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We give a general condition which enables one to easily establish fixed point theorems for
a pair of maps satisfying a contractive inequality of integral type.

Branciari [1] obtained a fixed point result for a single mapping satisfying an analogue
of Banach’s contraction principle for an integral-type inequality. The second author [3]
proved two fixed point theorems involving more general contractive conditions. In this
paper, we establish a general principle, which makes it possible to prove many fixed point
theorems for a pair of maps of integral type.

Define ® = {¢: ¢ : R* — R} such that ¢ is nonnegative, Lebesgue integrable, and sat-
isfies

€
JO o(t)dt >0 for each € > 0. (1)

Let y : RT — R* satisfy that
(i) v is nonnegative and nondecreasing on R¥,
(ii) y(t) <t for each t >0,
(iii) >, y"(t) < oo for each fixed t > 0.
Define ¥ = {y : y satisfies (i)—(iii)}.

LemMA 1. Let S and T be self-maps of a metric space (X,d). Suppose that there exists a
sequence {x,} C X with xo € X, Xant1 := SXan, Xan+2 := TXons1, such that {x,} is complete
and there exists a k € [0,1) such that

d(Sx,Ty) d(x,y)
| co(t)dtsw“ <p<t>dt> 2)

0 0

for each distinct x, y € {x,} satisfying either x = T'y or y = Sx, where p € ©, y € V.
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Then, either
(a) Sor T has a fixed point in {x,} or
(b) {x,} converges to some point p € X and

d(xn,p) ©
j o(dt < S yid) forn>0, (3)
0 i=n
where
d(x0,x1)
di= J o(1)dt. @)
0

Proof. Suppose that x2,41 = x2,, for some n. Then x2, = X241 = Sx25, and x, is a fixed
point of S. Similarly, if X3, = %241 for some n, then x,,,4; is a fixed point of T.
Now assume that x, # x,1; for each n. With x = x2,,, ¥ = x20+1, (2) becomes

d(X2n+1>x2n+2) d(XZn:XZnH)
JO o(dt <y ( JO (p(t)dt). (5)
Substituting x = x2,, ¥ = X24-1, (2) becomes
d(X2n+15%2n) d(XnsXon-1)
L o(t)dt < ‘”(L (p(t)dt). ()
Therefore, for each n > 0,
A(XnsXnt1) d(xXn-1,%n)
RO ‘”(L qo(t)dt) <o <y(d), )
Let m,n € N, m > n. Then, using the triangular inequality,
m—1
d (% xm) < > d(xixi1). (8)
It can be shown by induction that
d(xn,%m) m—1 ~d(xixir1)
L oD L (1)t 9)
Using (7) and (9),
d(XnsXm) *© . hd X
JO o(t)dt <> yid) < S yi(d). (10)

Taking the limit of (10) as m,n — oo and using condition (iii) for y, it follows that {x;}
is Cauchy, hence convergent, since X is complete. Call the limit p. Taking the limit of (10)
as m — oo yields (3). O
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THEOREM 2. Let (X, d) be a complete metric space, and let S, T be self-maps of X such that
for each distinct x,y € X,

d(Sx,Ty) M(x,y)
J o()dt < W(I go(t)dt), (11)

0 0

wherek € [0,1), p € O, y € ¥, and

[d(x, Ty) +d(y,Sx)] }

M(x,y):= max{d(x,y),d(x,Sx),d(y, Ty), 5

(12)

Then S and T have a unique common fixed point.

Proof. We will first show that any fixed point of S is also a fixed point of T, and conversely.
Let p = Sp. Then

d(P’sz) }

M(p,p) = max{o,o,d(p, Tp), — d(p,Tp), (13)

and (11) becomes

d(p,Tp) d(p,Tp)
| q)(t)dtsw(j fp(t)dt>, (14)

0 0
which, from (1), implies that p = T'p.

Similarly, p = Tp implies that p = Sp.

We will now show that S and T satisfy (2).

M(x,Sx) = max {d(x, Sx), d(x, Sx), d(Sx, TSx), w } (15)
From the triangular inequality,
d(x,zTSx) < [d(x,Sx) +2d(Sx, ) < max {d(x,5x),d(Sx, TSx)}. (16)
Thus, (11) becomes
d(Sx,TSx) d(Sx,TSx)
J o(1)dt < kJ o()dt, (17)
0 0

a contradiction to (1).

Therefore, for all x € X, M(x,Sx) = d(x,Sx), and (2) is satisfied. If condition (a) of
Lemma 1 is true, then S or T has a fixed point. But it has already been shown that any
fixed point of S is also a fixed point of T, and conversely. Thus S and T have a common
fixed point.

Suppose that conclusion (b) of Lemma 1 is true. Then, from (3),

d(SXZmTP) d(xlmp)
J o(1)dt < w(f go(t)dt), (18)

0

which implies, since X is complete, that limd(Sx,,, Tp) = 0.
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Therefore,
d(p,Tp) < d(p,Sxn) +d(Sx20, Tp) — 0, (19)
and p is a fixed point of T, hence a fixed point of S. Condition (11) clearly implies unique-
ness of the fixed point. O

Every contractive condition of integral type automatically includes a corresponding
contractive condition not involving integrals, by setting ¢(t) = 1 over R™.

There are many contractive conditions of integral type which satisfy (2). Included
among these are the analogues of the many contractive conditions involving rational ex-
pressions and/or products of distances. We conclude this paper with one such example.

CoROLLARY 3. Let (X,d) be a complete metric space, S and T self-maps of X such that, for
each distinct x,y € X,

d(Sx,Ty) n(x,y)
J o(t)dt < kj o(t)dt, (20)
0

0

where ¢ € @, k € [0,1), and

n(x,y):= max{ 40, lei[cll(;i)(;c’sx)] ,d(x,)/)} (21)
Then S and T have a unique common fixed point.
Proof.
n(x,Sx) = max {d(Sx, TSx),d(x,Sx)}. (22)

As in the proof of Theorem 2, it is easy to show that any fixed point of S is also a fixed
point of T, and conversely.

If n(x,Sx) = d(Sx, T'Sx), then an argument similar to that of Theorem 2 leads to a con-
tradiction. Therefore n(x,Sx) = d(x,Sx), and either S or T has a common fixed point, or
(3) is satisfied. In the latter case, with limx, = p, n(p, p) = 0, so that, from (20), p is a
fixed point of S, hence of T. Uniqueness of p is easily established.

Corollary 3 is also a consequence of Lemma 1.

We now provide an example, kindly supplied by one of the referees, to show that
Lemma 1 is more general than [2, Theorem 3.1].

Example 4. Let X := {1/n:n € N U {0} } with the Euclidean metric and S, T are self-maps
of X defined by

—_
‘ B

—— if n is odd, . if n is even,

sS(3)=1-1 itai T(2) =11 ifnisodd (23)
" 5 ifniseven, " 5 ifnisodd,
0 ifn=co, 0 if r = oo,
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For each n, define x3,11 = Sx21, X202 = TX21. With x9 = 1, let O(1) denote the orbit
of xp = 1; that is, O(1) = {1,1/2,1/3,...} and O(1) = O(1) U {0} = X. For x,y € O(1),
y=1/mmevenandx =1/n=Ty=1/(m+1),Sx = 1/(m+2), so that

1 1 1 1 !
d(3x>T}’)_‘m+1_m+1‘_m+1_m+2_(m+1)(m+2)’ (24)
d(x )—‘Ll‘_‘Lfl T
P n T ml T mel nl T m o mel T m(m+ 1)
Thus
dSx,Ty) m
dixy)  m+2" " >
Also
d(Sx, Ty)
qup 486 26
veh d(x%,y) -

so that there is no number ¢ € [0, 1) such that d(Sx,Ty) < cd(x, y) for x,y € O(1) and
x = Ty. Therefore, [2, Theorem 3.1] cannot be used. On the other hand, the hypotheses
of Lemma 1 are satisfied. To see this, it will be shown that condition (2) is satisfied for
some ¢ € O.

We will first show that for any x = 1/n, y = 1/m € O(1) satisfying either x = Ty or
y = 8x,

1 1

,Ty) < - 2
d(Sx )/)< n+l m+1 27
There are four cases.
Casel. y=1/m,meven,x=1/n=Ty=1/(m+1),and Sx = 1/(m+2). Then
1 1 1 1
,Ty) = - = - ) 2
d(S%Ty) ’m+2 m+l' n+1 m+1‘ (28)
Case2. y=1/m,modd,x=1/n=Ty=1/(m+2),and Sx = 1/(m+3). Then
1 1 1 1
d(Sx, Ty) = ‘m+3_m+2‘ T m+2 m+3 (29)
P S B I T '
“m+1 m+3 |n+l m+1l
Case3. x=1/n,neven, y=1/m=Sx=1/(n+2),and Ty = 1/(n+3). Then
1 1 1 1
(%, Ty) = n+2_n+3‘_n+2_n+3
] ] (30)

1 1 ’

“n+l n+3 |n+l n+3
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Case4. x=1/n,nodd, y=1/m=8x=1/(n+1),and Ty = 1/(n+2). Then

1 1 1 1
d(Sx,Ty) = - = - ) 1
(S, Ty) n+1 n+2‘ n+1 m+1‘ (31)
Thus in all cases, (20) is satisfied.
Define ¢ by ¢(t) = t¥272[1 —logt] for t > 0 and ¢(0) = 0. Then, for any 7 > 0,
T
L o(dt = 77, (32)
and ¢ € O.
Using [1, Example 3.6],
d(Sx,Ty)
I o(1)dt < d(Sx, Ty) /45T
0
1 1 VIW/mtD)=(1/me)|
< |—- (33)
n+l m+1
111 1 | VWm=/m)
“3lnm = d(x, )"
for each x, y as in Lemma 1, and condition (2) is satisfied with y(t) = /2. O

Acknowledgment

The authors thank each of the referees for careful reading of the manuscript.

References

[1] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of
integral type, Int. J. Math. Math. Sci. 29 (2002), no. 9, 531-536.

[2] S. Park, Fixed points and periodic points of contractive pairs of maps, Proc. College Natur. Sci.
Seoul Nat. Univ. 5 (1980), no. 1, 9-22.

[3] B. E. Rhoades, Two fixed-point theorems for mappings satisfying a general contractive condition
of integral type, Int. J. Math. Math. Sci. 2003 (2003), no. 63, 4007—4013.

P. Vijayaraju: Department of Mathematics, Anna University, Chennai-600 025, India
E-mail address: vijay@annauniv.edu

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106,
USA
E-mail address: thoades@indiana.edu

R. Mohanraj: Department of Mathematics, Anna University, Chennai-600 025, India
E-mail address: vimraj@yahoo.com


mailto:vijay@annauniv.edu
mailto:rhoades@indiana.edu
mailto:vrmraj@yahoo.com

