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We prove that there do not exist different positive integers c,d > 1 such that the product
of any two distinct elements of the set {1,10,c,d} diminished by 1 is a perfect square.

1. Introduction

Let n be an integer. A set of positive integers {a1,a2, . . . ,am} is said to have the property
D(n) if aiaj +n is a perfect square for all 1≤ i < j ≤m. Such a set is called a Diophantine
m-tuple (with the property D(n)) or a D(n)-m-tuple.

In fact, this problem was first studied by Diophantus for the case n= 1 and he found a
set of four positive rationals with the above property: {1/16,33/16,17/4,105/16} (see [4]).
The first set of four positive integers with the same property was found by Fermat, and
it was {1,3,8,120}. The conjecture is that there does not exist a D(1)-quintuple. In 1969,
Baker and Davenport proved that Fermat’s set cannot be extended to a D(1)-quintuple,
(see [2]). In 2004, Dujella proved that there exists no D(1)-sextuple and there are only
finitely many D(1)-quintuples (see [9]). In the case n = −1, the conjecture is that there
does not exist a D(−1)-quadruple. This conjecture, for the first time, appeared in [8].

We assume that theD(−1)-triple {a,b,c} can be extended to aD(−1)-quadruple. Then
there exist positive integers d, x, y, z such that

ad− 1= x2, bd− 1= y2, cd− 1= z2. (1.1)

Eliminating d, we obtain the following system of Pellian equations:

ay2− bx2 = b− a, az2− cx2 = c− a, bz2− cy2 = c− b. (1.2)

The conjecture can thus be written in terms of Pellian equations (see [7]).

Conjecture 1.1. Let {a,b,c} be the set of distinct positive integers with the property that
there exist integers r, s, t such that

ab− 1= r2, ac− 1= s2, bc− 1= t2. (1.3)
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If 1 /∈ {a,b,c}, then the system of Pellian equations

az2− cx2 = c− a, bz2− cy2 = c− b (1.4)

has no solution. If a= 1, then all solutions of system (1.4) are given by (x, y,z)= (0,±r,±s).

For certain triples {a,b,c}, with 1 /∈ {a,b,c} the validity of Conjecture 1.1 can be ver-
ified by simple use of congruences (see [6]). On the other hand, the triples of the form
{1,b,c} have one “extension,” d = 1. Although we do not count it as a proper extension,
its existence implies that such triples extendibility cannot be proved by simple congruence
consideration. Recently, the original conjecture if 1 /∈ {a,b,c} was completely proved by
Dujella and Fuchs in [10]. There they proved that there exists no D(−1)-quintuple, and
if there exists D(−1)-quadruple {a,b,c,d} with a < b < c < d, then a= 1 and b ≥ 5.

In the case a = 1, Conjecture 1.1 was verified for particular D(−1)-triples, namely
{1,2,5} (by Brown in [6]), {1,5,10} (by Mohanty and Ramasamy in [14]), {1,2,145},
{1,2,4901}, {1,5,65}, {1,5,20737}, {1,10,17}, {1,26,37} (by Kedlaya in [12]), and
{17,26,85} (again by Brown in [6]). Moreover, Brown proved the conjecture for the fol-
lowing infinite families of D(−1)-triples:

{
n2 + 1,(n+ 1)2 + 1,(2n+ 1)2 + 4

}
if n �≡ 0(mod4),{

2,2n2 + 2n+ 1,2n2 + 6n+ 5
}

if n≡ 1(mod4).
(1.5)

Dujella proved the conjecture in [7] for all triples of the form {1,2,c}. Recently, Abu
Muriefah and Al-Rashed studied extendibility of triples of the form {1,5,c} in [1]. So the
consideration of triples of the form {1,10,c} seems to be the next natural step.

In the present paper, we will verify Conjecture 1.1 for all triples of the form {1,10,c},
and in the end, we will finish the work started by Abu Muriefah and Al-Rashed in [1],
proving the same conjecture for all the triples of the form {1,5,c}. In the first part of our
proof we will follow the strategy from [1, 7, 11]. Some of the lemmas are already proved
in [10] in a more general context, but in order to keep the paper self-contained, we prefer
to give complete proofs everywhere.

First we see that the conditions c− 1= s2 and 10c− 1= t2 imply that

t2− 10s2 = 9. (1.6)

We have three fundamental solutions of Pellian equation (1.6), namely (t0,s0) = (3,0),
(7,2),(13,4). Then all solutions in nonnegative integers (tk,sk) of (1.6) belong to three
classes.

Since numbers sk satisfy recursive relations sk+1 = 19sk + 6tk and sk+2 = 38sk+1− sk, we
find that integers sk belong to the following sequences:

sk = 3
2
√

10

(
19 + 6

√
10
)k − 3

2
√

10

(
19− 6

√
10
)k

,

sk =
(

1 +
7

2
√

10

)(
19 + 6

√
10
)k

+
(

1− 7
2
√

10

)(
19− 6

√
10
)k

,

sk =
(

2 +
13

2
√

10

)(
19 + 6

√
10
)k

+
(

1− 13
2
√

10

)(
19− 6

√
10
)k
.

(1.7)
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Now from the relation ck = sk2 + 1, we can form the sequence (ck)k≥1,

ck = 1
40
×




9
(

19 + 6
√

10
)2m

+ 9
(

19− 6
√

10
)2m

+ 22, k = 3m+ 1,(
89 + 28

√
10
)(

19 + 6
√

10
)2m

+
(

89− 28
√

10
)(

19− 6
√

10
)2m

+ 22,
k = 3m+ 2,

(
329 + 104

√
10
)(

19 + 6
√

10
)2m

+
(

329− 104
√

10
)(

19− 6
√

10
)2m

+ 22,
k = 3m+ 3.

(1.8)

It is easy to check that ck < cl for k < l.
Hence if the triple {1,10,c} satisfies the property D(−1), then there exists a positive

integer k, such that c = ck.
Now we can formulate our main result.

Theorem 1.2. Let k be a positive integer and ck as above. All solutions of the system of
simultaneous Pellian equations

z2− ckx
2 = ck − 1, (1.9)

10z2− ck y
2 = ck − 10 (1.10)

are given by (x, y,z)= (0,±3,±√ck − 1).

From this statement, we get immediately the result on the extension of {1,10,c}.

2. Preliminaries

Let k be the minimal positive integer, if such exists, for which the statement of Theorem
1.2 is not valid. Then results of Mohanty and Ramasamy (see [14]), and Kedlaya (see
[12]) imply that k ≥ 4. For simplicity, we will omit the index k. Now we have s2 = c− 1,
t2 = 10c− 1, and c ≥ c4 = 325.

Since neither c nor 10c is a square, Q(
√
c) and Q(

√
10c) are real quadratic number

fields. Moreover, 2c− 1 + 2s
√
c = (s+

√
c)2 and 20c− 1 + 2t

√
10c = (t +

√
10c)2 are non-

trivial units in the rings Z�√c� and Z�√10c�. Thus we know that there are finite sets
{z0

(i) + x0
(i)√c : i = 1, . . . , i0} and {z1

( j) + y1
( j)
√

10c : j = 1, . . . , j0} of elements of Z�√c�
and Z�√10c�, respectively, such that all solutions of (1.9) and (1.10) are given by

z+ x
√
c =

(
z0

(i) + x0
(i)√c

)(
2c− 1 + 2s

√
c
)m

, i= 1, . . . , i0, m≥ 0, (2.1)

z
√

10 + y
√
c =

(
z1

( j)
√

10 + y1
( j)√c

)(
20c− 1 + 2t

√
10c

)n
, j = 1, . . . , j0, n≥ 0. (2.2)

From (2.1), we conclude that z = vm(i) for some index i and positive integer m, where

v0
(i) = z0

(i), v1
(i) = (2c− 1)z0

(i) + 2scx0
(i), vm+2

(i) = (4c− 2)vm+1
(i)− vm

(i),
(2.3)
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and from (2.2), we conclude that z =wn
( j) for some index j and positive integer n, where

w0
( j)=z1

( j), w1
( j)=(20c− 1)z1

( j) + 2tcy1
( j), wm+2

( j)=(40c− 2)wm+1
( j)−wm

( j).
(2.4)

Our system of equations (1.9) and (1.10) is thus transformed to finitely many equations
of the form

vm
(i) =wn

( j). (2.5)

If we choose representatives z0
(i) + x0

(i)√c and z1
( j)
√

10 + y1
( j)√c such that |z0

(i)| and
|z1

( j)| are minimal, then by [15, Theorem 108], we have estimates 0 < |z0
(i)|, |z1

( j)| < c,
(see also [10, Lemma 1]).

3. Application of congruence relations

From (2.3) and (2.4), it follows by induction that

v2m
(i) ≡ z0

(i)(mod2c), v2m+1
(i) ≡−z0

(i)(mod2c),

w2n
( j) ≡ z1

( j)(mod2c), v2n+1
( j) ≡−z1

( j)(mod2c).
(3.1)

So if (2.5) has a solution, we must have |z0
(i)| = |z1

( j)|.
Let d0 = ((z0

(i))2 + 1)/c. Then we have d0 − 1 = (x0
(i))2, 10d0 − 1 = (y1

( j))2, cd0 − 1 =
(z0

(i))2, and

d0 ≤ (c− 1)2 + 1
c

< c. (3.2)

Now if d0 > 1, then there exists positive integer l, l < k, such that d0 = cl. But then the
system

z2− clx
2 = cl − 1, 10z2− cl y

2 = cl − 10 (3.3)

has nontrivial solution (x, y,z)= (sk, tk,z0
(i)), contradicting the minimality of k. So d0 =

1, |z0
(i)| = |z1

( j)| = s. Thus we proved the following lemma.

Lemma 3.1. If the equation vm(i) = wn
( j) has a solution, then |z0

(i)| = |z1
( j)| = s, x0

(i) = 0,
y1

( j) =±3.

For the simplicity, from now on, the superscripts (i) and ( j) will be omitted.
The following lemma can be proved easily by induction.

Lemma 3.2.

vm ≡ (−1)m
(
z0− 2cm2z0− 2csmx0

)(
mod8c2),

wn ≡ (−1)n
(
z1− 20cn2z1− 2ctny1

)(
mod8c2). (3.4)

Since we may restrict ourselves to positive solutions of the system of equations (1.9)
and (1.10), we may assume that z0 = z1 = s. If y1 = 3, then it is obvious that vl < wl for
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l > 0, and vm = wn, n �= 0, implies that m > n. If y1 = −3, then it is easy to check that
v0 < w1. Then vl < wl+1 for l ≥ 0, and thus vm =wn implies that m≥ n in all cases.

Lemma 3.3. If vm =wn, then m and n are even.

Proof. From Lemma 3.2 and relations z0 = z1 = s, we have m ≡ n(mod2). If v2m+1 =
w2n+1, Lemma 3.2 implies that

(2m+ 1)2s≡ (2n+ 1)
[
(20n+ 10)s± 3t

]
(mod4c), (3.5)

which contradicts the fact that s is even and t is odd. �

Lemma 3.4. If v2m =w2n, then n≤m≤ 1.66n.

Proof. We have already proved that m≥ n. Now from (2.3) and (2.4), we have

vm = s

2

[(
2c− 1 + 2s

√
c
)m

+
(

2c− 1− 2s
√
c
)m]

>
1
2

(
2c− 1 + 2s

√
c
)m

,

wn = 1
2
√

10

[(
s
√

10± 3
√
c
)(

20c− 1 + 2t
√

10c
)n

+
(
s
√

10∓ 3
√
c
)(

20c− 1− 2t
√

10c
)n]

<
s
√

10 + 3
√
c+ 1

2
√

10
·
(

20c− 1 + 2t
√

10c
)n

<
1
2

(
20c− 1 + 2t

√
10c

)n+1/2
.

(3.6)

Since c ≥ 325, v2m =w2n implies that

2m
2n+ 1/2

<
log

(
20c− 1 + 2t

√
10c

)
log

(
2c− 1 + 2s

√
c
) < 1.3214. (3.7)

If n= 0, then m= 0; and if n≥ 1, then we have m< 1.3214n+ 0.33035 < 1.66n. �

Lemma 3.5. If v2m =w2n and n �= 0, then m≥ n > (1/3
√

2) 4
√
c.

Proof. If v2m = w2n, Lemma 3.2 implies that 2s(m2 − 10n2) ≡ ±3tn(mod2c). From s2 ≡
t2(modc), we get 4(m2 − 10n2)2 ≡ 9n2(modc). Assume that n �= 0 and n ≤ (1/3

√
2) 4
√
c.

We thus have the following:

∣∣2s
(
m2− 10n2)∣∣ < 2

√
c · 9n2 ≤ 18

√
c · 1

18

√
c = c,

4
(
m2− 10n2)2 ≤ 4 · 92 ·n4 ≤ c,

9n2 ≤ 9 · 1
18

√
c < c,

3tn < 3 ·√10c · 1
3
√

2
· 4
√
c < c.

(3.8)

In the first two inequalities, we have used the relations n ≤m ≤ 1.66n that are already
proved in Lemma 3.4. Now we can conclude that 4(m2− 10n2)2 = 9n2 and 2s(m2− 10n2)
=−3tn, which imply that s2 = t2, a contradiction. �
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4. Linear form in logarithms

Lemma 4.1. If vm =wn, n �= 0, then

0 < n log
(

20c− 1 + 2t
√

10c
)
−m log

(
2c− 1 + 2s

√
c
)

+ log
s
√

10± 3
√
c

s
√

10
< (20c)−n.

(4.1)

Proof. Let p = s(2c− 1 + 2s
√
c)m and q = (1/

√
10)(s

√
10± 3

√
c)(20c− 1 + 2t

√
10c)n.

Then vm =wn implies that

p+ s2p−1 = q+
c− 10

10
q−1. (4.2)

It is clear that p, q > 1. Moreover,

p− q = c− 10
10

q−1− s2p−1 < (c− 1)q−1− (c− 1)p−1 = (c− 1)(p− q)p−1q−1. (4.3)

If p > q from (4.3), we get that pq < (c− 1), which is a contradiction because q > 1 and
p > (4s

√
c)s= 4s2√c = 4(c− 1)

√
c > c− 1. So we have q > p.

Furthermore,

0 < log
(
p

q

)−1

=− log
(
p

q

)
=− log

(
1− q− p

q

)
. (4.4)

From− log(1− x) < x+ x2 for x ∈ 〈0,1/2〉, we get 0 < log(q/p) < (q− p)/q+ ((q− p)/q)2.
Relation (4.2) implies that p > q− (c− 1)p−1 > q− 1, thus q− p < 1 and (q− p)/q <

q−1.
Then we can conclude that

0 < log
(
q

p

)
< q−1(1 + q−1) < 2q−1 = 2

√
10

s
√

10± 3
√
c

(
20c− 1 + 2t

√
10c

)−n
< (20c)−n,

(4.5)

which proves our lemma. �

The last inequality follows easily from the facts that 2
√

10/(s
√

10± 3
√
c) < 2.23 for

c ≥ 325 and n≥ 2 (n is even and n �= 0).
Now, we apply the following theorem of Baker and Wüstholz (see [3]).

Theorem 4.2. For a linear form Λ �= 0 in logarithms of l algebraic numbers α1, . . . ,αl with
rational coefficients b1, . . . ,bl,

logΛ≥−18(l+ 1)!ll+1(32d)l+2h′
(
α1
) · ··· ·h′(αl) log(2ld) logB, (4.6)

where B =max |bi|, d is the degree of the number field generated by α1, . . . ,αl, and h′(α)=
1/rmax{h(α),| logα|,1}, where h(α) denotes the standard logarithmic Weil height of α, and
r is the degree of α.
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We consider our equation v2m = w2n with n �= 0. We will apply Theorem 4.2 to the
linear form from Lemma 4.1.

We have l = 3, d = 4, B = 2m, and numbers α1 = 20c− 1 + 2t
√

10c, α2 = 2c− 1 + 2s
√
c,

α3 = (s
√

10± 3
√
c)/s

√
10.

Minimal polynomials of α1, α2, and α3 are

α1
2− (40c− 2)α1 + 1= 0, α2

2− (4c− 2)α2 + 1= 0,

(10c− 10)α3
2− (20c− 20)α3 + c− 10= 0.

(4.7)

Hence,

h′
(
α1
)= 1

2
logα1 <

1
2

log40c, h′
(
α2
)= 1

2
logα2 <

1
2

log4c,

h′
(
α3
)= 1

2
log

[
s
√

10 + 3
√
c

s
√

10
· (10c− 10)

]
<

1
2

log20c.
(4.8)

From Lemma 4.1, if v2m =w2n, we get

2n log20c ≤ 18 · 4! · 34 · (32 · 4)5 · 1
2

log40c · 1
2

log4c · 1
2

log20c · log24 · log2m.

(4.9)

Now using Lemmas 3.4 and 3.5, relation (4.9) implies that

2n < 4.78 · 1014 · log12960n4 · log1296n4 · log3.32n, (4.10)

hence n < 5 · 1020, and finally c < 2.025 · 1085. Therefore, we get k ≤ 81.

5. Reduction

For completing the proof of Theorem 1.2 for all positive integers k, we must check that
for 4≤ k ≤ 81, v2m =w2n implies that n=m= 0.

First, we will prove that

0 < 2n log
(

20ck − 1 + 2tk
√

10ck
)
− 2m log

(
2ck − 1 + 2sk

√
ck
)

+ log
sk
√

10± 3
√
ck

sk
√

10
<
(
20ck

)−2n
,

(5.1)

where n < 5 · 1020, implies n≤m≤ 1.
Having proved that, only one possibility will remain for the solution of (2.5), and that

is v2 = w2. However, it is easy to prove that this is not possible. First, we see that v2 = w2

is only possible when y1 =−3.
In that case, we get (4c− 2)(2c− 1)s− s = (40c− 2)[(20c− 1)s− 6tc]− s, which im-

plies that 356c3 − 4348c2 + 778c− 35 = 0; and this equation does not have any solution
modulo 2.

To finish the proof, we use the reduction method described in [16, Section VI.3] and
[17].
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If we have the inequality of the type

|Λ| =
∣∣∣∣∣a0 +

r∑
i=1

xiai

∣∣∣∣∣≤ k2e
−k3X , (5.2)

where ai ∈ C are fixed numbers, k2, k3 are positive real constants, and xi are unknown
integers with X =max |xi| ≤ X0, we can try to reduce the upper bound for X , using the
following method. In our case, there is r = 2.

Let L be a lattice generated by the columns of the matrix

A=
(

1 0[
Ka1

] [
Ka2

]
)
∈M2(Z), (5.3)

where K is some large constant and [·] rounds number to the nearest integer. Now using
the LLL algorithm (see [13]), we can find reduced basis of L. We do that by using the in-
tegral version of the algorithm in the package GP/Pari (see [5]). Let y = (0 −[Ka0])t ∈
Z2. Using the properties of reduced basis, it is easy to compute the lower bound k4 of
‖x− y‖, where x ∈ L and ‖ · ‖ denotes the usual (Euclidean) norm of a vector. We can
compute that using GP/Pari again. In most cases, if we choose the constant K big enough,
we can use the following lemma.

Lemma 5.1. Let S= X0
2 and T = 0.5 · (1 + 2X0). If k4

2 ≥ T2 + S, then

X ≤
log

(
Kk2

)− log
(√

k2
4 − S−T

)
k3

(5.4)

or x1 = 0 and x2 =−[Ka0]/[Ka2].

Proof of the lemma can be found in [16].
In our case, there is an inequality of the type (5.2) with

Λ= a0 +na1 +ma2,

a0 = log
sk
√

10± 3
√
ck

sk
√

10
, a1 = 2log

(
20ck − 1 + 2tk

√
10ck

)
,

a2 =−2log
(

2ck − 1 + 2sk
√
ck
)

, k2 = 1, k3 = 1.2 · log20ck,

X =m≤ 8.3 · 1020.

(5.5)

Using the described method, after two steps of reduction, in all 78 remaining cases, for
4≤ k ≤ 81, we get m≤ 1, which finishes the proof of Theorem 1.2.

6. Concluding remarks

We can prove Conjecture 1.1 for all the triples of the form {1,5,c}, in exactly the same
way. This gives a much shorter and neat proof of the result in [1]. Since Abu Muriefah and
Al-Rashed in [1] have already prepared everything for the use of the described reduction
method, we will only give some details here that are different from their paper.
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First, there is no need for three sequences (ck), because it is well known that all non-
negative solutions of the Pellian equation t2− 5s2 = 4 are given by t = L2k, s= F2k (Lucas
and Fibonacci numbers). Thus, we only have one sequence ck = F2k

2 + 1, which leads to
significant simplification. Later, when we work with a linear form in logarithms, we get
the following.

If vn =wm, n �= 0, then

0 < n log
(

10c− 1 + 2t
√

5c
)
−m log

(
2c− 1 + 2s

√
c
)

+ log
s
√

5± 2
√
c

s
√

5
< (10c)−n. (6.1)

And when we apply the Baker-Wüstholz theorem, we have

h′
(
α3
)= 1

2
log

[
s
√

5 + 2
√
c

s
√

5
· (5c− 5)

]
<

1
2

log10c. (6.2)

This slightly changes the constants which appeared in [1]. We get that n < 5 · 1020, and
finally c = ck < 1084, which implies that k ≤ 101.

Now we can use the same reduction method, because in this case there is an inequality
of type (5.2) with

Λ= a0 +na1 +ma2,

a0 = log
sk
√

5± 2
√
ck

sk
√

5
, a1 = log

(
10ck − 1 + 2tk

√
5ck
)

,

a2 =− log
(

2ck − 1 + 2sk
√
ck
)

, k2 = 1, k3 = log10ck√
5

,

X =m≤ 1.12 · 1021.

(6.3)

By using the reduction method in all cases, for k ≤ 101, after three steps of reduction, we
get m≤ 3. Then to finish our proof, we only need to show that the remaining possibilities,
v1 =w1, v2 =w2, v3 =w3, are impossible because we have the relations n≤m≤ n

√
5 and

m≡ n(mod2). However, this is easy to check.
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[11] A. Dujella and A. Pethö, A generalization of a theorem of Baker and Davenport, Quart. J. Math.
Oxford Ser. (2) 49 (1998), no. 195, 291–306.

[12] K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), no. 222, 833–842.
[13] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients,

Math. Ann. 261 (1982), no. 4, 515–534.
[14] S. P. Mohanty and A. M. S. Ramasamy, The simultaneous Diophantine equations 5y2− 20= X2

and 2y2 + 1= Z2, J. Number Theory 18 (1984), no. 3, 356–359.
[15] T. Nagell, Introduction to Number Theory, John Wiley & Sons, New York, 1951.
[16] N. P. Smart, The Algorithmic Resolution of Diophantine Equations, London Mathematical Soci-

ety Student Texts, vol. 41, Cambridge University Press, Cambridge, 1998.
[17] B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract, vol. 65, Stichting Math-

ematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1989.

Alan Filipin: Department of Mathematics, Faculty of Civil Engineering, University of Zagreb, Fra
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