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In 1977, Jacob defines G, for any 0 < « < o, as the set of all complex sequences x such
that limsup |xx| /¥ < a. In this paper, we apply G, — G, matrix transformation on the
sequences of operators given in the famous Walsh’s equiconvergence theorem, where we
have that the difference of two sequences of operators converges to zero in a disk. We
show that the G, — G, matrix transformation of the difference converges to zero in an
arbitrarily large disk. Also, we give examples of such matrices.

1. Introduction

If x = (xx) is a complex number sequence and A = [a,x] is an infinite matrix, then Ax is
the sequence whose nth term is given by

(AX)p = > auxi. (1.1)
k=0

The matrix A is called X — Y matrix if Ax is in the set Y whenever x isin X. For0 < a < oo,
let Gy = {x : limsup |xx|" k < «}. For various values of «, this sequence space has been
studied extensively by many authors (see [3, 8, 9]). In particular, Jacob [5, page 186]
proves the following result.

THEOREM 1.1. An infinite matrix A is a G, — G, matrix if and only if for each number w
such that 0 < w < 1/v, there exist numbers B and s such that 0 < s < 1/u and

| @ | w" < Bs® (1.2)

for all n and k.

2. Preliminaries

Let f be an analytic function in the disk Dg = {z € C: |z| < R} for some R > 1. If f(z)
has the Taylor series expansion f(z) = >, axz¥, then for each positive integer , let

Su(z; f) = i axz* (2.1)
k=0
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be the nth partial sum of f(z). Also, let L,(z; f) denote the unique Lagrange interpolation
polynomial of degree at most n which interpolates f(z) in the (n + 1)st roots of unity, that
is,

Ln(wk;f) =f(wk) fork=0,1,...,n, (2.2)

where © = ezm‘/(n+1)

that

. Then the well-known Walsh’s equiconvergence theorem [10] states

rlgg [Lu(zs f) = Su(z; f)] =0 for z € Dpe, (2.3)

the convergence being uniform and geometric on any closed subdisk of Dx..

This theorem has been extended in various ways by several authors. In [7], Price used
certain arithmetical means and in [6], Lou used commutators of interpolation operators
to enlarge the disk Dg: of equiconvergence. In [1], Briick applied certain summability
methods to the difference L, — S,, in order to enlarge the disk Dg.. Also, in [2], the au-
thors extended the disk of convergence by substituting the nth partial sum S,(z; f) by
polynomials

n I-1

Qua(zf) =D D ez, (2.4)

k=0 j=0

where [ is a fixed positive integer.

Our aim is to apply a certain class of matrices to L, and S, and enlarge the disk Dg2 of
Walsh’s equiconvergence to D, for any p > R%.

Throughout this paper, we let I be any circle |t| = r with 1 < r < R. For any function f
analytic in Dg, we have by Cauchy integral formula

1 J‘ tn+1 Zn+1 f t)

2miJr -1 t—z

1 2\ e ()
" 2mi [1_<?) ]t”“ R

Lu(z f) =
(2.5)

Since [t| = r > 1, we get that

Lz )= 50 [1—(f)n+12(tn+l>t_tzd- (2:6)

Interchanging the summation and the integral, we see that

Lu(z: f) = L ) [1 - (Z)m]f(t)dt

t t—z
- (2.7)

1 z\"! 1 f(t)
T r[1_<?> L;tﬂ”“)t—zdt'
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Similarly, we can express S, (z; f) as follows:

z n+1 f(t)
Su(z:f) = Zm [1 - (?) }Edt. (2.8)
Therefore,
1 LRl I | t
Ln(z;f)=sn(z;f)+2mL[1— <§> Lzltj(m){:dt. (2.9)

For simplicity, we will denote L, (z; f) by L,(z) and S, (z; f) by S.(2).

3. Main result

For 1 < r <R, choose p > R: u> p/r,and 0 <v < 1. Let A be a G, — G, matrix. Therefore,
by Theorem 1.1, for any w such that 1 < w < 1/, there exist numbers B and s such that
0<s<1/uand

| @ | w" < Bs*  Vn,k. (3.1)

Consequently, the matrix A is a summability matrix which transforms null sequences
into null sequences. This is because

[eY]

z ank|— B =< B >
(1=s)ywn = (1—y3)

(3.2)

Zank—»o asn — oo, ane — 0 asn — oo,
k=0

We define A, (2) = 31 ankLk(2) and 0,(2) = >.;_ o anSk(2). Then, for |z| < p, we obtain
that

O‘n(z):i 2 f(t[l (j)k+l:|dt

=0 2m rt—
e ()5l
2m rt—z go e\t goa”" () |4

The interchange of the integral and the summation is justified by showing that the series
Sk ank and > a,x(z/t)F converge absolutely as follows. Using (3.1), we get that the series

(3.3)

(=) [

> lam| < % > sk, (3.4)
Wk

=0
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which converges for each 7 since s < 1/u < 1 and that the series

[eY]

2|

& Z<||Zt||s)k terT,

(3.5)
- z (@)
wr =\ r )
which also converges for each n, since |z|s/r < |z|/ru < |z|/p < 1. Also,
= 1 ( f( (z)k” |
= kgoank [Sk(z) t o L 2 (1 ; Z St 9t
(3.6)

ft) k+1 1
= on(@)+ 2m rt— z zoa”ktﬂk“ Za“"() ikl dt.

] 1

The interchange of the integral and the summation is justified as follows. Using (3.1), we
see that for each n and each j,

0

”rf rj

; 61nk| |t|] k+1 = w = (3.7)
B + B '

< - — = .
wirl (rl —s)  wh(r/ —5s)

[

k

because s/r/ < 1/ur/ < 1/pri~! < 1, and similarly

z|ank|]

k+1 B|Z| i |Z|S k
|t|] k+1) W”T’J'H — 1’j+l

BlZl TjJrl (3.8)
T ownrdtl (pith — z)s)
B Blz|
own(ritl = |zls)

because |z|s/r/t < |z|s/r < 1.

THEOREM 3.1. Let p > R%. Choose u > p/r, where 1 <r <R and 0<v <1 and let A be a
G, — G, matrix. Then

iif?o [An(2) —0ou(2)] =0 VzeD,. (3.9)

Proof. Using the expressions obtained for A, (z) and 0,(z), we get that

t k+1 1
Mn(2) = 0u(2) = f)z[k% P thk() W]dt. (3.10)

2m rt— et
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Therefore using (3.7) and (3.8), for each n, we have that

T 2awn )r |t—z| jzlrf—s

B (ol 1 s
[ An(2) = 0u(2) | [z +]§ o |z|s)]dt. (3.11)

It can be easily proved that the two series on the right-hand side of the above inequality
converge by using the ratio test. Therefore, w > 1 implies that

lim [An(2) = 0u(2)] = 0 (3.12)

for each |z| < p. O

4. Examples

First, we give below an obvious example for such a matrix A. Choose u > p/r and v such
that 0 < v < 1. Define the matrix A by

Vn
a”k:t_k’ t>u. (4.1)

For each w so that 0 < w < 1/v, we have

(yvw)* 1
= K < t*k, (42)

| @k | wW"

where 1/t < 1/u. Hence by Theorem 1.1, A is a G, — G, matrix.
Our next example is the Sonnenschein matrix A(g) = [a,x] which is defined by [4,
page 257]

[g(2)]" = i a2’ forn=1, (4.3)
k=0

where g is analytic at z = 0 and agy = 1, and agx = 0 for k > 1. Clearly, for each n > 1,

dk

Ank = %d?k [g(2)]" (4.4)

z=0

As we easily see that the first (n — 1) derivatives of [g(z)]" contains g(z) as its factor. So,
if g(0) = 0, then the first (n — 1) terms of the series >} a2z vanish and the matrix
A(g) = [ank] reduces to an upper triangular matrix.

Now, for u > p/r and 0 < v < 1, choose

l>max{u<l+%), Ziv} (4.5)

Let g(z) = 1/(z — 2I) + 1/21 so that g(0) = 0. Therefore, the Sonnenschein matrix A(g) =
[ank] is an upper triangular matrix. Since g(z) is analytic at z = 0 and on D, [g(z)]" is
analytic on Dy;. Let C = {z: |z| =I}. Then on C,

1 1.3
lz—2l 21~ 2l

lg(2)] < (4.6)
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Therefore by Cauchy integral formula,

(4.7)

k

3\"/1
S(ﬂ) (W) fork=n(0<v<l)

vl

<1 +v)”(%)

k
=(1+V> fork = n,
vl

where (1+v)/vl = (1/I)(1 + 1/v) < 1/u. Therefore by Theorem 1.1, A(g) is a G, — G, ma-
trix.

k
<y (l> since [ > i, (4.8)
2v

k
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