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We prove that there do not exist different positive integers ¢,d > 1 such that the product
of any two distinct elements of the set {1,10,¢,d} diminished by 1 is a perfect square.

1. Introduction

Let n be an integer. A set of positive integers {a;,as,...,dm} is said to have the property
D(n) if a;a; + n is a perfect square for all 1 <i< j < m. Such a set is called a Diophantine
m-tuple (with the property D(n)) or a D(n)-m-tuple.

In fact, this problem was first studied by Diophantus for the case n = 1 and he found a
set of four positive rationals with the above property: {1/16,33/16,17/4,105/16} (see [4]).
The first set of four positive integers with the same property was found by Fermat, and
it was {1,3,8,120}. The conjecture is that there does not exist a D(1)-quintuple. In 1969,
Baker and Davenport proved that Fermat’s set cannot be extended to a D(1)-quintuple,
(see [2]). In 2004, Dujella proved that there exists no D(1)-sextuple and there are only
finitely many D(1)-quintuples (see [9]). In the case n = —1, the conjecture is that there
does not exist a D(—1)-quadruple. This conjecture, for the first time, appeared in [8].

We assume that the D(—1)-triple {a,b,c} can be extended to a D(—1)-quadruple. Then
there exist positive integers d, x, ¥, z such that

ad—1=x?, bd —1=y?% cd—1=7% (1.1)
Eliminating d, we obtain the following system of Pellian equations:
ay* —bx*=b-—a, az? —cx* =c—a, bz —cy*=c—b. (1.2)

The conjecture can thus be written in terms of Pellian equations (see [7]).
CoNJECTURE 1.1. Let {a,b,c} be the set of distinct positive integers with the property that

there exist integers , s, t such that

ab—1=1r2 ac—1=¢%, bc—1=t% (1.3)
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If1 ¢ {a,b,c}, then the system of Pellian equations
az* —cx* = c—a, bz? —cy’=c-b (1.4)
has no solution. If a = 1, then all solutions of system (1.4) are given by (x, y,z) = (0, +r,£s).

For certain triples {a,b,c}, with 1 & {a,b,c} the validity of Conjecture 1.1 can be ver-
ified by simple use of congruences (see [6]). On the other hand, the triples of the form
{1,b,c} have one “extension,” d = 1. Although we do not count it as a proper extension,
its existence implies that such triples extendibility cannot be proved by simple congruence
consideration. Recently, the original conjecture if 1 ¢ {a,b,c} was completely proved by
Dujella and Fuchs in [10]. There they proved that there exists no D(—1)-quintuple, and
if there exists D(—1)-quadruple {a,b,¢,d} witha<b<c<d,thena=1and b = 5.

In the case a = 1, Conjecture 1.1 was verified for particular D(—1)-triples, namely
{1,2,5} (by Brown in [6]), {1,5,10} (by Mohanty and Ramasamy in [14]), {1,2,145},
{1,2,4901}, {1,5,65}, {1,5,20737}, {1,10,17}, {1,26,37} (by Kedlaya in [12]), and
{17,26,85} (again by Brown in [6]). Moreover, Brown proved the conjecture for the fol-
lowing infinite families of D(—1)-triples:

(W +1,(n+1)+1,2n+1)>+4} ifn#0(mod4),

1.5
{2,2n* +2n+1,2n* +6n+5} if n=1(mod4). (1:5)

Dujella proved the conjecture in [7] for all triples of the form {1,2,c}. Recently, Abu
Muriefah and Al-Rashed studied extendibility of triples of the form {1,5,c} in [1]. So the
consideration of triples of the form {1,10,c} seems to be the next natural step.

In the present paper, we will verify Conjecture 1.1 for all triples of the form {1,10,c},
and in the end, we will finish the work started by Abu Muriefah and Al-Rashed in [1],
proving the same conjecture for all the triples of the form {1,5,c}. In the first part of our
proof we will follow the strategy from [1, 7, 11]. Some of the lemmas are already proved
in [10] in a more general context, but in order to keep the paper self-contained, we prefer
to give complete proofs everywhere.

First we see that the conditions ¢ — 1 = s> and 10c — 1 = #* imply that

t? —10s> = 9. (1.6)

We have three fundamental solutions of Pellian equation (1.6), namely (t,,s0) = (3,0),
(7,2),(13,4). Then all solutions in nonnegative integers (tx,sx) of (1.6) belong to three
classes.

Since numbers sy satisfy recursive relations sgy1 = 195 + 6f and sg12 = 38sk41 — Sk, we
find that integers s belong to the following sequences:

s = N_(19+6f) zr<19 6W)
sk_(1+2\/_)(19+6f) ( ﬁ)(w—ém)k, (1.7)

)(19+6f) ( 13 )(19—6m)k.
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Now from the relation ¢ = s + 1, we can form the sequence (cx)k=1,

2m

'9(19+6\/ﬁ)2m+9(19—6m) +22, k=3m+1,
(89+28\/E)(19+6m)2m

2m k=3m+2,
ok =5 X1 +(89-28v10) (19-6v10) " +22, (1.8)
(329+104+/10) (19+6\/E)2m

k=3m+3.
| + (329 1044/70) (19 - 6vT0) " +22, e

It is easy to check that ¢ < ¢; for k < I.

Hence if the triple {1,10,c} satisfies the property D(—1), then there exists a positive
integer k, such that ¢ = ¢.

Now we can formulate our main result.

THEOREM 1.2. Let k be a positive integer and cy as above. All solutions of the system of
simultaneous Pellian equations

Z2—axt=c—1, (1.9)

1022 =k = ¢ — 10 (1.10)

are given by (x,y,z) = (0,+3, +/cx — 1).

From this statement, we get immediately the result on the extension of {1,10,c}.

2. Preliminaries

Let k be the minimal positive integer, if such exists, for which the statement of Theorem
1.2 is not valid. Then results of Mohanty and Ramasamy (see [14]), and Kedlaya (see
[12]) imply that k > 4. For simplicity, we will omit the index k. Now we have s> = ¢ — 1,
t2=10c—1,and ¢ > ¢4 = 325.

Since neither ¢ nor 10c is a square, Q(1/c) and Q(+/10c) are real quadratic number
fields. Moreover, 2c — 1 +2s./c = (s + ,/c)? and 20c — 1 + 2¢+/10c = (t + +/10c)? are non-
trivial units in the rings Z|/c] and Z|/10c]. Thus we know that there are finite sets
{20 +x00Jc:i=1,...,0p} and {z;) + y1)/T0c: j = 1,...,jo} of elements of Z| \/c]
and Z| /10c], respectively, such that all solutions of (1.9) and (1.10) are given by

m
s 1

z+x/e = (200 +x00C) (20— 1425€) 5 i=1,..,00, m 20, (2.1)

. . n
210+ yi/e = (2101043, 92) (20— 1+264/10¢) ,  j=Looosjor n 20, (2.2)
From (2.1), we conclude that z = v,,¥) for some index i and positive integer m, where

v =200, = (2= Dz + 250", v = (de = 2) v = v,
(2.3)
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and from (2.2), we conclude that z = w, /) for some index j and positive integer #, where

wo =z, w W =020c- DzD+2tey, WP =(40c = 2) WiV — wy, 0.
(2.4)

Our system of equations (1.9) and (1.10) is thus transformed to finitely many equations
of the form

VD = w, ). (2.5)

If we choose representatives zo + xo?\/c and z;/10 + /) /¢ such that [z,(| and
|z;| are minimal, then by [15, Theorem 108], we have estimates 0 < |z,?|, |z;/)| < ¢,
(see also [10, Lemma 1]).

3. Application of congruence relations

From (2.3) and (2.4), it follows by induction that

Vo = 20 (mod2c), vami1 ¥ = =z (mod2c),
' ' . ‘ (3.1)
wa, D = 2,0 (mod2¢), Var1? = =z, (mod2¢).

So if (2.5) has a solution, we must have |z,)| = |z, ].
Let dy = ((z9”)? + 1)/c. Then we have dy — 1 = (x?)?, 10dg — 1 = (31)?, cdy — 1 =
(z0™)?, and

—1)2+1
N Gl D2
C

do (3.2)

Now if dy > 1, then there exists positive integer [, [ < k, such that dy = ¢;. But then the
system

2Z—gx*=¢-1, 1022 — ¢y* = ¢, — 10 (3.3)
has nontrivial solution (x, y,z) = (s, t,209), contradicting the minimality of k. So d =
1, 120| = |z;)| = 5. Thus we proved the following lemma.

LeEmMMA 3.1. If the equation v,,') = w,)) has a solution, then |z | = |2,V | =5, x, =0,
)/l(j) = +3.

For the simplicity, from now on, the superscripts (i) and (j) will be omitted.
The following lemma can be proved easily by induction.

LEMMA 3.2.
Vm = (—1)"™ (20 — 2cm?zg — 2csmxg) (mod 8¢?),

3.4
Wy = (—1)"(z1 — 20cn*z; — 2ctny;) (mod 8c?). (3.4)

Since we may restrict ourselves to positive solutions of the system of equations (1.9)
and (1.10), we may assume that zyp = z; = s. If y; = 3, then it is obvious that v; < w; for
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1>0, and v, = wy, n # 0, implies that m > n. If y; = —3, then it is easy to check that
vo < wy. Then v; < wyyy for I > 0, and thus v, = w,, implies that m > n in all cases.

LemMa 3.3. If vy, = wy, then m and n are even.

Proof. From Lemma 3.2 and relations zp = z; = s, we have m = n(mod2). If vy =
Want1, Lemma 3.2 implies that

(2m+1)%s = (2n+1)[(20n+ 10)s + 3¢] (mod 4c), (3.5)

which contradicts the fact that s is even and ¢ is odd. O
LEMMA 3.4. If Vo = Way, then n < m < 1.66n.

Proof. We have already proved that m = n. Now from (2.3) and (2.4), we have

vmz%[(2c—1+25\/2)m+(2c—1—2s\/_) ] (c—1+25\/—>

1 . n
Wy = T[(s 10+3c)(20c -1 +2t\/10c) + (sv/10%3.2) (20c — 1 - 24/10¢) |
sr+ 3/c+1 n n+1/2
< (20c - 1+2t4/10¢) < (20c—1+2tx/10 )
(3.6)
Since ¢ > 325, v, = Wy, implies that
log (20c — 1+ 2¢+/10c¢
m ( ) <1.3214. (3.7)
2n+172  Jog (2c— 1+25\/E)
If n =0, then m = 0; and if n > 1, then we have m < 1.3214n + 0.33035 < 1.66n. O

LEMMA 3.5. If vop = way and n # 0, then m > n > (1/3/2) J/c.

Proof. 1f vy, = wa,, Lemma 3.2 implies that 2s(m? — 10n?) = +3tn(mod2c). From s? =
t*(modc), we get 4(m?> — 10n?)? = 9n*(modc). Assume that n # 0 and n < (1/3+/2)/c.
We thus have the following:

1
[2s(m? — 10n?) | <2./c-9n* <18 /c- Eﬁ:c,

4(m 2—10n2)2s4-92-n4§c,

(3.8)
I <9- f<c,

3tn<3-/10c- <c.
f Ve

In the first two inequalities, we have used the relations n < m < 1.66n that are already
proved in Lemma 3.4. Now we can conclude that 4(m? — 10n?)? = 9n? and 2s(m? — 10n?)
= —3tn, which imply that s? = 2, a contradiction. O
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4. Linear form in logarithms

LEMMA 4.1. If vy = wy, n # 0, then

0 < nlog (20c -1 +2t\/10c> —mlog (26 - 1+25\/E> +log5\/15_07\/ir03\/E <(20c)™"
(4.1)

Proof. Let p =s(2c—1+2s/c)" and q = (1/:/10)(sy/10 + 3./¢)(20c — 1+ 2¢./10¢)".
Then v,, = w, implies that

_ c—10 _
p+52p 1=q+ To q 1 (4.2)

It is clear that p, q > 1. Moreover,

-10
p—q= ¢ o gl =pl<c-Dg ' =(c-Dp't=(-Dp-qp'qg' (43)

If p > g from (4.3), we get that pg < (c — 1), which is a contradiction because g > 1 and
p > (4s\/c)s = 4s*\/c = 4(c — 1) /c > ¢ — 1. So we have g > p.
Furthermore,

0<log(§)1=—log<‘2) =—log<1—?). (4.4)

From —log(1 — x) < x+x2 for x € (0,1/2), we get 0 < log(gq/p) < (g — p)/q+ (g — p)/q)>.
Relation (4.2) implies that p>g—(c—=1)p~' >g—1,thusqg—p<1land (g— p)/q<

-1

q
Then we can conclude that

q -1 -1 210 _ o “n
0<log(p><q (1+q ") <2q _s\/ﬁin(zoc 1+264/10¢) < (200)7",
(4.5)
which proves our lemma. U

The last inequality follows easily from the facts that 2+/10/(s+/10 + 3./c) < 2.23 for
c>325andn>2 (niseven and n # 0).
Now, we apply the following theorem of Baker and Wiistholz (see [3]).

TueEOREM 4.2. For a linear form A + 0 in logarithms of | algebraic numbers ay,...,o; with
rational coefficients by,..., by,

logA = —18(1+ )11 (32d) "W (ay) - - - - - W () log(21d)logB, (4.6)

where B = max |b;|, d is the degree of the number field generated by «,..., a1, and h' («) =
1/rmax{h(«), |logal, 1}, where h(a) denotes the standard logarithmic Weil height of o, and
1 is the degree of a.



Alan Filipin 2223

We consider our equation vy, = wa, with n # 0. We will apply Theorem 4.2 to the
linear form from Lemma 4.1.

We have [ = 3, d = 4, B = 2m, and numbers a; = 20c — 1 +2¢/10¢, ay = 2¢ — 1 + 2s./c,
as = (s+/10 + 3,/c)/s/10.

Minimal polynomials of a1, o, and a3 are

o2 — (40c—2)a +1 =0, 2 —(4c—2)a,+1=0,

, (4.7)
(10c — 10)a3* — (20c — 20)az + ¢ — 10 = 0.
Hence,
/ 1 1 , 1 1
h () = Elogocl < Elog40c, W () = Elogocz < Elog4c,
(4.8)
1 sy/10+3./c 1
K =1 [7-10—10] —log20c.
(a3) 5 log /10 (10¢ )<20g06
From Lemma 4.1, if v2,, = w2, we get
. s 1 1 1
2nlog20c < 18 -4!-3%-(32-4)°- Elog40c- Elog4c- ElogZOc -log24 - log2m.
(4.9)
Now using Lemmas 3.4 and 3.5, relation (4.9) implies that
2n < 4.78 - 10 - 1og 12960n* - log 1296n* - log3.32n, (4.10)

hence n <5 - 10%, and finally ¢ < 2.025 - 10%°. Therefore, we get k < 81.

5. Reduction

For completing the proof of Theorem 1.2 for all positive integers k, we must check that
for 4 < k < 81, v, = wy, implies that n = m = 0.
First, we will prove that

0 < 2nlog (20ck — 1+ 23/10¢c ) — 2mlog (2cx — 1+ 2s¢+/ck )

Sk\/ﬁi?’\/C—k < (20¢ )72’1 (5.1)
Skm k )

where n<5-10%, impliesn <m < 1.

Having proved that, only one possibility will remain for the solution of (2.5), and that
is v» = w,. However, it is easy to prove that this is not possible. First, we see that v, = w,
is only possible when y; = —3.

In that case, we get (4c —2)(2¢ — 1)s —s = (40c — 2)[(20c — 1)s — 6tc] — s, which im-
plies that 356¢> — 4348¢2 + 778¢ — 35 = 0; and this equation does not have any solution
modulo 2.

To finish the proof, we use the reduction method described in [16, Section VI.3] and
[17].

+log
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If we have the inequality of the type

r
IA| = |ag+ zx,‘a,‘

i=1

< ke kX, (5.2)

where a; € C are fixed numbers, k;, k3 are positive real constants, and x; are unknown
integers with X = max|x;| < X, we can try to reduce the upper bound for X, using the
following method. In our case, there is = 2.

Let L be a lattice generated by the columns of the matrix

A= ([Klal] [K(Lz]) € My(2), (5.3)

where K is some large constant and [-] rounds number to the nearest integer. Now using
the LLL algorithm (see [13]), we can find reduced basis of L. We do that by using the in-
tegral version of the algorithm in the package GP/Pari (see [5]). Let y = (0 —[Kao])! €
Z?2. Using the properties of reduced basis, it is easy to compute the lower bound k4 of
lx — yll, where x € L and || - || denotes the usual (Euclidean) norm of a vector. We can
compute that using GP/Pari again. In most cases, if we choose the constant K big enough,
we can use the following lemma.

LemMA 5.1. Let S=Xo? and T = 0.5 - (1+2Xp). Ifk42 > T?+S, then

. log (Kk,) — log (wlki -S- T)

< A4
. (5.4
orx; =0andx, = —[Kagl/[Kay].
Proof of the lemma can be found in [16].
In our case, there is an inequality of the type (5.2) with
A = ag+na, + may,
+
ap = logM, a; =2log <20ck - 1+2tk\/10ck>,
sev/10 (5.5)

ay = —2log (2cc — 1+25/ck), ko =1, ks = 1.2+ log20cy,
X =m<83-10%.

Using the described method, after two steps of reduction, in all 78 remaining cases, for
4 <k < 81, we get m < 1, which finishes the proof of Theorem 1.2.

6. Concluding remarks

We can prove Conjecture 1.1 for all the triples of the form {1,5,¢}, in exactly the same
way. This gives a much shorter and neat proof of the result in [1]. Since Abu Muriefah and
Al-Rashed in [1] have already prepared everything for the use of the described reduction
method, we will only give some details here that are different from their paper.
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First, there is no need for three sequences (cx), because it is well known that all non-
negative solutions of the Pellian equation > — 55 = 4 are given by f = Ly, s = F (Lucas
and Fibonacci numbers). Thus, we only have one sequence ¢x = Fy? + 1, which leads to
significant simplification. Later, when we work with a linear form in logarithms, we get
the following.

If v, = wyu, n # 0, then

s\/5x2./c

0< nlog(lOc— 1+2t\/§> —mlog (2c— 1 +25\/E> +log7 <(10c)™  (6.1)

And when we apply the Baker-Wiistholz theorem, we have

1 sv/5+2./c 1
() = Slog | S22 (50-5)| < Jloglo 2
W (as) 5 log 5 (5¢-5) < log 0Oc (6.2)
This slightly changes the constants which appeared in [1]. We get that n < 5 - 10%, and
finally ¢ = ¢x < 1084, which implies that k < 101.
Now we can use the same reduction method, because in this case there is an inequality

of type (5.2) with

A = ag+nay, +ma,,

g = logM, a; = log (10Ck -1 +2tk\/5ck),
sk/5 (6.3)
log10 ’
a, = —10g<2ck— 1+25k\/§), ky=1, k3 = %,

X=m<112-10%.

By using the reduction method in all cases, for k < 101, after three steps of reduction, we
get m < 3. Then to finish our proof, we only need to show that the remaining possibilities,
V] = Wi, V3 = Wy, ¥3 = w3, are impossible because we have the relations #n < m < n/5 and
m = n(mod2). However, this is easy to check.
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