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Two distinct gauge potentials can have the same field strength, in which case they are said
to be “copies” of each other. The consequences of this ambiguity for the general affine
space � of gauge potentials are examined. Any two potentials are connected by a straight
line in �, but a straight line going through two copies either contains no other copy or is
entirely formed by copies.

1. Introduction

In an nonabelian gauge theory, two or more distinct gauge potentials can correspond to
the same field strength. As only field strengths are measurable, it is impossible to know
exactly which gauge potential is actually at work in a given physical system. This is the
Wu-Yang ambiguity [26], whose importance comes from the fact that, in quantum field
theory, the fundamental fields are the gauge potentials and not the field strengths. In
particular, the corresponding particles are the quanta of the gauge potentials. A good
understanding of this ambiguity, in all its aspects and consequences, does not seem to
have been as yet achieved. Activity on the subject has been intensive in the first years after
its discovery [4, 6, 7, 13, 14, 20, 25] but declined afterwards [19]. Progress has been made
step by step, sometimes through the discovery of general properties of formal character
[9, 10], most of times by unearthing particular cases which elucidate special points [3].

This paper presents a formal property which shows up in the space of gauge poten-
tials and provides (at least) a partial classification of the connections corresponding to a
given curvature. We will use both the physicist’s and the mathematician’s nomenclatures
interchangeably. It should perhaps be recalled that what physicists call “gauge potentials”
and “field strengths” are, in the language of mathematicians, “connections” and “curva-
tures” on fiber bundles. They are, respectively, 1-forms and 2-forms with values in the
Lie algebra of the gauge group (the bundle “structure group”). Connections and curva-
tures belong, consequently, to the adjoint representation, in which the group acts on its
own Lie algebra. We will use an invariant notation, such as A = JaAa

µdxµ for a connec-
tion related to a gauge group with generators {Ja}, F = (1/2)JaFa

µνdxµ∧dxν for the field
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strength, K = JaKa
µdxµ for covectors in the adjoint representation of the gauge algebra,

and so forth. Wedge products will be left implicit.
The Wu-Yang ambiguity is introduced in Section 2. Connections related to a fixed

group constitute a space [23] which we will call “A-space,” or �. The main properties of
this space of gauge potentials are presented in Section 3. The ambiguity is recast into a
more cogent language in Section 4. The discussion of the affine character of � given in
Section 5 leads then to the main results, given in Section 6.

2. General aspects

Consider two connection forms A and A�, with curvatures

F = dA+AA, F� = dA� +A�A�. (2.1)

Under a gauge transformation produced by a member of the gauge group represented by
the matrix g in the adjoint representation, the connections will transform noncovariantly
according to

A=⇒ A′ = gAg−1 + gdg−1, A� =⇒ A�
′ = gA�g−1 + gdg−1. (2.2)

The curvatures, on the other hand, are covariant under these transformations F ⇒ F′ =
gFg−1, F�⇒ F�

′ = gF�g−1. The difference

K = A�−A (2.3)

will be a 1-form transforming according to

K ′ = A�
′ −A′ = g

(
A�−A

)
g−1 = g−1Kg. (2.4)

That is, the difference between two connections is a matrix covariant 1-form in the ad-
joint representation. The ambiguity appears when F� = F but K �= 0. Gauge potentials
like A and A�, corresponding to the same field strength, are usually called “copies.”

3. On the connection space �

The geometric background for any gauge theory is a principal bundle with the gauge
group as structure group and (for relativistic field theories) space-time as base space.
The principal bundle includes the basic actors (connections and curvatures), as its tan-
gent structure contains the adjoint representation. Other (“source”) fields, belonging to
other representations, inhabit associated bundles. A “gauge” is a section on the principal
bundle: it chooses, for each point x of the base space, one proper point on the bundle.
A section is taken into another by a gauge transformation, induced by a group element
g(x) which is distinct for distinct points of the base space. The group elements in a gauge
theory are, thus, point-dependent.

It is then more convenient to take a functional point of view [11], and consider the
mappings g from the base space into the group. In the same token, each connection A
can be seen as the mapping taking point x of the base space into its value A(x). Space �
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is then the set of such mappings. The set � = {g : x → g(x)} of all mappings from the
base space into the group constitute the so-called “large group.” Gauge covariance di-
vides � into equivalence classes [11, 27], each class representing a potential up to gauge
transformations as those given in (2.2). The space of gauge inequivalent connections is
the quotient α =�/�. An element of � can be locally represented by A = (a,g), with
a∈�/� and g ∈ �. More details on the �-space structure can be found in [2]. For our
purpose here, it will be sufficient to say that only variations along α=�/� are of interest
for copies, as variations along � are mere gauge transformations.

4. The ambiguity

The ambiguity turns up in nonabelian theories because F, given as in (2.1), does not
determine A. At each point of space-time, a gauge can be chosen in which A = 0 and
consequently F = dA. This is true also along a line [15, 16, 17, 18]. One might think
of integrating by the homotopy formula [21] to obtain A from F. This is impossible,
because the involved homotopy requires the validity of F = dA on a domain of the same
dimension of space-time and the alluded gauge cannot exist (unless F = 0) on a domain
of dimension 2 or higher [1]. For copies, the difference form K defines a translation
on space � leaving F invariant. This invariance establishes another division of � into
equivalence classes. In effect, define the relation R by ARA� if A� is a copy of A. This
relation is reflexive, transitive, and symmetric, consequently an equivalence. The space of
connections with distinct curvatures will be the quotient α/R.

Covariant differentials have different expressions for different representations and
form degrees. For example, the gauge group element g can be seen as a matrix acting on
column vectors V belonging to an associated vector representation. The covariant differ-
entials according to A and A� will have, in that representation, the forms DV = dV +AV ;
D�V = dV +A�V = dV + (A�−A)V +AV , from which follows that

D�V =DV +KV. (4.1)

For a 1-form in the adjoint matrix representation, as the difference 1-form (2.3),

DK = dK +AK +KA= dK + {A,K}, D�K = dK +A�K +KA� = dK +
{
A�,K

}
.

(4.2)

It is immediately found that

D�K =DK + 2KK (4.3)

and the relation between the two curvatures is

F� = F +DK +KK. (4.4)

A direct calculation gives

DDK + [K ,F]= 0, (4.5)
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which actually holds for any covariant 1-form in the adjoint representation. Equation
(4.4) leads to a general result: given a connection A defining a covariant derivative DA,
each solution K of DAK +KK = 0 will give a copy.

5. On the affine character of �

We have been making implicit use of one main property of the space � of connections,
namely, � is a convex affine space, homotopically trivial [23]. One way to state this oper-
ationally [24] has been used above. Given a connection A, every other connection A� can
be written as A� = A+K , for some covariant covector K . Another way can be stated as
follows: through any two connections A and A�, there exists a straight line of connections
At, given by

At = tA� + (1− t)A. (5.1)

In this expression, t is a real parameter, A0 = A, and A1 = A�. In terms of the difference
form K , that straight line is written as

At = A+ tK =A�− (1− t)K. (5.2)

Of course, dAt/dt = K . Indicating by Dt the covariant derivative according to connection
At, we find

DtK =DK + 2tKK. (5.3)

The curvature of At is

Ft = dAt +AtAt = tF� + (1− t)F + t(t− 1)KK , (5.4)

or

Ft = F + tDK + t2KK = F + tDtK − t2KK. (5.5)

Notice that F0 = F, F1 = F�. It follows that

dFt
dt

=DK + 2tKK =DtK. (5.6)

6. The copy structure of space �

The results of the previous section are valid for any two connections A, A�. We now
address the question of copies. From (4.4), the necessary and sufficient condition to have
F� = F is

DK +KK = 0. (6.1)

From the Bianchi identity D�F� = 0 applied with A� = A+K , it follows that

[K ,F]= 0. (6.2)
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These conditions [8] lead to the well-known determinantal conditions [5, 22], for the
nonexistence of copies. Notice that (4.5) and (6.2) imply that DDK = 0. Notice also en
passant that copies are of interest only for nonabelian theories. In the abelian case, KK ≡
0, DK ≡ dK , and condition (6.1) reduces to dK = 0, which means that locally K = dφ for
some φ. Then A� = A+dφ, a mere gauge transformation.

A first consequence of the conditions above is

dFt
dt

=DtK = (1− 2t)DK = (2t− 1)KK. (6.3)

A second consequence is that now the line through F and F� takes the form

Ft = F + t(t− 1)KK = F + t(1− t)DK. (6.4)

We have thus the curvatures of all the connections linking two copies along a line in
connection space. Are there other copies on this line? In other words, is there any s �= 0,1
for which Fs = F? The existence of one such copy would imply, by the two expressions
in (6.4), that DK = 0 and KK = 0. But then, by the first equality of (5.5), all points on the
line At = A+ tK are copies. Three colinear copies imply that At is a line entirely formed
of copies.

As DK = 0 implies that KK = 0 by (6.1), it also implies that D�K = 0 (by (4.3)) and
vice versa. Consequently, every point of the line At = tA� + (1− t)A through two copies
A and A� represents a copy when the difference tensor K =A�−A is parallel-transported
by either A or A�.

In this case, dFt/dt = 0, that is, Ft = F for all values of t. Also, DtK = 0 for all t, so that
K is parallel-transported by each connection on the line. Notice that an arbitrary finite K
such that DK = 0 does not necessarily engender a line of copies. It is necessary that K be
a priori the difference between two copies.

The above condition is necessary and sufficient. If Ft �= F for some t �= 0,1, (6.4)
implies both DK �= 0 and KK �= 0. If the line joining two copies includes one point which
is not a copy, then all other points for t �= 0,1 correspond to noncopies.

Given two copies and the straight line joining them, either there is no other copy on the
line or every point of the line represents a copy.

As a consequence, if there are copies for a certain F, and one of them (say,A) is isolated,
then there are no copies on the lines joining A to the other copies. Notice, however, that
the existence of families of copies dependent on continuous parameters is known [12].
Thus, certainly not every copy is isolated.

The question of isolated copies is better understood by considering, instead of the
above finite K , infinitesimal translations on �. In effect, consider the variation of F,
δF = dδA+ δAA+AδA = DAδA. In order to have δF = 0, it is enough that DAδA = 0.
Consequently, no copy is completely isolated. There can be copies close to any A: each
variation satisfying DAδA = 0 leads to a copy. Taken together with what has been said
above on the finite case, this means that there will be lines of copies along the “direc-
tions” of the parallel-transported δA’s.

Notice that a line through copies of the vacuum is necessarily a line of copies. In effect,
given A and A� with F = F� = 0, there are a gauge in which A= 0 and another gauge in
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which A� = 0. Using the first of these gauges, At = tK along the line. On the other hand,
Ft = t(t − 1)KK = 0 by (6.4). As DK +KK = 0, we can write KK = DK +KK + KK =
dK +AK +KA+KK +KK = dK +A�K +KA� =D�K =D�A� = F� = 0. It follows that
Ft = 0.

Summing up, the overall picture is the following. From any A will emerge lines of
three kinds:

(i) lines of copies, given by those δA which are parallel-transported by A;
(ii) lines of noncopies, given by those δA which are not parallel-transported by A;

(iii) lines along covariant matrix 1-forms K satisfying DAK + KK = 0, which will
meet one copy at A+K , and only that one.
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(FAPESP), Brazil, and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico
(CNPq), Brazil, for financial support.

References

[1] R. Aldrovandi, P. B. Barros, and J. G. Pereira, The equivalence principle revisited, Found. Phys.
33 (2003), no. 4, 545–575.

[2] R. Aldrovandi and J. G. Pereira, An Introduction to Geometrical Physics, World Scientific, New
Jersey, 1995.

[3] C. G. Bollini, J. J. Giambiagi, and J. Tiomno, Gauge field copies, Phys. Lett. B 83 (1979), no. 2,
185–187.

[4] L. S. Brown and W. L. Weisberger, Vacuum polarization in uniform non-Abelian gauge fields,
Nuclear Phys. B 157 (1979), no. 2, 285–326.

[5] M. Calvo, Connection between Yang-Mills potentials and their field strengths, Phys. Rev. D (3) 15
(1977), no. 6, 1733–1735.

[6] S. Coleman, Non-Abelian plane waves, Phys. Lett. B 70 (1977), no. 1, 59–60.
[7] S. Deser and W. Drechsler, Generalized gauge field copies, Phys. Lett. B 86 (1979), no. 2, 189–

192.
[8] S. Deser and F. Wilczek, Non-uniqueness of gauge-field potentials, Phys. Lett. B 65 (1976), no. 4,

391–393.
[9] F. A. Doria, Quasi-abelian and fully nonabelian gauge field copies: a classification, J. Math. Phys.

22 (1981), no. 12, 2943–2951.
[10] , The geometry of gauge field copies, Comm. Math. Phys. 79 (1981), no. 3, 435–456.
[11] L. D. Faddeev and S. Shatashvili, Algebraic and Hamiltonian methods in the theory of nonabelian

anomalies, Theoret. and Math. Phys. 60 (1985), 770.
[12] D. Z. Freedman and R. R. Khuri, The Wu-Yang ambiguity revisited, Phys. Lett. B 329 (1994),

no. 2-3, 263–270.
[13] M. B. Halpern, Field-strength formulation of quantum chromodynamics, Phys. Rev. D 16 (1977),

no. 6, 1798–1801.
[14] , Field-strength copies and action copies in quantum chromodynamics, Nuclear Phys. B

139 (1978), no. 4, 477–489.
[15] B. Z. Iliev, Normal frames and the validity of the equivalence principle. I. Cases in a neighbourhood

and at a point, J. Phys. A 29 (1996), no. 21, 6895–6901.
[16] , Normal frames and the validity of the equivalence principle. II. The case along paths, J.

Phys. A 30 (1997), no. 12, 4327–4336.



R. Aldrovandi and A. L. Barbosa 2371

[17] , Normal frames and the validity of the equivalence principle. III. The case along smooth
maps with separable points of self-intersection, J. Phys. A 31 (1998), no. 4, 1287–1296.

[18] , Normal frames for derivations and linear connections and the equivalence principle, J.
Geom. Phys. 45 (2003), no. 1-2, 24–53.

[19] P. Majumdar and H. S. Sharatchandra, Gauge field copies, Phys. Rev. D (3) 63 (2001), no. 6,
067701, 4 pp.

[20] M. A. Mostow, The field copy problem: to what extent do curvature (gauge field) and its covariant
derivatives determine connection (gauge potential)? Comm. Math. Phys. 78 (1980/81), no. 1,
137–150.

[21] C. Nash and S. Sen, Topology and Geometry for Physicists, Academic Press, London, 1987.
[22] R. Roskies, Uniqueness of Yang-Mills potentials, Phys. Rev. D (3) 15 (1977), no. 6, 1731–1732.
[23] I. M. Singer, Some remarks on the Gribov ambiguity, Comm. Math. Phys. 60 (1978), no. 1, 7–12.
[24] , The geometry of the orbit space for nonabelian gauge theories, Phys. Scripta 24 (1981),

no. 5, 817–820.
[25] S. Solomon, On the field strength-potential connection in non-abelian gauge theory, Nuclear

Phys. B 147 (1979), no. 1-2, 174–188.
[26] T. T. Wu and C. N. Yang, Concept of nonintegrable phase factors and global formulation of gauge

fields, Phys. Rev. D (3) 12 (1975), no. 12, 3845–3857.
[27] Y. S. Wu and A. Zee, Abelian gauge structure inside nonabelian gauge theories, Nuclear Phys. B

258 (1985), no. 1, 157–178.
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