣∣∇u(x)
∣∣2
dx− λ

2

∫
u2(x)dx− λ

3

∫
|u|3(x)dx. (2.1)

First, we claim that Jλ(u) has neither a global minimum nor a global maximum. In fact,
we can choose a sequence {un} satisfying

∫ |un|3dx = 1 and
∫ |∇un|2dx → +∞, so that

Jλ(un)→ +∞ as n→ +∞, that is, Jλ(u) is not bounded from above. On the other hand, for
fixed u �= 0, we have

Jλ(tu)= 1
2
t2
∫ ∣∣∇u(x)

∣∣2
dx− λ

2
t2
∫
u2(x)dx− λ

3
|t|3

∫
|u|3(x)dx

= t2
[

1
2

∫
|∇u|2dx− λ

2

∫
u2(x)dx− λ

3
|t|
∫
|u|3(x)dx

]
−→−∞

(2.2)

as t→ +∞. Hence, Jλ(u) is not bounded from below, so we have provedthe following.
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Theorem 2.1. Jλ(u) is neither bounded from above nor bounded from below.

We now show that the mountain pass lemma can be applied in this case.

Theorem 2.2. For every λ < λ1, the problem (1.1) has a positive solution.

Proof. For the existence of solution to (1.1), it is sufficient to check that conditions (I1),
(I2), and (I3) of mountain pass lemma are satisfied.

(I1) By the Sobolev imbedding inequality (
∫ |u|3dx)1/3 ≤ c(

∫ |∇u|2dx)1/2 (c is a posi-
tive constant independent of u∈ X), we have

Jλ(u)= 1
2

∫
|∇u|2dx− λ

2

∫
u2dx− λ

3

∫
|u|3dx

≥ 1
2

∫
|∇u|2dx− λ

2λ1

∫
|∇u|2dx− λ

3
c3
(∫

|∇u|2dx
)3/2

=
[

1
2
− λ

2λ1
− λ

3
c3‖u‖

]∫
|∇u|2dx.

(2.3)

So by choosing ρ = (λ1 − λ)/λλ1c3 and α = (λ1 − λ)3/6λ2λ3
1c

6, we will have Jλ(u) > 0 for
u∈ {u∈ X : ‖u‖ < ρ}−{0}, Jλ(u)≥ α for ‖u‖ = ρ. Hence, Jλ(u) satisfies (I1).

(I2) For given fixed u > 0 in X , we consider the map t→ Jλ(tu). Since λ < λ1, using the
Poincaré inequality, we have

∫ |∇u|2dx− λ
∫
u2 ≥ λ1

∫
u2− λ

∫
u2 = (λ1− λ)

∫
u2 > 0. Then

for t > 0, we have

Jλ(tu)= t2
[

1
2

∫
|∇u|2dx− 1

2
λ
∫
u2dx− 1

3
λ|t|

∫
|u|3dx

]
, (2.4)

which is negative if t is large enough and is positive for sufficiently small t. Thus by con-
tinuity, there exists t0 > 0 such that Jλ(t0u)= 0, and so Jλ(u) satisfies (I2).

(I3) We take a sequence {un} ⊂ X satisfying Jλ(un) <M (M is a positive constant) and
J ′λ(un)→ 0 in X (as n→∞). Thus, there exists N such that

−‖v‖ ≤< J ′λ
(
un
)
, v >=

∫
∇un∇vdx− λ

∫
unv− λ

∫
un
∣∣un∣∣vdx ≤ ‖v‖ (2.5)

for n > N and v ∈ X . Setting v = un, we have

−∥∥un∥∥≤< J ′λ
(
un
)
, un >=

∫ ∣∣∇un∣∣2
dx− λ

∫
u2
ndx− λ

∫ ∣∣un∣∣3
dx ≤ ∥∥un∥∥, (2.6)

that is,

−∥∥un∥∥−∥∥un∥∥2 ≤−λ
∫
u2
ndx− λ

∫ ∣∣un∣∣3
dx ≤ ∥∥un∥∥−∥∥un∥∥2

(2.7)
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for n > N . Also we have

M > Jλ
(
un
)= 1

2

∫ ∣∣∇un∣∣2
dx− λ

2

∫
u2
ndx−

λ

3

∫ ∣∣un∣∣3
dx

= 1
2

∫ ∣∣∇un∣∣2
dx+

1
3

[
− λ

∫
u2
ndx− λ

∫ ∣∣un∣∣3
dx
]
− λ

6

∫
u2
ndx

≥ 1
2

∥∥un∥∥2
+

1
3

[
−∥∥un∥∥−∥∥un∥∥2

]
− λ

6

∫
u2
ndx

= 1
6

∥∥un∥∥2− 1
3

∥∥un∥∥− λ

6

∫
u2
ndx

≥ 1
6

∥∥un∥∥2− 1
3

∥∥un∥∥− λ

6λ1

∥∥un∥∥2

= 1
6

(
1− λ

λ1

)∥∥un∥∥2− 1
3

∥∥un∥∥

(2.8)

and since λ < λ1, it follows that {un} is bounded in X . Hence, there exists a subsequence,
again denoted by {un}, satisfying un⇀ u0 weakly in X and strongly in L2(Ω) and L3(Ω).
Since J ′λ(un)→ 0, we have

〈
J ′λ
(
un
)− J ′λ

(
u0
)
,un−u0

〉= J ′λ
(
un
)(
un−u0

)− J ′λ
(
u0
)(
un−u0

)

=
∫ (∇un−∇u0

)∇(un−u0
)
dx− λ

∫ (
un−u0

)(
un−u0

)
dx

− λ
∫ (

un
∣∣un∣∣−u0

∣∣u0
∣∣)(un−u0

)
dx −→ 0

(2.9)

as n→∞. Since un→ u0 in L2(Ω),
∫

(un−u0)2dx→ 0 as n→∞, also by Holder’s inequal-
ity, we have

∣∣∣∣
∫ (

un
∣∣un∣∣−u0

∣∣u0
∣∣)(un−u0

)
dx
∣∣∣∣≤

∣∣∣∣
∫
un
∣∣un∣∣(un−u0

)
dx
∣∣∣∣+

∣∣∣∣
∫
u0
∣∣u0

∣∣(un−u0
)
dx
∣∣∣∣

≤
(∫

u3
ndx

)2/3(∫ (
un−u0

)3
dx
)1/3

+
(∫

u3
0dx
)2/3(∫ (

un−u0
)3
dx
)1/3

−→ 0

(2.10)

as un→ u0 in L3(Ω), and so
∫

(un|un|−u0|u0|)(un−u0)dx→ 0. Thus,
∫ (∇un−∇u0

)∇(un−u0
)
dx −→ 0, (2.11)

and so
∫ |∇un|2dx→ ∫ |∇u0|2dx. This, together with the weak convergence of {un}, im-

plies that {un} is convergent strongly inX . Hence, Jλ(u) satisfies the condition (I3). There-
fore, by the mountain pass lemma, Jλ(u) has a nontrivial critical point denoted by u∗.
Since Jλ(u∗) = Jλ(|u∗|), without loss of generality, we may assume that u∗ is a non-
negative weak solution of (1.1) and it follows from standard regularity arguments that
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u∗ ∈ C2(Ω) is a classical solution of (1.1), that is, we have

−∆u∗(x)= λ
(
u∗|u∗|+u∗

)
(x), x ∈Ω,

u∗(x)= 0, x ∈ ∂Ω,
(2.12)

also it is easy to deduce from the maximum principle that u∗ > 0 on Ω. �

We now show that the problem (1.1) has no positive solution in the case where λ≥ λ1.

Theorem 2.3. The problem (1.1) has no a positive solution when λ≥ λ1.

Proof. Let λ ≥ λ1 be arbitrary and fixed. On the contrary, we assume that u is a positive
solution of (1.1), that is,

−∆u(x)= λ
(
u|u|+u

)
(x), x ∈Ω,

u(x)= 0, x ∈ ∂Ω.
(2.13)

Let φ > 0 be the principal eigenfunction corresponding to principal eigenvalue λ1, that is,

−∆φ(x)= λ1φ(x), x ∈Ω,

φ(x)= 0, x ∈ ∂Ω.
(2.14)

Multiplying (2.13) by φ, (2.14) by u, and integrating over Ω give, respectively,
∫
∇u∇φdx = λ

∫
u|u|φdx+ λ

∫
uφdx, (2.15)

∫
∇u∇φdx = λ1

∫
uφdx. (2.16)

By subtracting (2.16) from (2.15), we obtain

0= (λ− λ1
)∫

uφdx+ λ
∫
u|u|φdx, (2.17)

and this is a contradiction as u and φ are positive and λ ≥ λ1, and so the problem (1.1)
has no positive solution when λ≥ λ1. �

We now will show that when λ is sufficiently small, then the positive solution u of (1.1)
corresponding to λ is very large.

Theorem 2.4. If λ→ 0 and u is the positive solution of (1.1) corresponding to λ, then ‖u‖→
+∞.

Proof. Since u is the positive solution of (1.1) corresponding to λ, we have

−∆u(x)= λ
(
u|u|+u

)
(x), x ∈Ω,

u(x)= 0, x ∈ ∂Ω.
(2.18)

Multiplying (2.18) by u and integrating over Ω give
∫
|∇u|2dx = λ

∫
|u|3dx+ λ

∫
u2dx. (2.19)
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Substituting the Sobolev inequalities

∫
|u|3dx ≤ c

(∫
|∇u|2dx

)3/2

,
∫
|u|2dx ≤ 1

λ1

∫
|∇u|2dx (2.20)

into (2.19) yields

∫
|∇u|2dx ≤ cλ

(∫
|∇u|2dx

)3/2

+
λ

λ1

∫
|∇u|2dx. (2.21)

Hence,
(

1− λ

λ1

)
‖u‖2 ≤ cλ‖u‖3, (2.22)

and so

‖u‖ ≥ λ1− λ

cλλ1
= 1

c

(
1
λ
− 1
λ1

)
. (2.23)

Thus ‖u‖→ +∞ as λ→ 0. �

It is easy to see that u is a positive solution of (1.1) if and only if u is a positive solution
of

−∆u(x)= λ
(
u2 +u

)
(x), x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(2.24)

so we have obtained the following theorem.

Theorem 2.5. The problem (2.24) has a positive solution when λ < λ1, while no positive
solution exists for λ≥ λ1.
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