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Let 7 be a hereditary torsion theory on Modgr and suppose that Q; : Modg — Modp is
the localization functor. It is shown that for all R-modules M, every higher derivation
defined on M can be extended uniquely to a higher derivation defined on Q. (M) if and
only if 7 is a higher differential torsion theory. It is also shown that if 7 is a TTF theory
and C; : M — M is the colocalization functor, then a higher derivation defined on M can
be lifted uniquely to a higher derivation defined on C,(M).

1. Introduction

Rim has shown in [16] that under certain conditions a higher antiderivation d : M — M
can be extended to a higher antiderivation d” : Q.(M) — Q.(M), where Q, : Modg —
Modgy is the localization functor [10] at a hereditary torsion theory 7 on Modg. By se-
lecting the involution on the ring in the definition of a higher antiderivation to be the
identity mapping on R, a higher antiderivation d : M — M becomes a higher derivation as
defined by Ribenboim in [15]. Thus Rim’s results, which generalize the results of Golan
[9], show that a higher derivation d : M — M can be extended to a higher derivation
d": Q;(M) — Q;(M) whenever the conditions of his proposition are met. Uniqueness
of extensions of higher (anti-) derivations and the necessary and sufficient conditions for
the existence of these extensions were not addressed. The purpose of this paper is to intro-
duce higher differential torsion theories and to show that a higher derivation d: M — M
can always be extended uniquely to Q,(M), the module of quotients of M, if and only if
7 is a higher differential torsion theory on Modg. We also show that a higher derivation
d: M — M can be lifted uniquely to the module of coquotients C,(M) of M at a TTF
theory on Modg.

Throughout this paper R will be an associative ring with identity 1, Modg will denote
the category of unitary right R-modules and all modules and module homomorphisms
will be in Modp.
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2. Differential torsion theory

A torsion theory T on Modgy is a pair (T, F) of classes of R-modules such that the following
conditions hold.
(1) TnF=0.
(2) If M — N — 0 is an exact sequence in Modg and M € T, then N € T.
(3) If 0 = M — N is an exact sequence in Modg and N € F, then M € F.
(4) For each R-module M, there is a short exact sequence 0 = T — M — F — 0 in
Modg with T € Tand F € F.

It follows that the class T is closed under factor modules, direct sums, and extensions,
and that F is closed under submodules, direct products, and extensions. A class C of R-
modules is said to be closed under extensions if whenever 0 — M; — M — M, — O isashort
exact sequence in Modg and M, and M, are in C, then M is in C. Modules in T will be
called 7-torsion and those in F are called 7-torsion-free. Each R-module M has a largest
and necessarily unique 7-torsion submodule given by t,(M) = > ycsN, where S is the set
of 7-torsion submodules of M. A torsion theory will be called hereditary if T is closed
under submodules and it will be called cohereditary if F is closed under factor modules.
Standard results and terminology on torsion theory can be found in [4, 10] while general
information on rings and modules can be found in [2]. Finally, if N is a submodule of
an R-module M, then for any x € M, (N : x) will denote the right ideal of R given by
{aeR|xae N} and (0:x) is the right ideal {a € R | xa = 0}.

A nonempty collection F of right ideals of R is said to be a (Gabriel) filter [8] if the
following two conditions hold.

(1) If K € &, then (K : a) € & for each a € R.
(2) If I is a right ideal of R and K € &F is such that (I : a) € & for each a € K, then
Ie&.

It can be shown that each filter of right ideals of R also satisfies the following three
conditions.

(3) If ] € & and K is a right ideal of R such that ] € K, then K € &.
(4) IfJ,K € P, then]nK € F.
(5) If J,K € %, then JK € %.

If 7 is a hereditary torsion theory on Modg, then &, = {K | K is a right ideal of R and
R/K € T} is a filter. An element x of an R-module M is said to be a t-torsion element of
M if there is a K € &, such that xK = 0. The set of all T-torsion elements of M is the 7-
torsion submodule ¢, (M) of M mentioned earlier. Moreover, an R-module M is T-torsion
if t;(M) = M and 7-torsion-free if t,(M) = 0. Conversely, if % is a filter of right ideals of
Rand t(M) = {x € M | xK = 0 for some K € &}, then 7 = (T, F) is a hereditary torsion
theory on Modg, where T = {M | t(M) = M} and F = {M | t(M) = 0}. It follows that
there is a one-to-one correspondence between hereditary torsion theories on Modg and
filters of right ideals of R.

An additive mapping 6 : R — R such that §(ab) = §(a)b +ad(b) for all a,b € R is said
to be a derivation on R and, given a derivation § on R, an additive mappingd : M — M
such that d(xa) = d(x)a+x6(a) is a derivation on M. Important to our discussion is the
concept of a differential torsion theory, introduced in [5]. If § is a derivation on R and
% is a filter of right ideals of R, then & is called a differential filter (with respect to §) if
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for each K € & there is an I € F such that §(I) < K. If 7 is a hereditary torsion theory
on Modg and the corresponding filter %, is a differential filter, then 7 is said to be a
differential torsion theory.

Remark 2.1. If F is a differential filter and K € %, then there is an I € & such that §(I) <
K. The right ideal I can actually be chosen so that I < K. Indeed, if I € & is such that
d()cKandI'=InK,thenI'’ e %,I' < K,and §(I') < K.

The following example shows that differential torsion theories do indeed exist. We will
see additional examples later.

Example 2.2. If S is a multiplicatively closed set of elements of R that is a right
denominator set [12], then § satisfies the following conditions.

(1) If (a,s) € R X S, then there is a (b,t) € R X S such that at = sb.

(2) If sa = 0 with s € Sand a € R, then at = 0 for some t € S.
If § is a derivation on R, then the set % = {K | K is a right ideal of Rand K N S # &}
is a filter of right ideals of R. If K € &, let s € K N S. Since (8(s),s) € R xS, there is a
(b,t) € R x S such that §(s)t = sb. Now O(st) = 6(s)t +s8(t) = sb+s6(t) € sR € K, so if
a € R, then §(sta) = 8(st)a+std(a) € K. Hence §(stR) < K. Therefore % is a differential
filter, so the torsion theory determined by & is a differential torsion theory.

The following lemma gives two conditions that characterize differential filters.

LemMa 2.3. Let T be a hereditary torsion theory on Modg with corresponding filter %,. Then
the following are equivalent for a derivation § on R.
(1) &, is a differential filter.
(2) For every R-module M, if x € t,(M), then there is an I € F, such that §(I) < (0: x).
(3) For every R-module M, if d : M — M is a derivation on M, then d(t.(M)) < t.(M).

Proof. (1)=(3). If x € t,(M), then there is a K € &, such that xXK =0 and an [ € &,
such that §(I) € K. Thusifa € I n K € %, then we see that 0 = d(xa) = d(x)a+x8(a) =
d(x)a. Hence d(x)(INK) = 0, so d(x) € t;(M).

(3)=(2). If x € t,(M) and a € R, then d(x) and d(xa) are in t;(M). Thus (0:d(x)) N
(0:d(xa)) € F;. Therefore I = (0:d(x)) N (0:d(xa)) € F,. If a € I, then d(x)a =
d(xa) =0,500=d(xa) =d(x)a+x8(a) = x6(a). Thus 6(a) € (0:x) and we have 6(I) <
(0:x).

(2)=(1). If K € &, then we need to find an I € %, such that §(I) < K. Since R/K is
T-torsion, 1+ K € t,(R/K), so by (2) there is an I € &, such that §(I) = (0:1+K) = K.

O

3. Higher differential torsion theory

Let n be a nonnegative integer. Then a family of additive mapping § = {J;: R — R},
denoted by § : R — R, is said to be a higher derivation (on R) of order n provided that

di(ab) = 6i(a)8o(b) +6i-1(a)01(b) + - - - + 8o (a)8i(b)

(3.1)
=0i(a)b+d;-1(a)d1(b) + - - - +adi(b)
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foralla,b € Randi=0,1,...,n, where it is understood that &, is the identity mapping on
R.If§ : R — Ris a higher derivation of order 1, then &) (ab) = §,(a)b+ad, (b) foralla,b €
R, so a higher derivation on R of order 1 gives a derivation on R. Given a higher derivation
0 :R — R of order n, a family of additive mappings d = {d; : M — M}’ ,, denoted by
d: M — M, is a higher derivation (on M) of order n if forx € M and a € R

di(xa) = di(x)bo(a) + di-1(x)d1(a) + - - - +do(x)i(a)

2
— di(x)a+di 1 ()01(@)+ - -+ x0i(a) (5:2)
fori=0,1,...,n with the understanding that dy will always be the identity mapping on M.
A higher derivation d : M — M of order 1 gives d;(xa) = d,(x)a + x6;(a), so d produces a
derivation on M. To simplify terminology, a higher derivation of order n will be referred
to simply as a derivation of order n.

Remark 3.1. If8: R — Rand d : M — M are derivations of order nand 0 < k < n, then § =
{6; :R— R}fzo andd = {d;: M — M}f‘:o are derivations of order k, where d is taken with
respect to §. This will subsequently be described by saying that d produces derivations of
order k fork=0,1,...,n.

Let & be the filter of right ideals of R and suppose that § : R — R is derivation of order
n. If % is such that for each K € % there is an I € % such that §;(I) € K fori=0,1,...,n,
then we will say that F is a differential filter of order n. In this setting, the corresponding
hereditary torsion theory 7 is called a differential torsion theory of order n. We now fix the
derivation ¢ : R — R of order n and assume, unless stated otherwise, that every derivation
d: M — M of order n, every differential filter % of order n, and every differential torsion
theory 7 of order # is taken with respect to 8. Because of Remark 3.1 every differential
filter (differential torsion theory) of order n produces a differential filter (differential tor-
sion theory) of order k for k = 0,1,...,n.

In the previous section an example of a differential torsion theory was given. Differ-
ential torsion theories of order n can also be shown to exist. In each of the following
examples ¢ is a derivation on R of order n. In particular, we also see that each of the
following is also a differential torsion theory.

Example 3.2. Let R be a commutative ring and suppose that 7 is a filter of ideals of R. If
I € F, then I? € %, and it follows that 8,(I?) = I? < I. So suppose that 8;(1?) < I for all i
withO0 <i<n.Ifa,b €I, then

Sn(ab) = 84(a)b + 8,-1(a)01 (D) + - - - +81(a)8,-1(b) + adu(b) (3.3)

which is easily seen to be in I. Since 8, is additive, we have that 8,(I?) < I. Therefore %,
is a differential filter of order #, so the corresponding hereditary torsion theory on Modg
is a differential torsion theory of order #n. Thus for a commutative ring every hereditary
torsion theory on Modp is a differential torsion theory of order n.

Example 3.3. Jans has shown in [11] that if 7 = (T,F) is a hereditary torsion on Modg
such that T is closed under direct products, then there is an idempotent ideal I € %, such
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that I < K for each K € &,. Using the same procedure as in the previous example, we can
show that §;(I) € K fori =0, 1,...,n. Thus 7 is a differential torsion theory of order n.

Example 3.4. If R is left perfect, then Alin and Armendariz [1] and Dlab [7] have indepen-
dently proved that if 7 = (T,F) is a hereditary torsion theory on Modg, then T is closed
under direct products. Thus, we see from the previous example that if R is left perfect,
then every hereditary torsion theory on Modg is a differential torsion theory of order #.

With the definitions of a differential filter of order n and a differential torsion the-
ory of order # in place, one might expect that Lemma 2.3 can be generalized to higher
differential filters. The following lemma shows that this is indeed the case.

LemMa 3.5. If T is a hereditary torsion theory on Modg with corresponding filter &, then
the following are equivalent for an integer n > 0.
(1) %; is a differential filter of order n.
(2) For every R-module M and each derivation d : M — M of order n, if x € t,(M), then
thereis an I € &, such that §;(I) < (0:d,—i(x)) fori=0,1,...,n.
(3) For every R-module M, if d : M — M is a derivation of order n, then d;(t,(M)) <
t:(M) fori=0,1,...,n.

Proof. (1)=(3). If n =0, then it is trivial that (1)=(3), so suppose (1)=(3) for every
integer k, 0 < k < n. Now let &, be a differential filter of order n and suppose thatd : M —
M is a derivation of order n. In view of Remark 3.1, d produces a derivation {d; : M —
M}?) on M of order n — 1 and it follows that % is a differential filter of order n — 1. So
if x € t;(M), then the induction hypothesis shows that d; (x),...,d,—1(x) € t.(M). Hence
each of

(0:x),(0:d1(x)), (0:da(x)),..., (0: du-1(x)) (3.4)

is in %,. Since F; is a filter, K = N/ (0 : di(x)) € F., so since F, is a differential filter of
order n, there isan I € %, such that §;(I) € K fori=0,1,...,n. If a € I, then

du(xa) = dn-1(x)61(a) = - - - = di(x)6,-1(a) = x6,(a) = 0, (3.5)
SO
dn(xa) = dp(x)a+dy-1(x)01(a) + - - - +di(x)6,-1(a) + xbu(a) (3.6)

gives d,(x)a = 0. Therefore, d,(x)I = 0, which indicates that d,(x) € t;(M) and we have
(3).

(3)=(2). If n =0, then (3)=(2) is trivial since we can let I = (0: x). Now suppose
that (3)=(2) for every integer k, 0 < k < n, and let (3) hold for n. If d : M — M is a
derivation of order n and x € t,(M), then since (3) holds for n, we have d;(x) € t,(M) for
i=0,1,...,n. Since {d; : M — M}?;Ol is a derivation on M of order n — 1, the induction
hypothesis gives I' € &, such that §;(I') < (0:d,—1-i(x)) fori=0,1,...,n— 1. Ifaecl=
I'n(0:d,(x)) € F,, then

dn(xa) = dn(x)a = du-1(x)01(a) = du—2(x)b2(a) = - - - = di(x)0n-1(a) =0,  (3.7)
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SO
dn(xa) = dy(x)a+d, 1 (x)81(a) + - - - +dy(x)5,-1(a) +x8,(a) (3.8)
becomes
x0,(a) =0. (3.9

Hence §,(I) € (0:x),s0 8;(I) = (0:d,_i(x)) fori=0,1,...,n.

(2)=(1).Itis obvious that (2)=(1) when n = 0, so suppose that (2)=(1) for every inte-
ger k such that0 < k < n. IfK € %, then R/K is 7-torsion, so letd = {d;: R/K — R/K}f;o,
be a derivation on R/K of order k for k = 0,1,...,n. Since (2) holds for k =0,1,...,n— 1,
for each such k and each x+K € R/K there is an Iy € %, such that §;(Ix) < (0: dg—i(x +
K)) fori=0,1,...,k. In particular, for each x + K € R/K, we have 8 (I x) < (0: x+K) for
k=0,1,....n—1.1fae L, = [N}{ k] N (0:d,(x+K)) € F,, then

0=d,(x+K)a) =d,(x+K)a+d,_1(x+K)é1(a)+ -+ (x+K)8,(a) = (x+K)J,(a).
(3.10)

Hence §k(I;) € (0:x+K) fork =0,1,...,n. Ifx = 1, this gives 8¢ (I;) = (0: 1 +K) = K for
each k, so &, is a differential filter of order n. O

4. Higher derivations and modules of quotients

If 7 is a torsion theory on Modg, then an R-module Q,(M) together with an R-
homomorphism ¢ : M — Q. (M) is said to be a localization of M at T provided that ker ¢
and coker ¢ are 7-torsion and Q; (M) is T-injective and 7-torsion-free. An R-module M is
said to be t-injective ift Homg(—, M) = 0 preserves short exact sequences 0 - N; — N —
N, — 0, where N is a 7-torsion module. The module Q,(M), called the module of quo-
tients of M, is unique up to isomorphism whenever it can be shown to exist. Ohtake [14]
has shown that a localization ¢ : M — Q. (M) exists for every R-module M if and only if
the torsion theory is hereditary. It is well known that if 7 is hereditary, then we can set
Q:(M) = E;(M/t,(M)), where E.(M/t,(M)) is the T-injective envelope of M/t,(M) [4, 10].
If 5 : M — M/t;(M) is the natural surjection and y : M/t (M) — Q.(M) is the canonical
injection, then ¢ = un.

Ifd: M — M is a derivation of order #, then we say that d can be extended to a deriva-
tion d” : Q.(M) — Q. (M) of order n if the diagram

M —> Q.(M)

d,i ld{ (4.1)

M —= Q:(M)
is commutative for i = 0,1,...,n. We can now show that a derivation d : M — M of or-
der n has a unique extension to a derivation d” : Q;(M) — Q.(M) of order n for every
R-module M if and only if 7 is a differential torsion theory of order n. This result is es-
tablished by the following lemma and proposition.
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LemMa 4.1. Let 7 be a differential torsion theory of order n on Modg. If a derivation d :
M — M of order n can be extended to a derivation d* : Q;(M) — Q.;(M) of order n, then d*
is unique.

Proof. Let F; be the differential filter of order n corresponding to 7 and suppose that d*
and d” are derivations of order n that extend d to Q,(M). Then fog k,0<k=<mn,d,d,
and d produce derivations d*7,d*?, and d* of order k and d** and d* lift d*. Since %; is
a differential filter of order k, if x € QT(M ), then by Lemma 3.5 there are I,I" € &, such
that §;(I) < (0:d;_;(x)) and §;(I') < (0:dk—i(x)) fori=0,1,....k. fac K=1InI € &,
then for each k we see that
0 = (df - df) (xa)
=di(x)a+di_,(x)01(a)+ - - +x6k(a)
—di(x)a—df_,(x)8(a) — - - - — x0k(a)
= [df(x) —di(x)]a+[df_ (x) —dl_,(x)]8:1(a)
+o 4 [di(x) = d] (x)]6i-1(a) + [x — x] 6k (a)
= [df(x) — dk(x)]a.

(4.2)

Hence, [d}(x) — d_,Z(x)]K =0, so di(x) — (J,ﬁ(x) € t;(Q;(M)) = 0. Therefore d = cf,z for
k=0,1,....,nand so d7 = d". O

We can now establish the main result of this section.

ProrosITION 4.2. Let T be a hereditary torsion theory on Modg. Then for every R-module
M, each derivation d : M — M of order n can be extended uniquely to a derivation d* :
Q: (M) — Q;(M) of order n if and only if T is a differential torsion theory of order n.

Proof. Suppose that d : M — M is a derivation of order n. If 7 is a differential torsion
theory of order n, then ZF; is a differential filter of order n, so it follows from Lemma 3.5
that d;(t,(M)) < t,(M) for i = 0,1,...,n. Hence d can be extended to a derivation d” :
Q:(M) — Q;(M) of order n since Rim proved in [16] that such an extension exists when
di(t;(M)) € t,(M) fori=0,1,...,n. Uniqueness follows from Lemma 4.1.

Conversely, suppose that every derivation d : M — M of order n can be extended
uniquely to a derivation d” : Q;(M) — Q.(M) of order n. From the commutative diagram

M —1 QM)

d,i ld} (4.3)
¢

M —— Q;(M)

we see that ¢d; = df ¢ for i =0,1,...,n. So if x € t;(M) = ker ¢, then ¢d;(x) = 0 for each
i. This gives d;(x) € ker¢ = t,(M) and so we have d;(t;(M)) < t,(M) for i =0,1,...,n.
Calling on Lemma 3.5 again, we see that 7 is a differential torsion theory of order n. [

CoROLLARY 4.3 [5, Proposition 2.3]. If T is a hereditary torsion theory on Modg, then for
every R-module M, each derivation d : M — M can be extended uniquely to a derivation
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d”: Q.(M) — Q;(M) if and only if T is a differential torsion theory. In particular, T is a
differential torsion theory, then the derivation § : R — R extends uniquely to a derivation
07 : Q¢(R) — Q;(R) defined on the ring of the quotients of R.

Proof. The first part of the corollary is clear if we consider d : M — M to be derivation
of order 1. Now let M = R and apply this result to the derivation § : R — R to prove the
second part of the corollary. O

One consequence of Proposition 4.2 is that for a hereditary torsion theory 7 on Modg,
the right ideals of the filter &, form a test set for determining if derivations on M of order
n can be extended uniquely to derivations on Q.(M) of order n.

5. Higher derivations and modules of coquotients

We now show that a result similar to Proposition 4.2 holds for colocalizations of modules
whenever they universally exist. Colocalizations have been investigated under various ap-
proaches by several authors, for example, see [3, 6, 13].

An R-module C;(M) together with an R-linear mapping ¢ : C;(M) — M is said to be
a colocalization of M at T provided that ker ¢ and coker ¢ are 7-torsion-free and C;(M)
is 7-torsion and 7-projective. We call C,;(M) the module of coquotients of M. We point
out that 7 is not assumed to be hereditary. When this is the case, a nonzero submodule
of a T-torsion module can be 7-torsion-free, a condition that is only possible for the zero
submodule when 7 is hereditary.

An R-module M is 7-projective if Homg(M, —) preserves short exact sequences 0 —
N; - N — N, — 0, where N; is a 7-torsion-free module. Ohtake was also able to show
in [14] that a torsion theory 7 is cohereditary if and only if every R-module M has a
colocalization at 7. If ¢ : C;(M) — M is a colocalization of M at 7, then there is an R-
epimorphism 7 : C;(M) — t,(M) such that if y: t,(M) — M is the canonical injection,
then ¢ = p7m. Furthermore, a module of coquotients is unique up to isomorphism when-
ever it can be shown to exist.

If d: M — M is a derivation of order n, then we say that d can be lifted to a derivation
d”:C;(M) — C.(M) of order n if the diagram

Co(M) —2> M

d:l ldi (5.1)

Co(M) —2> M

is commutative for i = 0,1,...,n. We will now show that such liftings are always possible
ata TTF theory 7 on Modg.

When 7 = (T,F) is cohereditary, the class F of 7 is both a torsion and a torsion-free
class, and the class F generates a hereditary torsion theory ¢ = (F,D) on Modg. The pair
(1,0) is often referred to as a TTF theory. Jans has shown in [11] that there is a one-
to-one correspondence between TTF theories and idempotent ideals I of R. If (7,0) is
a TTF theory with corresponding idempotent ideal I, then the filter determined by o is
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given by &, = {K < R| K 2 I,K aright ideal of R}. In this setting, ;(R) = I and t,(M) =
MI for each R-module M. We have seen in Example 3.3 that ¢ is a higher differential
torsion theory although this condition on ¢ is not a factor in lifting higher derivations
d: M — M to higher derivations d” : C;(M) — C;(M). Sato has shown in [17] that if 7 is
cohereditary, then I ®p I Z 1 £ Ris a colocalization of R, where the map m: 1 @I — I
is given by X7, (a; ® b;) — >.i, a;b;. Furthermore, I ® I is a ring, possibly without an
identity, and an (R, R)-bimodule. Sato also shows in [17] that M ®r I @ I ZMIE Mis
a colocalization of M at 7, where the map 7: M ®g [ ®x I — MI is givenby > | (xi ® a; ®
b;) — >, xia;b;. Since I is an idempotent ideal, 8;(I) < I for i = 0,1,...,7n and it follows
that each derivation d : M — M of order n is such that d;(MI) € MI for i = 0,1,...,n
Hence, d restricted to MI produces a derivation d : MI — MI of order n that will also be
denoted by d.
We now need the following lemma.

Lemma 5.1. If I is an idempotent ideal of R and d : M — M is a derivation of order n, then
the map pi: M XIXI - M®grI®rl given by

i J
pi(x,a,b) = > di-j(x) ® [Zajk(a)®8k(b):| (5.2)

j=0 k=0

is R-balanced fori=0,1,...,n. That is, p; is additive in each variable and such that p;(xr,a,b)
= pi(x,ra,b) and p;(x,ar,b) = pi(x,a,rb) for (x,a,b) e M xIxIandr € R

Proof. We show pi(xr,a,b) = pi(x,ra,b). The proqf that p;(x,ar,b) = pi(x,a,rb) is similar
and so is omitted. Expanding Z;:O dij(xr)® [ {(:0 0j-k(a) ® 6x(b)] by the first summa-

tion, we have

0 1
di(xr) ® [ > 60x(a)® 8k(b)] +dig(xr)® [ D0 ka)e 5k(b):|
k=0

, k=0 i (5.3)
+dia(xr) ® [ > 8 kla)® 6k(b)} +oetar® [ > k(@) e (Sk(h)].
k=0 k=0
Using (5.3) and the definition of d;_; for j = 0,1,...,n, we get
[Zd, s(x)8s(r } [250 () ® 8( b)}
s=0
[Ed, 1-s(x)05(r) ] ® [z&k(a) ®8k(b):|

k=0 (5.4)

2
[zdl 2-5()0s(r) ] ® [Z5zk(a)®5k(b):|
k=0

+tXxr® |:ZI: 8,‘,](((1) ® (Sk(b):|

k=0
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which, by shifting subscripts, can be written as

[i,sx)(S } [ZaOk ®8kb)}

s=0

+ [Zdis(x)&l(r)] ® [ > Sik(a)e 5k(b):|

s=1 k=0

i ) (5.5)
+ [Z di—s(x)&—z(r)] ® [ D0 k(a)® (Sk(b):|
s=2 k=0
+oHxr® [ i di_x(a)® Sk(b)].
k=0
Using properties of tensor products, (5.5) becomes
i 0
[z } [z& 60ka)®5k(b):|
[Zdz s(x) |:285 1(r)81-k(a) ® & (b ):|
(5.6)

[Zd, s(x)] [Z& 2(r)62-k(a) ® Ok (b )}
zr
k=0

+ - +x®|: bi_k(a )®8k(b)].

We now use (5.6) to compute the (i — t)th term, where 0 < ¢ < i. Each summand
(X, dies(x)] ® [0 Os—u(r)Su—k(a) ® 8k(b)] in (5.6) contains an (i — t)th term until
t > u. These terms are

0
di—+(x) ® [ > 6:(r)80-k(a) ® 8k(b):|

k=0

1
+di—(x) ® [ > 8io1(r)8ik(a) ® 5k(b)}
k=0 (5.7)

2
+di(x) ® [ > 8i-a(r)8rk(a) ® 5k(b)}

k=0

t
+otdi(x)® [Z ré—k(a) ® (Mb)}.

k=0
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Next use (5.7) to compute and group the terms corresponding to k = 0, k = 1, and so on
until k = ¢. This produces

di—(x) ® [8(r)a+8i—1(r)d1(a) + 8;—2(r)82(a) + - - - +7d(a)| ® b
+di(x) ® [6-1(r)a+8—2(r)di(a) + - - - +16—1(a)] ® 6,(b)

5.8
+di(x) ® [6r-2(r)a+8-3(r)di(a) + - - - +18,2(a)] ® 52(b) 58
+--+di(x)®@ra® 6:(b)
which reduces to
di—1(x) ® 0;(ra) ® b+d;—(x) ® 6;-1(ra) ® 6:(b)
s (X)® Ba(ra) ® r(b)+ - -+ +di1(x) & ra® Su(b). (59)
The last expression (5.9) sums to
t
di+(x) ® [ > Sik(ra)® 5k(b)] (5.10)
k=0

and since this holds for any ¢ with 0 < < i, it follows that

i j i t
> dij(xr)® [ > 8ik@)e ak(b)] =>di(x)® [ > Sik(ra)® 6k(b)]. (5.11)
j=0 k=0 t=0

k=0
Hence p;(x7,a,b) = pi(x,ra,b). O

LemMA 5.2. If T is a cohereditary torsion theory on Modg and a derivation d : M — M of
order n lifts to a derivation d™ : C(M) — C;(M) of order n, then d” is unique.

Proof. If n =0, then dy is the identity map on M, so suppose that d*,d" : C,(M) —
C: (M), both of order 0, lift d to C,(M). Then by definition di = d§ = idc, ), so d* = d".
Make the induction hypothesis that each derivation d: M — M of order k, 0 < k < n,
lifts uniquely to C,(M) by a derivation of order k. If d : M — M is a derivation of order
n and d*,d" : C,(M) — C,(M) are derivations of order n that lift d, then d, d”, and d*
produce derivations d*, d*7, and d*™ of order n — 1 and d** and d*7 lift d*. Hence
the induction hypothesis gives df = d_iT fori=0,1,....,n—1. If x € C;(M) and r € R,
then (d* — d7)(xr) = Z?:O(dZ—j - d_;_j)(x)(?j(r), so (d7 — d7)(xr) = (dr - ci;)(x)r. Thus
d” — d" is an R-linear mapping which means that Im (d” — d") is 7-torsion. Since d’ and
d? render the diagram

MpRI®RI L M
d;ld; ld" (5.12)

Mepl®rl — > M

commutative, it follows that Im (d” — dn) c ker . Hence Im (d" — d") is also 7-torsion-
free and so Im (d* — d*) = 0. Therefore d™ = d". O
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ProrosITION 5.3. If T is a cohereditary torsion theory on Modg, then every derivation d :
M — M of order n lifts uniquely to a derivation d* : C.(M) — C.(M) of order n.

Proof. If v = (T,F) and o = (F,D) is the torsion theory generated by F, let I be the idem-
potent ideal corresponding to the TTF theory (7,0). If d : M — M is a derivation of order
n, then, for each i, we have a commutative diagram

MXIXI —t> Moglogl

\ ld{ (5.13)

M®RI®RI

where p: M X1 X1 — M ®gI®gI is the canonical R-balanced map given by p(x,a,b) =
x®a®b, p; is the R-balanced map of Lemma 5.1, and d; is the group homomorphism
produced by the tensor product M ® I ®g I. It follows that

i j
di(x®a®b) =pi(x,a,b) = Z i-j(x)® [zéj_k(a) ®8k(b)] (5.14)
k=0

for each (x,a,b) € M x I X I, so, for each i, consider the commutative diagram

MerI®rl —">= MI —= M

d:l ld,‘ id,- (5.15)
u

Meglogl ——> MI —= M

Since ¢ = um, where 7: M ®gI ®x I — MI is such that 7(X/_(x; ® a; ® b;)) = > | xia:b;
and y: MI — M is the canonical injection, we see that o(3./(x; ® a; ® b;)) = > | xia:b;
foreach > (x;®a; ® b;) € M ®x I ® I. Now let x ® a ® b be a generator of M ®g I ®g I.
Then

odi (x®a®b) = gpi(x,a,b)

_<P<Zd' i( x)®[Z6] k(a) ® 8 (b )D

j=0

B gdi [ZS} K)o b)] (5.16)

di_(x)5;(ab)

=0
= d;(xab)
=dip(x®a®b).
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Since ¢d] and d;¢ are additive functions, this suffices to show that ¢df = d;¢, so the
diagram

MQRIQRI L‘M

dl.fl ldi (5.17)

Mepl®rl — > M

is commutative for each i. Finally, to show that d” is a derivation of order #, we need to
show fori =0,1,...,n that

i

di (x®a®b)r) Z di_j(x®a®b)d;(r) (5.18)
j=0

for each generatorx ® a® b € M ®@rI ®pI and r € R. Now

i i(x®a®b)dj(r)
=0 (5.19)
=di(x®a®b)r+d_(x®a®b)d (r)

+di ,(x®a®b)&(r)+--+(x®a®b)di(r)

and the expression on the right of the equality in (5.19) gives

[Z x)@[Zéj k(a) ® i (b )H

+ [Z di-1-j(x)® [Z dj-r(a)® MMH 01 (r) (5.20)
j
[Zd, j(x)® [Z a) ® Ok ( )]]é‘z(r)+---+(x®a®b)8,-(r).

Using properties of tensor products, (5.20) becomes

i—1
di_j(x)®8j(ab)®r+ > di 1 j(x) ® 8;(ab) @ 8,(r)
=0

-

~
Il
f=]

(5.21)
+Zd,2, )®8;(ab) ® 8(r) + - - + (x ® ab ® 8i(r)).
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Expanding (5.21) produces

dix)®aber+di_1(x)®d1(ab)®r+d;_»(x)®5(ab)@r+- - -
+di 1(x)®ab® 61(r)+di_2(x) ® 61(ab) ® 61 (r)+ - - -
+di 2(x)®ab® 6 (r)+ - +x®di(ab)®r
+x®0;1(ab) ® &, (r) +x® 8;_,(ab) ® 8, (r) (5.22)

+x®ab® §(r).

By summing (5.22) down the columns, we have

1
dix)®aber+di_(x)® Z O1-k(ab) ® 8k(r)
k=0

2
+dia(x)® > 8-k(ab) ® 8(r) (5.23)
k=0

+ 4+ x® Zl: 8i-x(ab) ® &k(r)

k=0
which gives

i n

di i(x)® > 8 k(ab) & 8i(r)

=0 k=0
=di(x®aber) (5.24)
=di(x®a®br)
=dl (x®a®b)r).
Uniqueness follows from Lemma 5.2. O

The proof of the first part of the corollary follows from the proposition by considering
the derivation d : M — M to be a higher derivation of order 1 and the lifting of § follows
from this and the observation that R®rI ®rI = I ®grI and Rl = 1.
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