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Let τ be a hereditary torsion theory on ModR and suppose that Qτ : ModR →ModR is
the localization functor. It is shown that for all R-modules M, every higher derivation
defined on M can be extended uniquely to a higher derivation defined on Qτ(M) if and
only if τ is a higher differential torsion theory. It is also shown that if τ is a TTF theory
and Cτ : M→M is the colocalization functor, then a higher derivation defined on M can
be lifted uniquely to a higher derivation defined on Cτ(M).

1. Introduction

Rim has shown in [16] that under certain conditions a higher antiderivation d : M →M
can be extended to a higher antiderivation dτ : Qτ(M) → Qτ(M), where Qτ : ModR →
ModR is the localization functor [10] at a hereditary torsion theory τ on ModR. By se-
lecting the involution on the ring in the definition of a higher antiderivation to be the
identity mapping on R, a higher antiderivation d : M→M becomes a higher derivation as
defined by Ribenboim in [15]. Thus Rim’s results, which generalize the results of Golan
[9], show that a higher derivation d : M →M can be extended to a higher derivation
dτ : Qτ(M) → Qτ(M) whenever the conditions of his proposition are met. Uniqueness
of extensions of higher (anti-) derivations and the necessary and sufficient conditions for
the existence of these extensions were not addressed. The purpose of this paper is to intro-
duce higher differential torsion theories and to show that a higher derivation d : M →M
can always be extended uniquely to Qτ(M), the module of quotients of M, if and only if
τ is a higher differential torsion theory on ModR. We also show that a higher derivation
d : M →M can be lifted uniquely to the module of coquotients Cτ(M) of M at a TTF
theory on ModR.

Throughout this paper R will be an associative ring with identity 1, ModR will denote
the category of unitary right R-modules and all modules and module homomorphisms
will be in ModR.
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2. Differential torsion theory

A torsion theory τ on ModR is a pair (T,F) of classes of R-modules such that the following
conditions hold.

(1) T∩F= 0.
(2) If M→N → 0 is an exact sequence in ModR and M ∈ T, then N ∈ T.
(3) If 0→M→N is an exact sequence in ModR and N ∈ F, then M ∈ F.
(4) For each R-module M, there is a short exact sequence 0→ T →M → F → 0 in

ModR with T ∈ T and F ∈ F.
It follows that the class T is closed under factor modules, direct sums, and extensions,

and that F is closed under submodules, direct products, and extensions. A class C of R-
modules is said to be closed under extensions if whenever 0→M1 →M→M2 → 0 is a short
exact sequence in ModR and M1 and M2 are in C, then M is in C. Modules in T will be
called τ-torsion and those in F are called τ-torsion-free. Each R-module M has a largest
and necessarily unique τ-torsion submodule given by tτ(M)=∑N∈SN , where S is the set
of τ-torsion submodules of M. A torsion theory will be called hereditary if T is closed
under submodules and it will be called cohereditary if F is closed under factor modules.
Standard results and terminology on torsion theory can be found in [4, 10] while general
information on rings and modules can be found in [2]. Finally, if N is a submodule of
an R-module M, then for any x ∈M, (N : x) will denote the right ideal of R given by
{a∈ R | xa∈N} and (0 : x) is the right ideal {a∈ R | xa= 0}.

A nonempty collection � of right ideals of R is said to be a (Gabriel) filter [8] if the
following two conditions hold.

(1) If K ∈�, then (K : a)∈� for each a∈ R.
(2) If I is a right ideal of R and K ∈� is such that (I : a) ∈� for each a ∈ K , then

I ∈�.
It can be shown that each filter of right ideals of R also satisfies the following three

conditions.
(3) If J ∈� and K is a right ideal of R such that J ⊆ K , then K ∈�.
(4) If J ,K ∈�, then J ∩K ∈�.
(5) If J ,K ∈�, then JK ∈�.

If τ is a hereditary torsion theory on ModR, then �τ = {K | K is a right ideal of R and
R/K ∈ T} is a filter. An element x of an R-module M is said to be a τ-torsion element of
M if there is a K ∈�τ such that xK = 0. The set of all τ-torsion elements of M is the τ-
torsion submodule tτ(M) of M mentioned earlier. Moreover, an R-module M is τ-torsion
if tτ(M)=M and τ-torsion-free if tτ(M)= 0. Conversely, if � is a filter of right ideals of
R and t(M)= {x ∈M | xK = 0 for some K ∈�}, then τ = (T, F) is a hereditary torsion
theory on ModR, where T = {M | t(M) =M} and F = {M | t(M) = 0}. It follows that
there is a one-to-one correspondence between hereditary torsion theories on ModR and
filters of right ideals of R.

An additive mapping δ : R→ R such that δ(ab)= δ(a)b+ aδ(b) for all a,b ∈ R is said
to be a derivation on R and, given a derivation δ on R, an additive mapping d : M →M
such that d(xa)= d(x)a+ xδ(a) is a derivation on M. Important to our discussion is the
concept of a differential torsion theory, introduced in [5]. If δ is a derivation on R and
� is a filter of right ideals of R, then � is called a differential filter (with respect to δ) if
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for each K ∈� there is an I ∈� such that δ(I) ⊆ K . If τ is a hereditary torsion theory
on ModR and the corresponding filter �τ is a differential filter, then τ is said to be a
differential torsion theory.

Remark 2.1. If � is a differential filter and K ∈�, then there is an I ∈� such that δ(I)⊆
K . The right ideal I can actually be chosen so that I ⊆ K . Indeed, if I ∈� is such that
δ(I)⊆ K and I′ = I ∩K , then I′ ∈�, I′ ⊆ K , and δ(I′)⊆ K .

The following example shows that differential torsion theories do indeed exist. We will
see additional examples later.

Example 2.2. If S is a multiplicatively closed set of elements of R that is a right
denominator set [12], then S satisfies the following conditions.

(1) If (a,s)∈ R× S, then there is a (b, t)∈ R× S such that at = sb.
(2) If sa= 0 with s∈ S and a∈ R, then at = 0 for some t ∈ S.

If δ is a derivation on R, then the set � = {K | K is a right ideal of R and K ∩ S �= ∅}
is a filter of right ideals of R. If K ∈ �, let s ∈ K ∩ S. Since (δ(s),s) ∈ R× S, there is a
(b, t) ∈ R× S such that δ(s)t = sb. Now δ(st) = δ(s)t + sδ(t) = sb + sδ(t) ∈ sR ⊆ K , so if
a ∈ R, then δ(sta)= δ(st)a+ stδ(a)∈ K . Hence δ(stR)⊆ K . Therefore � is a differential
filter, so the torsion theory determined by � is a differential torsion theory.

The following lemma gives two conditions that characterize differential filters.

Lemma 2.3. Let τ be a hereditary torsion theory on ModR with corresponding filter �τ . Then
the following are equivalent for a derivation δ on R.

(1) �τ is a differential filter.
(2) For every R-module M, if x ∈ tτ(M), then there is an I ∈�τ such that δ(I)⊆ (0 : x).
(3) For every R-module M, if d : M→M is a derivation on M, then d(tτ(M))⊆ tτ(M).

Proof. (1)⇒(3). If x ∈ tτ(M), then there is a K ∈ �τ such that xK = 0 and an I ∈ �τ

such that δ(I)⊆ K . Thus if a∈ I ∩K ∈�τ , then we see that 0= d(xa)= d(x)a+ xδ(a)=
d(x)a. Hence d(x)(I ∩K)= 0, so d(x)∈ tτ(M).

(3)⇒(2). If x ∈ tτ(M) and a∈ R, then d(x) and d(xa) are in tτ(M). Thus (0 : d(x))∩
(0 : d(xa)) ∈ �τ . Therefore I = (0 : d(x)) ∩ (0 : d(xa)) ∈ �τ . If a ∈ I , then d(x)a =
d(xa)= 0, so 0= d(xa)= d(x)a+ xδ(a)= xδ(a). Thus δ(a)∈ (0 : x) and we have δ(I)⊆
(0 : x).

(2)⇒(1). If K ∈�τ , then we need to find an I ∈�τ such that δ(I)⊆ K . Since R/K is
τ-torsion, 1 +K ∈ tτ(R/K), so by (2) there is an I ∈�τ such that δ(I)⊆ (0 : 1 +K)= K .

�

3. Higher differential torsion theory

Let n be a nonnegative integer. Then a family of additive mapping δ = {δi : R→ R}ni=0,
denoted by δ : R→ R, is said to be a higher derivation (on R) of order n provided that

δi(ab)= δi(a)δ0(b) + δi−1(a)δ1(b) + ···+ δ0(a)δi(b)

= δi(a)b+ δi−1(a)δ1(b) + ···+ aδi(b)
(3.1)
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for all a,b ∈ R and i= 0,1, . . . ,n, where it is understood that δ0 is the identity mapping on
R. If δ : R→ R is a higher derivation of order 1, then δ1(ab)= δ1(a)b+ aδ1(b) for all a,b ∈
R, so a higher derivation on R of order 1 gives a derivation on R. Given a higher derivation
δ : R→ R of order n, a family of additive mappings d = {di : M →M}ni=0, denoted by
d : M→M, is a higher derivation (on M) of order n if for x ∈M and a∈ R

di(xa)= di(x)δ0(a) +di−1(x)δ1(a) + ···+d0(x)δi(a)

= di(x)a+di−1(x)δ1(a) + ···+ xδi(a)
(3.2)

for i= 0,1, . . . ,n with the understanding that d0 will always be the identity mapping on M.
A higher derivation d : M→M of order 1 gives d1(xa)= d1(x)a+ xδ1(a), so d produces a
derivation on M. To simplify terminology, a higher derivation of order n will be referred
to simply as a derivation of order n.

Remark 3.1. If δ : R→ R and d : M→M are derivations of order n and 0≤ k ≤ n, then δ̄ =
{δi : R→ R}ki=0 and d̄ = {di : M→M}ki=0 are derivations of order k, where d̄ is taken with
respect to δ̄. This will subsequently be described by saying that d produces derivations of
order k for k = 0,1, . . . ,n.

Let � be the filter of right ideals of R and suppose that δ : R→ R is derivation of order
n. If � is such that for each K ∈� there is an I ∈� such that δi(I)⊆ K for i= 0,1, . . . ,n,
then we will say that � is a differential filter of order n. In this setting, the corresponding
hereditary torsion theory τ is called a differential torsion theory of order n. We now fix the
derivation δ : R→ R of order n and assume, unless stated otherwise, that every derivation
d : M →M of order n, every differential filter � of order n, and every differential torsion
theory τ of order n is taken with respect to δ. Because of Remark 3.1 every differential
filter (differential torsion theory) of order n produces a differential filter (differential tor-
sion theory) of order k for k = 0,1, . . . ,n.

In the previous section an example of a differential torsion theory was given. Differ-
ential torsion theories of order n can also be shown to exist. In each of the following
examples δ is a derivation on R of order n. In particular, we also see that each of the
following is also a differential torsion theory.

Example 3.2. Let R be a commutative ring and suppose that � is a filter of ideals of R. If
I ∈�, then I2 ∈�, and it follows that δ0(I2)= I2 ⊆ I . So suppose that δi(I2)⊆ I for all i
with 0≤ i < n. If a,b ∈ I , then

δn(ab)= δn(a)b+ δn−1(a)δ1(b) + ···+ δ1(a)δn−1(b) + aδn(b) (3.3)

which is easily seen to be in I . Since δn is additive, we have that δn(I2)⊆ I . Therefore �τ

is a differential filter of order n, so the corresponding hereditary torsion theory on ModR

is a differential torsion theory of order n. Thus for a commutative ring every hereditary
torsion theory on ModR is a differential torsion theory of order n.

Example 3.3. Jans has shown in [11] that if τ = (T,F) is a hereditary torsion on ModR

such that T is closed under direct products, then there is an idempotent ideal I ∈�τ such
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that I ⊆ K for each K ∈�τ . Using the same procedure as in the previous example, we can
show that δi(I)⊆ K for i= 0,1, . . . ,n. Thus τ is a differential torsion theory of order n.

Example 3.4. If R is left perfect, then Alin and Armendariz [1] and Dlab [7] have indepen-
dently proved that if τ = (T,F) is a hereditary torsion theory on ModR, then T is closed
under direct products. Thus, we see from the previous example that if R is left perfect,
then every hereditary torsion theory on ModR is a differential torsion theory of order n.

With the definitions of a differential filter of order n and a differential torsion the-
ory of order n in place, one might expect that Lemma 2.3 can be generalized to higher
differential filters. The following lemma shows that this is indeed the case.

Lemma 3.5. If τ is a hereditary torsion theory on ModR with corresponding filter �τ , then
the following are equivalent for an integer n≥ 0.

(1) �τ is a differential filter of order n.
(2) For every R-module M and each derivation d : M→M of order n, if x ∈ tτ(M), then

there is an I ∈�τ such that δi(I)⊆ (0 : dn−i(x)) for i= 0,1, . . . ,n.
(3) For every R-module M, if d : M →M is a derivation of order n, then di(tτ(M)) ⊆

tτ(M) for i= 0,1, . . . ,n.

Proof. (1)⇒(3). If n = 0, then it is trivial that (1)⇒(3), so suppose (1)⇒(3) for every
integer k, 0≤ k < n. Now let �τ be a differential filter of order n and suppose that d : M→
M is a derivation of order n. In view of Remark 3.1, d produces a derivation {di : M →
M}n−1

i=0 on M of order n− 1 and it follows that �τ is a differential filter of order n− 1. So
if x ∈ tτ(M), then the induction hypothesis shows that d1(x), . . . ,dn−1(x)∈ tτ(M). Hence
each of

(0 : x),
(
0 : d1(x)

)
,
(
0 : d2(x)

)
, . . . ,

(
0 : dn−1(x)

)
(3.4)

is in �τ . Since �τ is a filter, K =∩n−1
i=0 (0 : di(x))∈�τ , so since �τ is a differential filter of

order n, there is an I ∈�τ such that δi(I)⊆ K for i= 0,1, . . . ,n. If a∈ I , then

dn(xa)= dn−1(x)δ1(a)= ··· = d1(x)δn−1(a)= xδn(a)= 0, (3.5)

so

dn(xa)= dn(x)a+dn−1(x)δ1(a) + ···+d1(x)δn−1(a) + xδn(a) (3.6)

gives dn(x)a= 0. Therefore, dn(x)I = 0, which indicates that dn(x)∈ tτ(M) and we have
(3).

(3)⇒(2). If n = 0, then (3)⇒(2) is trivial since we can let I = (0 : x). Now suppose
that (3)⇒(2) for every integer k, 0 ≤ k < n, and let (3) hold for n. If d : M →M is a
derivation of order n and x ∈ tτ(M), then since (3) holds for n, we have di(x)∈ tτ(M) for
i = 0,1, . . . ,n. Since {di : M →M}n−1

i=0 is a derivation on M of order n− 1, the induction
hypothesis gives I′ ∈�τ such that δi(I′)⊆ (0 : dn−1−i(x)) for i= 0,1, . . . ,n− 1. If a∈ I =
I′ ∩ (0 : dn(x))∈�τ , then

dn(xa)= dn(x)a= dn−1(x)δ1(a)= dn−2(x)δ2(a)= ··· = d1(x)δn−1(a)= 0, (3.7)
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so

dn(xa)= dn(x)a+dn−1(x)δ1(a) + ···+d1(x)δn−1(a) + xδn(a) (3.8)

becomes

xδn(a)= 0. (3.9)

Hence δn(I)⊆ (0 : x), so δi(I)⊆ (0 : dn−i(x)) for i= 0,1, . . . ,n.
(2)⇒(1). It is obvious that (2)⇒(1) when n= 0, so suppose that (2)⇒(1) for every inte-

ger k such that 0≤ k < n. If K ∈�τ , then R/K is τ-torsion, so let d = {di : R/K → R/K}ki=0,
be a derivation on R/K of order k for k = 0,1, . . . ,n. Since (2) holds for k = 0,1, . . . ,n− 1,
for each such k and each x+K ∈ R/K there is an Ik,x ∈�τ such that δi(Ik,x)⊆ (0 : dk−i(x+
K)) for i= 0,1, . . . ,k. In particular, for each x+K ∈ R/K , we have δk(Ik,x)⊆ (0 : x+K) for
k = 0,1, . . . ,n− 1. If a∈ Ix = [∩n−1

k=0Ik,x]∩ (0 : dn(x+K))∈�τ , then

0= dn
(
(x+K)a

)= dn(x+K)a+dn−1(x+K)δ1(a) + ···+ (x+K)δn(a)= (x+K)δn(a).
(3.10)

Hence δk(Ix)⊆ (0 : x+K) for k = 0,1, . . . ,n. If x = 1, this gives δk(I1)⊆ (0 : 1 +K)= K for
each k, so �τ is a differential filter of order n. �

4. Higher derivations and modules of quotients

If τ is a torsion theory on ModR, then an R-module Qτ(M) together with an R-
homomorphism ϕ : M →Qτ(M) is said to be a localization of M at τ provided that kerϕ
and cokerϕ are τ-torsion and Qτ(M) is τ-injective and τ-torsion-free. An R-module M is
said to be τ-injective if HomR(−,M)= 0 preserves short exact sequences 0→ N1 → N →
N2 → 0, where N2 is a τ-torsion module. The module Qτ(M), called the module of quo-
tients of M, is unique up to isomorphism whenever it can be shown to exist. Ohtake [14]
has shown that a localization ϕ : M →Qτ(M) exists for every R-module M if and only if
the torsion theory is hereditary. It is well known that if τ is hereditary, then we can set
Qτ(M)= Eτ(M/tτ(M)), where Eτ(M/tτ(M)) is the τ-injective envelope ofM/tτ(M) [4, 10].
If η : M →M/tτ(M) is the natural surjection and µ : M/tτ(M)→ Qτ(M) is the canonical
injection, then ϕ= µη.

If d : M→M is a derivation of order n, then we say that d can be extended to a deriva-
tion dτ : Qτ(M)→Qτ(M) of order n if the diagram

M
ϕ

di

Qτ(M)

dτi

M
ϕ

Qτ(M)

(4.1)

is commutative for i = 0,1, . . . ,n. We can now show that a derivation d : M →M of or-
der n has a unique extension to a derivation dτ : Qτ(M)→ Qτ(M) of order n for every
R-module M if and only if τ is a differential torsion theory of order n. This result is es-
tablished by the following lemma and proposition.
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Lemma 4.1. Let τ be a differential torsion theory of order n on ModR. If a derivation d :
M→M of order n can be extended to a derivation dτ : Qτ(M)→Qτ(M) of order n, then dτ

is unique.

Proof. Let �τ be the differential filter of order n corresponding to τ and suppose that dτ

and d̄τ are derivations of order n that extend d to Qτ(M). Then for k, 0≤ k ≤ n, dτ , d̄τ ,
and d produce derivations d∗τ , d̄∗τ , and d∗ of order k and d∗τ and d̄∗τ lift d∗. Since �τ is
a differential filter of order k, if x ∈Qτ(M), then by Lemma 3.5 there are I ,I′ ∈�τ such
that δi(I)⊆ (0 : dτk−i(x)) and δi(I′)⊆ (0 : d̄k−i(x)) for i= 0,1, . . . ,k. If a∈ K = I ∩ I′ ∈�τ ,
then for each k we see that

0= (dτk − d̄τk
)
(xa)

= dτk(x)a+dτk−1(x)δ1(a) + ···+ xδk(a)

− d̄τk(x)a− d̄τk−1(x)δ1(a)−···− xδk(a)

= [dτk(x)− d̄τk(x)
]
a+

[
dτk−1(x)− d̄τk−1(x)

]
δ1(a)

+ ···+
[
dτ1(x)− d̄τ1(x)

]
δi−1(a) + [x− x]δk(a)

= [dτk(x)− d̄k(x)
]
a.

(4.2)

Hence, [dτk(x)− d̄τk(x)]K = 0, so dτk(x)− d̄τk(x) ∈ tτ(Qτ(M)) = 0. Therefore dτk = d̄τk for
k = 0,1, . . . ,n and so dτ = d̄τ . �

We can now establish the main result of this section.

Proposition 4.2. Let τ be a hereditary torsion theory on ModR. Then for every R-module
M, each derivation d : M →M of order n can be extended uniquely to a derivation dτ :
Qτ(M)→Qτ(M) of order n if and only if τ is a differential torsion theory of order n.

Proof. Suppose that d : M →M is a derivation of order n. If τ is a differential torsion
theory of order n, then �τ is a differential filter of order n, so it follows from Lemma 3.5
that di(tτ(M)) ⊆ tτ(M) for i = 0,1, . . . ,n. Hence d can be extended to a derivation dτ :
Qτ(M)→Qτ(M) of order n since Rim proved in [16] that such an extension exists when
di(tτ(M))⊆ tτ(M) for i= 0,1, . . . ,n. Uniqueness follows from Lemma 4.1.

Conversely, suppose that every derivation d : M → M of order n can be extended
uniquely to a derivation dτ : Qτ(M)→Qτ(M) of order n. From the commutative diagram

M
ϕ

di

Qτ(M)

dτi

M
ϕ

Qτ(M)

(4.3)

we see that ϕdi = dτi ϕ for i= 0,1, . . . ,n. So if x ∈ tτ(M)= kerϕ, then ϕdi(x)= 0 for each
i. This gives di(x) ∈ kerϕ = tτ(M) and so we have di(tτ(M)) ⊆ tτ(M) for i = 0,1, . . . ,n.
Calling on Lemma 3.5 again, we see that τ is a differential torsion theory of order n. �

Corollary 4.3 [5, Proposition 2.3]. If τ is a hereditary torsion theory on ModR, then for
every R-module M, each derivation d : M →M can be extended uniquely to a derivation
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dτ : Qτ(M)→ Qτ(M) if and only if τ is a differential torsion theory. In particular, τ is a
differential torsion theory, then the derivation δ : R→ R extends uniquely to a derivation
δτ : Qτ(R)→Qτ(R) defined on the ring of the quotients of R.

Proof. The first part of the corollary is clear if we consider d : M →M to be derivation
of order 1. Now let M = R and apply this result to the derivation δ : R→ R to prove the
second part of the corollary. �

One consequence of Proposition 4.2 is that for a hereditary torsion theory τ on ModR,
the right ideals of the filter �τ form a test set for determining if derivations on M of order
n can be extended uniquely to derivations on Qτ(M) of order n.

5. Higher derivations and modules of coquotients

We now show that a result similar to Proposition 4.2 holds for colocalizations of modules
whenever they universally exist. Colocalizations have been investigated under various ap-
proaches by several authors, for example, see [3, 6, 13].

An R-module Cτ(M) together with an R-linear mapping ϕ : Cτ(M)→M is said to be
a colocalization of M at τ provided that kerϕ and cokerϕ are τ-torsion-free and Cτ(M)
is τ-torsion and τ-projective. We call Cτ(M) the module of coquotients of M. We point
out that τ is not assumed to be hereditary. When this is the case, a nonzero submodule
of a τ-torsion module can be τ-torsion-free, a condition that is only possible for the zero
submodule when τ is hereditary.

An R-module M is τ-projective if HomR(M,−) preserves short exact sequences 0→
N1 → N → N2 → 0, where N1 is a τ-torsion-free module. Ohtake was also able to show
in [14] that a torsion theory τ is cohereditary if and only if every R-module M has a
colocalization at τ. If ϕ : Cτ(M)→M is a colocalization of M at τ, then there is an R-
epimorphism π : Cτ(M)→ tτ(M) such that if µ : tτ(M)→M is the canonical injection,
then ϕ= µπ. Furthermore, a module of coquotients is unique up to isomorphism when-
ever it can be shown to exist.

If d : M→M is a derivation of order n, then we say that d can be lifted to a derivation
dτ : Cτ(M)→ Cτ(M) of order n if the diagram

Cτ(M)
ϕ

dτi

M

di

Cτ(M)
ϕ

M

(5.1)

is commutative for i= 0,1, . . . ,n. We will now show that such liftings are always possible
at a TTF theory τ on ModR.

When τ = (T,F) is cohereditary, the class F of τ is both a torsion and a torsion-free
class, and the class F generates a hereditary torsion theory σ = (F,D) on ModR. The pair
(τ,σ) is often referred to as a TTF theory. Jans has shown in [11] that there is a one-
to-one correspondence between TTF theories and idempotent ideals I of R. If (τ,σ) is
a TTF theory with corresponding idempotent ideal I , then the filter determined by σ is
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given by �σ = {K ⊆ R | K ⊇ I ,K a right ideal of R}. In this setting, tτ(R)= I and tτ(M)=
MI for each R-module M. We have seen in Example 3.3 that σ is a higher differential
torsion theory although this condition on σ is not a factor in lifting higher derivations
d : M→M to higher derivations dτ : Cτ(M)→ Cτ(M). Sato has shown in [17] that if τ is

cohereditary, then I ⊗R I
π→ I

µ→ R is a colocalization of R, where the map π : I ⊗R I → I
is given by

∑n
i=1(ai ⊗ bi) �→

∑n
i=1 aibi. Furthermore, I ⊗R I is a ring, possibly without an

identity, and an (R,R)-bimodule. Sato also shows in [17] that M⊗R I ⊗R I
π→MI

µ→M is
a colocalization of M at τ, where the map π : M⊗R I ⊗R I →MI is given by

∑n
i−1(xi⊗ ai⊗

bi) �→
∑n

i=1 xiaibi. Since I is an idempotent ideal, δi(I)⊆ I for i= 0,1, . . . ,n and it follows
that each derivation d : M →M of order n is such that di(MI) ⊆MI for i = 0,1, . . . ,n.
Hence, d restricted to MI produces a derivation d : MI →MI of order n that will also be
denoted by d.

We now need the following lemma.

Lemma 5.1. If I is an idempotent ideal of R and d : M →M is a derivation of order n, then
the map ρi : M× I × I →M⊗R I ⊗R I given by

ρi(x,a,b)=
i∑

j=0

di− j(x)⊗
[ j∑

k=0

δj−k(a)⊗ δk(b)

]
(5.2)

isR-balanced for i=0,1, . . . ,n. That is, ρi is additive in each variable and such that ρi(xr,a,b)
= ρi(x,ra,b) and ρi(x,ar,b)= ρi(x,a,rb) for (x,a,b)∈M× I × I and r ∈ R.

Proof. We show ρi(xr,a,b)= ρi(x,ra,b). The proof that ρi(x,ar,b)= ρi(x,a,rb) is similar

and so is omitted. Expanding
∑i

j=0di− j(xr)⊗ [
∑ j

k=0 δj−k(a)⊗ δk(b)] by the first summa-
tion, we have

di(xr)⊗
[ 0∑

k=0

δ0−k(a)⊗ δk(b)

]
+di−1(xr)⊗

[ 1∑
k=0

δ1−k(a)⊗ δk(b)

]

+di−2(xr)⊗
[ 2∑

k=0

δ2−k(a)⊗ δk(b)

]
+ ···+ xr⊗

[ i∑
k=0

δi−k(a)⊗ δk(b)

]
.

(5.3)

Using (5.3) and the definition of di− j for j = 0,1, . . . ,n, we get

[ i∑
s=0

di−s(x)δs(r)

]
⊗
[ 0∑

k=0

δ0−k(a)⊗ δk(b)

]

+

[ i−1∑
s=0

di−1−s(x)δs(r)

]
⊗
[ 1∑

k=0

δ1−k(a)⊗ δk(b)

]

+

[ i−2∑
s=0

di−2−s(x)δs(r)

]
⊗
[ 2∑

k=0

δ2−k(a)⊗ δk(b)

]

+ ···+ xr⊗
[ i∑

k=0

δi−k(a)⊗ δk(b)

]

(5.4)
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which, by shifting subscripts, can be written as

[ i∑
s=0

di−s(x)δs(r)

]
⊗
[ 0∑

k=0

δ0−k(a)⊗ δk(b)

]

+

[ i∑
s=1

di−s(x)δs−1(r)

]
⊗
[ 1∑

k=0

δ1−k(a)⊗ δk(b)

]

+

[ i∑
s=2

di−s(x)δs−2(r)

]
⊗
[ 2∑

k=0

δ2−k(a)⊗ δk(b)

]

+ ···+ xr⊗
[ i∑

k=0

δi−k(a)⊗ δk(b)

]
.

(5.5)

Using properties of tensor products, (5.5) becomes

[ i∑
s=0

di−s(x)

]
⊗
[ 0∑

k=0

δs(r)δ0−k(a)⊗ δk(b)

]

+

[ i∑
s=1

di−s(x)

]
⊗
[ 1∑

k=0

δs−1(r)δ1−k(a)⊗ δk(b)

]

+

[ i∑
s=2

di−s(x)

]
⊗
[ 2∑

k=0

δs−2(r)δ2−k(a)⊗ δk(b)

]

+ ···+ x⊗
[ i∑

k=0

rδi−k(a)⊗ δk(b)

]
.

(5.6)

We now use (5.6) to compute the (i − t)th term, where 0 ≤ t ≤ i. Each summand
[
∑i

s=u di−s(x)]⊗ [
∑u

k=0 δs−u(r)δu−k(a)⊗ δk(b)] in (5.6) contains an (i− t)th term until
t > u. These terms are

di−t(x)⊗
[ 0∑

k=0

δt(r)δ0−k(a)⊗ δk(b)

]

+di−t(x)⊗
[ 1∑

k=0

δt−1(r)δ1−k(a)⊗ δk(b)

]

+di−t(x)⊗
[ 2∑

k=0

δt−2(r)δ2−k(a)⊗ δk(b)

]

+ ···+di−t(x)⊗
[ t∑

k=0

rδt−k(a)⊗ δk(b)

]
.

(5.7)
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Next use (5.7) to compute and group the terms corresponding to k = 0, k = 1, and so on
until k = t. This produces

di−t(x)⊗ [δt(r)a+ δt−1(r)δ1(a) + δt−2(r)δ2(a) + ···+ rδt(a)
]⊗ b

+di−t(x)⊗ [δt−1(r)a+ δt−2(r)δ1(a) + ···+ rδt−1(a)
]⊗ δ1(b)

+di−t(x)⊗ [δt−2(r)a+ δt−3(r)δ1(a) + ···+ rδt−2(a)
]⊗ δ2(b)

+ ···+di−t(x)⊗ ra⊗ δt(b)

(5.8)

which reduces to

di−t(x)⊗ δt(ra)⊗ b+di−t(x)⊗ δt−1(ra)⊗ δ1(b)

+di−t(x)⊗ δt−2(ra)⊗ δ2(b) + ···+di−t(x)⊗ ra⊗ δt(b).
(5.9)

The last expression (5.9) sums to

di−t(x)⊗
[ t∑

k=0

δt−k(ra)⊗ δk(b)

]
(5.10)

and since this holds for any t with 0≤ t ≤ i, it follows that

i∑
j=0

di− j(xr)⊗
[ j∑

k=0

δj−k(a)⊗ δk(b)

]
=

i∑
t=0

di−t(x)⊗
[ t∑

k=0

δt−k(ra)⊗ δk(b)

]
. (5.11)

Hence ρi(xr,a,b)= ρi(x,ra,b). �

Lemma 5.2. If τ is a cohereditary torsion theory on ModR and a derivation d : M →M of
order n lifts to a derivation dτ : Cτ(M)→ Cτ(M) of order n, then dτ is unique.

Proof. If n = 0, then d0 is the identity map on M, so suppose that dτ , d̄τ : Cτ(M) →
Cτ(M), both of order 0, lift d to Cτ(M). Then by definition dτ0 = d̄τ0 = idCτ (M), so dτ = d̄τ .
Make the induction hypothesis that each derivation d : M →M of order k, 0 ≤ k < n,
lifts uniquely to Cτ(M) by a derivation of order k. If d : M →M is a derivation of order
n and dτ , d̄τ : Cτ(M)→ Cτ(M) are derivations of order n that lift d, then d, dτ , and d̄τ

produce derivations d∗, d∗τ , and d̄∗τ of order n− 1 and d∗τ and d̄∗τ lift d∗. Hence
the induction hypothesis gives dτi = d̄τi for i = 0,1, . . . ,n− 1. If x ∈ Cτ(M) and r ∈ R,
then (dτ − d̄τ)(xr) =∑n

j=0(dτn− j − d̄τn− j)(x)δj(r), so (dτ − d̄τ)(xr) = (dτn − d̄τn)(x)r. Thus

dτ − d̄τ is an R-linear mapping which means that Im(dτ − d̄τ) is τ-torsion. Since dτn and
d̄τn render the diagram

M⊗RI⊗RI
ϕ

dτn d̄τn

M

dn

M⊗RI⊗RI
ϕ

M

(5.12)

commutative, it follows that Im(dτ − d̄τ) ⊆ kerϕ. Hence Im(dτ − d̄τ) is also τ-torsion-
free and so Im(dτ − d̄τ)= 0. Therefore dτ = d̄τ . �
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Proposition 5.3. If τ is a cohereditary torsion theory on ModR, then every derivation d :
M→M of order n lifts uniquely to a derivation dτ : Cτ(M)→ Cτ(M) of order n.

Proof. If τ = (T,F) and σ = (F,D) is the torsion theory generated by F, let I be the idem-
potent ideal corresponding to the TTF theory (τ,σ). If d : M→M is a derivation of order
n, then, for each i, we have a commutative diagram

M× I × I
ρ

ρi

M⊗RI⊗RI

dτi

M⊗RI⊗RI

(5.13)

where ρ : M× I × I →M⊗R I ⊗R I is the canonical R-balanced map given by ρ(x,a,b) =
x⊗ a⊗ b, ρi is the R-balanced map of Lemma 5.1, and dτi is the group homomorphism
produced by the tensor product M⊗R I ⊗R I . It follows that

dτi (x⊗ a⊗ b)= ρi(x,a,b)=
i∑

j=0

di− j(x)⊗
[ j∑

k=0

δj−k(a)⊗ δk(b)

]
(5.14)

for each (x,a,b)∈M× I × I , so, for each i, consider the commutative diagram

M⊗RI⊗RI
π

dτi

MI
µ

di

M

di

M⊗RI⊗RI
π

MI
µ

M

(5.15)

Since ϕ= µπ, where π : M⊗R I ⊗R I →MI is such that π(
∑n

i=1(xi⊗ ai⊗ bi))=∑n
i=1 xiaibi

and µ : MI →M is the canonical injection, we see that ϕ(
∑n

i=1(xi⊗ ai⊗ bi))=∑n
i=1 xiaibi

for each
∑n

i=1(xi⊗ ai⊗ bi)∈M⊗R I ⊗R I . Now let x⊗ a⊗ b be a generator of M⊗R I ⊗R I .
Then

ϕdτi (x⊗ a⊗ b)= ϕρi(x,a,b)

= ϕ

( i∑
j=0

di− j(x)⊗
[ j∑

k=0

δj−k(a)⊗ δk(b)

])

=
i∑

j=0

di− j(x)

[ j∑
k=0

δj−k(a)δk(b)

]

=
i∑

j=0

di− j(x)δj(ab)

= di(xab)

= diϕ(x⊗ a⊗ b).

(5.16)
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Since ϕdτi and diϕ are additive functions, this suffices to show that ϕdτi = diϕ, so the
diagram

M⊗RI⊗RI
ϕ

dτi

M

di

M⊗RI⊗RI
ϕ

M

(5.17)

is commutative for each i. Finally, to show that dτ is a derivation of order n, we need to
show for i= 0,1, . . . ,n that

dτi
(
(x⊗ a⊗ b)r

)= i∑
j=0

di− j(x⊗ a⊗ b)δj(r) (5.18)

for each generator x⊗ a⊗ b∈M⊗R I ⊗R I and r ∈ R. Now

i∑
j=0

di− j(x⊗ a⊗ b)δj(r)

= dτi (x⊗ a⊗ b)r +dτi−1(x⊗ a⊗ b)δ1(r)

+dτi−2(x⊗ a⊗ b)δ2(r) + ···+ (x⊗ a⊗ b)δi(r)

(5.19)

and the expression on the right of the equality in (5.19) gives


 i∑

j=0

di− j(x)⊗
[ j∑

k=0

δj−k(a)⊗ δk(b)

]r

+


 i−1∑

j=0

di−1− j(x)⊗
[ j∑

k=0

δj−k(a)⊗ δk(b)

]δ1(r)

+


 i−2∑

j=0

di−2− j(x)⊗
[ j∑

k=0

δj−k(a)⊗ δk(b)

]
δ2(r) + ···+ (x⊗ a⊗ b)δi(r).

(5.20)

Using properties of tensor products, (5.20) becomes

i∑
j=0

di− j(x)⊗ δj(ab)⊗ r +
i−1∑
j=0

di−1− j(x)⊗ δj(ab)⊗ δ1(r)

+
i−2∑
j=0

di−2− j(x)⊗ δj(ab)⊗ δ2(r) + ···+
(
x⊗ ab⊗ δi(r)

)
.

(5.21)
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Expanding (5.21) produces

di(x)⊗ ab⊗ r +di−1(x)⊗ δ1(ab)⊗ r +di−2(x)⊗ δ2(ab)⊗ r + ···
+di−1(x)⊗ ab⊗ δ1(r) +di−2(x)⊗ δ1(ab)⊗ δ1(r) + ···
+di−2(x)⊗ ab⊗ δ2(r) + ···+ x⊗ δi(ab)⊗ r

+ x⊗ δi−1(ab)⊗ δ1(r) + x⊗ δi−2(ab)⊗ δ2(r)

...

+ x⊗ ab⊗ δi(r).

(5.22)

By summing (5.22) down the columns, we have

di(x)⊗ ab⊗ r +di−1(x)⊗
1∑

k=0

δ1−k(ab)⊗ δk(r)

+di−2(x)⊗
2∑

k=0

δ2−k(ab)⊗ δk(r)

+ ···+ x⊗
i∑

k=0

δi−k(ab)⊗ δk(r)

(5.23)

which gives

i∑
j=0

di− j(x)⊗
n∑

k=0

δj−k(ab)⊗ δk(r)

= dτi (x⊗ ab⊗ r)

= dτi (x⊗ a⊗ br)

= dτi
(
(x⊗ a⊗ b)r

)
.

(5.24)

Uniqueness follows from Lemma 5.2. �

The proof of the first part of the corollary follows from the proposition by considering
the derivation d : M →M to be a higher derivation of order 1 and the lifting of δ follows
from this and the observation that R⊗R I ⊗R I ∼= I ⊗R I and RI = I .
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